i

COMPUTABILITY SIMPLE (FOR REAL)

-«

Gabriel Rovesti

1 Computability simple (for real)
1 SUMMARY
L SUMIMIA Y e aaaaaaaaaaaaaaaanens 0
2 A Useful Introduction: Swiss Knife for Everything Neededccoeoeiiiiiiciiiei e 6
2.1 How to do the eXerciSes and FAQ,cocueeieeriirieiieeieestee sttt sttt sbe e sttt be e b e saeesane e 6
2.1.1 How to prove implications for URM MacChingsS..........cccoecuiiiiiiiiiiiiiciiee ettt et 6
2.1.2 How to prove the primitive reCUrsive EXErCiSEScuuiiiriiiiiiriiieeeriee e ereee e eree e sbee e e sree e s e 8
2.1.3 Whatare those Ex and WX | SE€ @VErYWHEIE?uuiiiiiiiiiiieiiee ettt e evee e 8
2.1.4 What is exactly (X | SE€ EVEIYWHEIE?........iiiiiiiieecee ettt saee e b eas 8
2.1.5 Why the subtraction has a poiNt ON TOP? ...ccociiiiiicie e e 9
2.1.6 How to prove the Smn-theorem EXErCiSEScuuiiiiiuiiiiieiiiie et e s eseaee e 10
2.1.7 How to write non-computable fUNCLIONSccuiiiiiiiiii e 11
2.1.8 How to use diagonalizationcoccuiiiiiiiiiii i ae e eans 11
2.1.9 How to prove decidability/semidecidability.........c..cccoueeiiiiiiiiiiiieceeee e 13
2.1.10 How to write computable FUNCLIONSc.eviiiiieieee e e e 13
2.1.11 What is that Set K | @lWays SEE? ...ccciiiiiiiiiiiiie ettt ettt ettt e e sre e e s st e e s sveeeeeeans 15
2.1.12 How to use the minimalisSationcc.eiiiiiiiiiinie et 15
2.1.13 What are those W1, W2 ... | SE€ VEIYWNEIE?ooeiiiiiiieeiiee ettt e 16
2.1.14 What is that subscript 1 over function composition?cccceeeeiiiiiieicieee e, 17
2.1.15 What is the universal function and how to USE it?.........ccceeiieiiiniiniiiiee e 17
2.1.16 What are those § and H functions | see everyWhere?cccovcvveeiecieieiecieee e ecieee e 18
2.1.17 HOW TO 0O FECUISIVE /I 0. EXEICISES .uvviiiiierrieeiiirieeesiteee e sttt e ssireeesssateesssbeeessssraeesssrreesssnnees 19
2.1.18 How tO Write the NeGated SELS.....cccuiiii et ree e e e e e e 23
2.1.19 How to do the Second Recursion ThEOrem EXErCiSescouuirierierieriieenieeieenee e eeeeeeeneeens 24
2.2 Swiss Knife of Practical Definitions.......c.uiiiiiiiiiieeeee e e 26
2.2.1 Totality and diagonalizationcceeeiiciiii i e e e e e e 26
2.2.2 MINIMAlIZAtION c.eeeeiieeieeeesee ettt sttt et e bbb e r e e e nnees 26
2.2.3 Why do we need to focus this much on Ackermann FUNCLION?ccccviiiiiciieecccieee e, 27
2.2.4 RECUISIVENESS AN LY PES ... iiiiiiiieie e eccittee e e e e e eeectree e e e e e e e s e abereeeeeesessnnteaseeeeeessasnseneeeeeessannnnes 28
2.2.5 Recursively enumerable and eNUMErationccccuiiiiiiiiieiccieie e ee e 29
2.2.6 Decidability and Semidecidability........ccccoviiiiiiieieiiee e 30
2.2.7 Functionals and FIXed POINTSccceeiieiieiienieiieeeeeeee sttt 30
DG T VT 0] oTo] K- [0 To I Xl o 0 1Y/ o o 3RS 31
2.3.1 URM Machings SYMDBOIScuiiiiiiie ettt e e e e e e e e e e e e e e nnbaa e e e e e e e sennnnes 33
2.3.2 General FUNctions and NOTatioN........ccceeeeiieriiriieeeeeeeeesee et 34
2.3.3 Sets, Predicates and CharacteriStic FUNCLIONSuuuuueeeiiii s 35
P0G T S A\ | I oToTo] o To) - A1) o -SSP USSR PSR PRPPP 37

Written by Gabriel R.

2 Computability simple (for real)

2.4 Swiss Knife of Useful Theoretical Definitionscceeieiiiiiiiiieieeeeeeeeeeee e 39
241 Computable FUNCLION ..ot e e s te e e s sbae e e s sbreeessntaeeesans 39
2,42 URM-IMAChINE ..ottt ettt ettt ettt ettt e st e e bt e sabe e s bee e sabeesabeeeneeesareeesareesanes 39
2.4.3 URM-Computable fUNCLION........coiiieee ettt e et e e s ebae e e e ebae e e e ertaaeeeaes 39
244 REAUCTION ..eiiiieieee ettt st ettt b e s bt e s ae e s ae e et e e b e e ebeesheesaeesane s bt eabe e beennees 39
245 RECUISIVE SEL....oeiiiiieiee ettt ettt e et e s s e e e s s bt e e s sabe e e e s earaeeessneeeessneneesaane 40
2.4.6 Recursively ENUMErable SELoo ittt s e e s e e e rre e e e eans 40
2,47 Decidable PrediCateottt e e e sare e e 41
2.4.8 Bounded MinimaliSation..........cocueeiiieiieiieiieeie ettt ettt st st st 41
2.4.9 Unbounded MinimaliSationcoceeiieiieiiecie ettt st 41
2.4.10 Semi-decidable PrediCate. ... i e e e ean 41
2.4.11 Partially recursive FUNCLIONSoiiiiiiiicce e e 42
2.4.12 Primitivfunctione Recursive FUNCHIONS.......cocuiiriiiiiiiieceeceieeeec ettt 42
2.4.13 SIMN-TREOTEM ..ttt b e s bt s ettt e b e e s bt e s bt e saeesabesabeenbeebeenneennees 43
24.14 SEIUCTUIE THEOIEIM ..ttt st sttt e st e s bt e saee st e st eab e e beesneesneas 44
2.4.15 o) =Totd o] o I I gT=To T oY o' TR PSPPI 45
2.4.16 SATUMATEA ST .ueiieiie ettt sttt e e st e st e e s b e st e e st e e sbee e sareeeanes 45
2.4.17 RICE S TREOIEIM ..ttt ettt e b e st sttt e b e e be e bt e saeeeaeeeneeebeens 45
2.4.18 Finite Function and SUB-fUNCLIONcocuiiiiiiiii e 46
2.4.19 RICE-Shapire’s TREOTEMooiieiiieceee e e e e e e e be e e e e abe e e e enreee e e ares 46
2.4.20 Myhill-Shepherdson THEOIEM........c.uuii i e e bee e e 47
2421 First RECUISION TREOIEM ...couiiiiiiiiee ettt s s 48
2.4.22 SecoNd RECUISION TREOIMEIMciitiiiiiiieiieie ettt ettt et ettt s beenbeennees 49

3 INTrodUCtioN £0 thE COUISE ...oimiiiiiiiiii ettt st ettt et e bt e s ae e st e sabe e b e e nbeesbeesaeas 50
4 Algorithms, effective procedures, non-computable functionsccecuviieiiiiiiiciiee e, 52
4.1 Existence of non-computable fUNCLIONS.........c.ueiiiiiiii e 54
LI U1 {1 I @e Yo 0] o1V =] o 11 1 YU PPPRRNE 58
5.1 URM-computable functions and eXamples.........ccueeeeiireeciiiee et e e e et a e e 60
T) (T o1 1= 3PSO 62
SR D= Tol e o o] [l o] =To [ok | Y- PPNt 70
6.1 Computability on other dOMAiNScccuiiiiiiiiee e e re e e e e abae e e e eaeees 71
7 Generation of computable FUNCLIONSooo it et e e et e e e bre e e e 74

2% R CT=Y Y=Y =1 [2= I oo 0 o o Yo] 1 o o 1SS 75

A A o 10 VLAV = Tol U1 5] o T o I PP OPSP 77
7.2.1 Functions defined by primitive reCUrSIONc..ciiieiiiee e et reee e 80

7.3 Bounded sum, bounded product and bounded quantificationccccceeviiiiiiiiiiei e, 82

Written by Gabriel R.

3 Computability simple (for real)

7.4 Bounded mMinimaliSationc..coiei i s 84
R T L g Tole e [T =R o W o X- 11 PSR SPPSPR 88
7.6 Unbounded minimaliSationccouiiiiiiiiieiiiie ettt 89
8 Partial reCursiVe FUNCLIONScouiiiiiiieie ettt st s s b e b e nbeesaees 94
9 Primitive recursive fUNCTIONSc..ei ittt st st st 99
9.1 The AckermMann FUNCHION......coocuiiiiiieee ettt st ettt e e s b e e ae e e sabeesneeesabeeeaees 99
9.2 Partially Ordered/Well FOUNAEA POSELS......ccuviireeieteeeetee ettt ettt eteeeeaeeeeareeebeeeeneeeens 101
9.3 Complete/Well-founded Induction and Ackermann Proof..........ccoeeeveeicieieceeeecieceee e 103
10 Enumerating URM Programs. ..o 108
10.1 EXEICISES . ettt e s e s e s 115
11 Cantor Diagonalization TEChNIQUEeviei ittt ree e et e e e s e e e e nres 118
111 T L0 Y1 [T PRSP 119
12 Parametrisation/SMN-TREOIEMoiiviiiee ettt ettt e e ete e et e e sateeenaeeas 125
12,1 SMIN-EREOIEM ettt b e bt bt e et et e et e e bt e s beesae e sate st e et e e beenbeenaeas 127
2 Y o Y o] L] £ 1=Te B gL g T =TT =T o o TSR 131
12.3 T L0 Y o1 [T SRR PR 132
13 UNIVEISal FUNCEIONiiiiiie ettt ettt s e s bt e e st e e bt e e sabeesabeeesabeesaneeas 134
I 20 R D=1 {1011 d o o FO OO TSP UT USRS 135
13.2 ReIQtOA EXOICISES. . eeuuieteeteeitte ettt ettt ettt et ettt et e bt e s bt s st e eateebe e beesbeesaeesaeesabeeabeebeenbeenneas 140
13.3 Effective operations of computable fUNCLIONS.........cccciiiiieiiii e e 143
13.4 Other exercises SOIVEd iN [ESSONS.......cociiiiiriiriieeeeeete sttt st 148
14 RECUISIVE SETS ..ottt s sb e sra e sab e sra s 155
I R 0 1= {1011 d o o FO OO P U UPO PRSPPI 156
14.2 Reduction and Related Problems. ..ottt 157
15 Saturated Sets and RiCE'S TNEOIEM ..ot e 163
15.1 SQTUIATEA SEES ..ottt st st et e h e s s s bt b reennees 164
15.2 RiICE S TNEOTEM ..ttt sttt et b e e b e sae e san e sar e s b e b e reenrees 166
15.3 Y101 o [USRS 167
16 Recursively ENUMErable SELS..... .ttt e e e e e e st re e e e e e e e e e nnraeee s 170
0 R 0 1= {1012 o T FO PSPPSR UR PSPPSRI 170
16.2 Existential qUantificationooocciiii i e 172
16.3 STrUCTUIE TREOIEM ..ottt st e st ae e s e sbe e e sare e s beeesnreesaneeesareeeanes 173
ST S o o T =Yt T o T I o [=To T (=1 1 o PR 174
16.5 Other exercises from [€SSONSc.uiiiiiiiiiieiiee et s e e esbe e e sar e eanes 176
16.6 Recursively Enumerable Sets and Reducibilityccccovvieeiiiiiiciiec e 178
17 [ToloR o ¥ o1 o I I g T To] (T2 o PSR 183

Written by Gabriel R.

17.1
17.2
17.3
18
18.1
18.2
18.3
19
19.1
19.2
20
20.1
20.2
20.3
20.4
21
211
21.2
21.3
21.4
215
21.6
21.7
21.8
22
221
22.2
22.3
22.4
22.5
22.6
22.7
22.8
22.9

Computability simple (for real)

DFINITION ..ttt st st et b e b ae e st s b e b b e nnees 184
[oo) PPV UO PO PSPPSRIt 186
T L0 Y o1 [T PRSP 190
First RECUISION TREOIEM ...ciuiiiiiieiiete ettt st sttt et e bt e sb e st e st st s b e b e sneennees 192
RECUISIVE FUNCEIONAIS. .. cieiiiiiiiieieet ettt ettt st st snees 195
Myhill-Shepherdson’s thEOIEMuiii i e e s e ebee e e s 196
D<) 1T Y14 o] o HO T POV V PR UP PO PRPRRPPRTOPRON 197
SeCONd RECUISION THEOIEMiiiiiiiiieeeiee ettt ettt sttt e st e st e st e e sbee e sabeesbeeesaseesaneeesareeennes 199
Definition and Proof Id@acocui it s 199
F AN oT o] [or=TuToT oI oY 2 Y o] [=TY USSR 201
Yo [T Y- =T o T o Il =T of YT USRI 206
EXAM OF 1970172022 oot ee et eeee e seeeeeee e e set s e eeseeaeeeseeseseaeeeseseseeseeesesseseesanens 206
Various EXErcises SOIVEA (1/2) uecciiiiiiie ettt ettt ettt et ebe e ste e s te e staesabeeabeebeebaenanas 212
Various EXErcises SOIVEA (2/2) ..cccuui ettt ettt ettt e et e e e et e s te e ebeeesareeeanes 217
Solution of the Exercise on Random NUMDENSc..cooiiriiiiiiiiienieiieeec ettt 221
Tutoring 1€SS0NS 2023-2024ooiieiiieeeecieie ettt e et e e e st e e e st e e e s eataeeeessbaeeesanbaeeesassaeeesansaeeeeasreeeas 223
Tutoring 1: Primitive RECUISION EXEICISES ...uviitiiiiiiiiiiieeeeeeeesriiiiteeeeseessiirtreeeeessessnreneeeeesssnnnnns 223
Tutoring 2: Exercises on Diagonalization and Partial Recursive Functions...........ccccceeeevieeennnee. 229
Tutoring 3: SMN-TNEOIMEM EXEICISES ..ueiiiiiieeeeeiieeeeecitee e eette e e eette e e e stee e e e sbee e e e beeeeeeabeeeeesasaeeeennrens 231
TULONING 41 RE. SEES oo, 232
Tutoring 5: R.E. Sets and REAUCLIONcuiiiiiiiiie e e 234
Tutoring 6: R.e./RICE-Shapir0 EXEICISES ...cviiviereereereeiteecteectteereereesteesteesteesaresbeebeebeesbaesssesanes 237
Tutoring 7: R.€. aNd REAUCLIONSceviiiiiiciiiieeee ettt e e e e e e e s e e snab e e e e e e e s enannes 239
Tutoring 8: All Kinds Of EXEICISESuuiiiieiiii ettt ettt e e e tae e e e erae e e enreas 240
Many solved exercises With full COMMENTANYcocciiiiiiiiiie e 242
URM MACRINES ...ttt ettt st sttt e b e sb e sae e st e st s bt e beeneennees 242
Primitive Recursive FUNCLIONSccciiiiiiiiiiiiiiii e 255
] 04T a R 1 g 1= To T4 =T o o TP US TP 263
Decidability and Semidecidabilitycocccuiriiiir i 271
Numerability and Diagonalization..........ccueiiieiieii i 274
Functions and Computabilitycccueeiiiiiiiiice e s e 276
Reduction, Recursiveness and Recursive Enumerability.........cccoveeeeiiiiicciiiiiiee e 290
Characterization Of SELSiiiiiiiiiie ettt sttt e bt e sbe e sateeteenee e 303
SecONd RECUISION TR OIEMoiiiiiiiiiectee ettt ettt e e e s b e e sar e sareesneeesareeeneeas 350

Written by Gabriel R.

5 Computability simple (for real)

Disclaimer

This file is the result of months of work, on a subject which is on paper the most interesting, but it's math
all over again (oh no, Mario like) and a very formal one at that. The teacher is really good, but problem is:
too much forced formal stuff and no real explanation on how to think and reason on the exercises, so you
see stuff in front of your eyes which you never know where it comes from (because you were never told).

Here, every single concept is explained in precision, trying to simplify as much as possible concepts without
loss of formality and generality. You will hopefully get the grasp and you will also find a lot of exercises
trying to be solved or that were solved like that by the teacher or tutors of this course.

This subject is not for everybody; it is followable, but you have to reason in abstract and expect to be
confused a lot. It’s totally normal, still. Apart from a few geniuses (which | am not - this is all hard work,
would love to get things first time, yeah), you are not alone. That’s the reason of this file existence.

Hopefully, given this course is unfollowable in class without having absolutely complete notes on it first
(you just write, or you just listen), this is a resource for you have just that. Consider also this is a work by a
single person; the notes present on Moodle were translated in LaTeX by three different people and the
professor gave assistance.

Here | did everything alone. Hope it will be useful; | was rarely thanked for works like this (I did many over
the years, with the goal of being simple for real), but if at least | gave you some help, well, at least this
makes something out of it. But | always do this for passion and never for any other goal rather than
spreading knowledge and hopefully improve, making a change directly, in people. | believe in this (this is
not slogan, it’s what | think) — it can be me or anyone else. The only thing | care is doing something nice.

Learning can be fun, even with subjects like this. Humbly, this tries to display passion and careful precision
over everything. Here, nothing is took for granted. Each notation, concept, function, is explained in words
and tries to be understood in a simple and concrete way.

On this course organization:

- Consider the lessons are done until half of December, then the professor dedicates two/three
lessons only for exercises

- The tutoring lessons are done until the end of January; in the dedicated chapter for exercises, you
find the link to find recordings of old tutorings and even the ones of this year’s file writing (23-24)

- The course had a partial exam up until it was in Italian, almost up until 19/20; topics touched for
those were just before universal function

- Inany case, the exam is written, oral is optional (if you are crazy enough to want “cum laude”)

Consider also:

- there is an entire chapter with subsections of solved exercises, both from “exercises.pdf” or exams
(even Italian exercises absent from “exercises.pdf” of Moodle, which | translated)
- for each exercises | try to give my take following Baldan notes as close as possible — | do not assume
those to be correct, just consider them for your own idea and in case just for reference
o given the file of this work for a single person, | think you should understand :-D

We are computer scientists, yes. But we are also human beings, at least sometimes.

So, help is needed and do not be afraid to leave feedback over this file, we can discuss it together. Also, to
thank me, it doesn’t kill me that much.

Written by Gabriel R.

6 Computability simple (for real)

2 A USEFUL INTRODUCTION: SWISS KNIFE FOR EVERYTHING NEEDED

This chapter includes explanation for every possible thing:

- an entire subsection dedicated first thing first to understand exercises (because that’s what we all
want to know, given for most of the course everything is taken for granted and never explained
everywhere in detail, yay!)

- an entire subsection dedicated to make you get the grasp of the single concepts and understand
everything in practice (so, it will be basically “get the idea”)

- an entire subsection dedicated to symbols (which were never written comprehensively anywhere,
yay again!)

- an entire subsection dedicated to theory definitions (for proofs, just take the notes — these are
both for the crazy ones of you who want to take the oral exam but also for us ordinary people to
easily get the grasp on where to use stuff and we care about it)

2.1 HOw TO DO THE EXERCISES AND FAQ,

This entire subsection represents what an introduction should be: something useful and mandatory in a
logical way. We like to understand stuff, right? This is actually meant for that, no more and no less. This is
the result of careful observation and putting puzzle pieces together of concepts never actually explained by
anybody. Here you go then.

2.1.1 How to prove implications for URM machines

This type of exercise and kind of straightforward (and usually asked in partial exams, so not focusing so
much on those, I'd say, but always be prepared).

Usually here there is a language with more/different capabilities from the normal URM machine and there
are two ways for this implication:

- set which contains more/different capabilities contained inside normal set
- normal set contained inside which contains more/different capabilities

This can be done in two ways (alternative to each other):

- Less formal proof showing how the new instruction can be encoded using a combination of
“normal” instructions and a subroutine

- More rigorous proof showing inductively on the number of steps, that the maximum of the values
contained in the registers at any time is bounded by the maximum value in the initial configuration
(see exercise 1.5 inside “exercises.pdf” for this one)

This kind of exercises was mainly present only inside partial exams. More precisely:

- The exercise gives us a variant of the normal URM model which these basic instructions:
zero Z(n), which sets the content of register R,, to zero: ;; « 0
successor S(n), which increments by 1 the content of register R,,;: 15, < 15, + 1

o transfer T (m,n), which transfers the content of register R,, into R,, which R, staying
untouched: 7;, « 13,

Written by Gabriel R.

7 Computability simple (for real)

o conditional jump:] (m,n, t), which compares the content of register R,,, and R,,, so:
= ifn, = nr, then jumps to I; (jumps to t-th instruction)
= otherwise, it will continue with the next instruction

- We have to prove the inclusion of the computable sets in both ways
o From modified URM to normal URM
o From normal URM to modified URM

- Define C for URM-machine and C’ (for example) the set of the model you have to show

- First step is showing C' € C
o Not necessarily the new machine is more powerful, infact it may be even less powerful

o Informally, we simply can code the “new” instruction/s in normal URM machine using a
routine of some existing instructions (jump/transfer/successor/jump)
= This is typically done considering say i the index of an unused register by the
program and a subroutine

o Formally, we prove C' € C showing that, for each number of arguments k and for each
program P using both sets of instructions we can obtain a URM program P’ which

computes the same function i.e. such that fp',(k) = P(k)

o The proof goes on by induction on the number of instructions h
= (h = 0), usually trivial, it's already a URM program

= (h—> h+1),basically | will describe the logic
e Describe as j for instance the index of instruction you want to replace and
[(P) the length of computed program
e We can build a program P"’ using a register not referenced in P, for
instance ¢ = max{p(P), k} + 1 (p is the largest unused register)
e Show that for the whole length of program, the jump to the subroutine can
successfully replace the instruction wanted

» The program P is s.t. fp(,lf) = P(k)and it contains h instructions. By inductive
hypothesis, there exists a URM program P’ s.t. fp(,k) = P(k), which is the desired

program
- Second step is showing C € C’
o The usual question is if inclusion holds both ways or if it is strict
o If this second part does not hold, then it is not strict

- Usually, this is similar to the one before, but this time around, instructions of normal URM have to
be encoded using only the new machine
o This one follows, if formally, exactly the same steps as before

Exercise to follow fairly complete on this: 1.5.

Written by Gabriel R.

8 Computability simple (for real)

2.1.2 How to prove the primitive recursive exercises

These basically follow an intuitive track:

- We give the definition of PR
- We define a function inside the set of primitive recursive functions by cases, covering base case and
inductive case
o Assume these functions are primitive recursive
- In case this function needs other functions to describe it, other can be combined via primitive
recursion themselves, hence proving the first one
- | suggest making a lot of practical exercises, for example also considering proofs here

Exercise to follow complete on this: 2.4 from “exercises.pdf”

2.1.3 What are those E, and W, | see everywhere?

Hard to write it explicitly, hey? No worries because here will be specified multiple times, but having a
dedicated subsection to this is crucial.

- W,: domain of function
o “Where the function is allowed to hit”
o All possible input values //’f(.x) : > Range
- E,: codomain of function iy Corimge)
o “Where the function does hit”
o All possible output values f:X->Y Codomain

The image (or range) is a subset of codomain and are the values reached when you substitute x to get y on
a subset (like the image you see); codomain are all the possible values reached.

2.1.4 Whatis exactly ¢, | see everywhere?
/varphi” (so, ¢).

“

This is represented as “phi” as letter (many times here ¢p) —in LaTeX it's

The first time this term is introduced is inside diagonalization, meaning “the function computed by the
program of index x” where we mean “index 0”, so ¢, “index 1”, so ¢, etc.

Specifically, ¢, can be defined as the x-th partial computable function, where x is the index of a Turing
machine (or an equivalent formalism like the URM model) in some fixed effective enumeration.

Later on, we can see @, is simply f(x) given it is defined. Consider the following infact:

Exercise 8.49. Study the recursiveness of the set B = {z € N ,(y) = y* for infinitive y}, i.e.,
establish if B and B are recursive/recursive enumerable.

Solution: We observe that B is saturated, since B = {z | ¢, € B}, where B = {f | f(y) =
y? for infinite y}. Rice-Shapiro’s theorem is used to deduce that both sets are not r.e. -

Specifically, inside theory, when talking about programs enumeration, we have:

R <Pr(lk): N¥ — N (as the function of k arguments (k-ary function) computed by the program
P, = y“D(n) can be seen as ¢ = P(:))

Consider this is justified by the universal function, which is always computable, and one can say ¢, is
computable for program e: Wy (e, X) = ¢k (%).

So: ¢ (x) is f(x), P (¥) is f(¥)

Written by Gabriel R.

https://proofwiki.org/wiki/Category:Primitive_Recursive_Functions

9 Computability simple (for real)

2.1.5 Why the subtraction has a point on top?

— =
subtraction x ~ y = Ty 22y .
0 otherwise

r=-0==x flz) =2z
r=y+l)=(@=y)=1 glx,yz2)=2-1

This represent a subtraction which will never give you negative results, so it’s always positive and well-
defined with no problems (if the subtraction gives say —1, the calculation will give 0, something like that).
More precisely:

- the subtraction with a point on top indicates something like a normal subtraction, it saturates to
zero when we get a negative value (not like a normal subtraction but defined only for natural
numbers). Examples:

o 3—4=-1¢N
o 3—=0
- this is technically called “truncated subtraction”, as shown here

Regular subtraction is not well-defined on the natural numbers. In natural number contexts one

often deals instead with truncated subtraction, which is defined:

a;b: 0, 1fa§b
a—b ifa>b

You can see here it’s called monus (or also cut-off subtraction as evidenced by Cutland, p. 241). As you can
see above, the function is primitive recursive and usually you put a point because you subtract from the
highest value the lowest, so this ensures “it’s all good”.

Written by Gabriel R.

https://math.stackexchange.com/questions/328530/is-the-set-of-natural-numbers-closed-under-subtraction
https://en.wikipedia.org/wiki/Monus#:~:text=Truncated%20subtraction%20is%20usually%20defined,subtraction%203%20%E2%88%B8%205%20%3D%200.

10 Computability simple (for real)

2.1.6 How to prove the smn-theorem exercises

Here we have to prove there exists a total computable function which has a particular and defined
domain/codomain or both of them.

- Inthis case, simply define a function of two parameters which is the combination of other
computable functions (so, it will probably use minimalization and things like sign functions)

- Use the smn-theorem definition to prove there exist an index capable of computation

- Use domain and codomain accordingly substituting the right indexes

Specifically:

Give a function of two arguments g(x, y)
o Define a case for set definition
o Define a case for otherwise
- Inthis case, with smn-theorem exercises, it helps creating a function s.t.
o the domain is where the values exist
= 5o, the positive case condition is the domain or less than the domain and has to
include that case inside condition
o the codomain is the output we want to reach
= after having written the cases, we see if the output/the computable function
respects said condition
- Itis computable, since it is defined by cases
- By the smn-theorem, thereis s:N - N s.t.Vx,y € N
o Write ¢5»)(¥) = g(x,y) and rewrite the function defined initially again
- As observed above
o Wsu =1{x|g(x,y) 1} = prove you stay inside domain, getting the same value
o Egu)=1{g(x,y) | x € N} = prove you stay inside codomain, getting the same value

In case you have Ej () and Wy, inside the function definition (just notation here, folks, the concept holds
the same way, you simply have n in place of x):

- simply use a function f(n, x)
- by smn theorem, there is a total computable function k: N — N s.t. ¢y () (x) = f(n,x) Vn,x €N
- Asobserved above

o Wsu =1{x|f(n x) I} = prove you stay inside domain, getting the same value

o Esuy = {f(n,x) | x € N} = prove you stay inside codomain, getting the same value

Written by Gabriel R.

11

Computability simple (for real)

2.1.7 How to write non-computable functions

Consider this one to get the concrete idea. Such functions are always total, since they are always defined
(basically, covered by all cases in function definition).

We have different choices to follow:

diagonalization (subsection ahead)
use a known non computable function, like yx
o conditions are dependent on exercise, here reported just as an example

f(x)={ 0, ifx<l1

Xk (), otherwise

o the general structure would be using yx somewhere, it can be both on positive/otherwise
case
sometimes, it happens that we use functions and subfunctions

0(x) = {f(x), general condition (e.g.if x < xg)
N 1, otherwise

6(x), general condition (e.g.if x < xg)
value (e.g.0,k), otherwise

re ={

since the subfunction is finite, the function is too, and one can write it as a computable function

2.1.8 How to use diagonalization

This one is a direct consequence of the previous one.

The idea of these exercises is to build a function which itself is built to be different from every single other
function of the same family, otherwise it is undefined.

Then, we have that the recursion of the function, say ¢, (x) # f(x), which happens because the domain is
built to be different from every value. An example that puts this explicitly:

@ (("SfeN construer £ st olom ()4 °(°"‘m) YieN
N =N

£y g0 L mmaat

0 FG)T

A > i)t

J{ G =1e Gl i AOM(AD%JOM(O

In this case, consider the function are total
o So, they have to define and handle all cases by definition
In this case, there are notable total non-computable functions; the function is built to differ from its
own values by recursion
We then say f(x) # ¢, (x) since this holds by construction (just use the problem conditions

replacing f(x) with ¢, (x))

Written by Gabriel R.

https://cs.stackexchange.com/questions/11181/how-to-show-that-a-function-is-not-computable-how-to-show-a-language-is-not-com

12 Computability simple (for real)

Consider (conditions are dependent on exercise, here reported just as an example):

j— ¢x(x) + 1! X E M/x
9(x) = { 0, otherwise

More generally, it might be something like:

(x) = {something involving ¢,, x €W,
flx) = 0, otherwise (so,x & W,)

- Consider the following notable examples from the course:

OBSERVATION 10.4. There exists a total non-computable function f : N — N
defined by

n)+1 if ,(n) |
0 if on(n) 1
f is not computable because it differs from all computable functions. In fact

o if pu(n) |, then f(n) = pn(n) + 1 # ¢n(n)
e if ,(n) 1, then f(n) =0 # @,(n)

SO
Vn f # @n

OBSERVATION 10.5. There are infinitely many total non-computable functions of
the following shape
k W,
f(TL) — Cpn (TL) + ne T
k ng¢ W,

The book specifies the following over diagonalization:

We can summarise the diagonal method as we shall be using it, in the
following way. Suppose that xa, x1, 2, . .. is an enumeration of objects of
a certain kind (functions or sets of natural numbers). Then we can
construct an object y of the same kind that is different from every .,
using the following motto:

‘Make x and x, differ arn.’

The interpretation of the phrase differ ar n depends on the kind of object
involved. Functions may differ at n over whether they are defined, or in
their values at n if defined there; with functions, there is usually freedom
Lo construct y so as to meet specific extra requirements; for instance, that
x be computable, or that its domain (or range) should differ from that of
each y,.

In the case of sets, the question at n 18 whether or not n 18 2 member.

Keep in mind that if you consider this one (quantification), this is universal and if one component is
computable, also the other one is, because it is decidable.

TL; DR

- use K and yg
- use ¢, (x) in some form different by construction

Written by Gabriel R.

13 Computability simple (for real)

2.19 How to prove decidability/semidecidability

In this case, we follow the definition, and we try to build a characteristic/semicharacteristic function, and
we know respectively something is decidable/semidecidable. This kind of exercises basically refers to
projection/structure theorem and usually involves building predicates in between them and prove those
definitions while respecting the meaning of giving characteristic/semicharacteristic functions.

In such cases, projection theorem and structure theorem definitions and proofs come to help. Consider this
correspondence (might seem obvious to you, but useful to know):

- recursive = decidable
- recursively enumerable = semidecidable

Consider also:

- structure says that starting from a semidecidable predicate, you build a semidecidable one such
that it will terminate in a number of steps t

- projection says that starting from a semidecidable predicate, then you can apply the previous one
and encode another semidecidable predicate

2.1.10 How to write computable functions

This is kinda hard to answer because there's no truly generic way to do this, but there are a lot of common
situations.

For semicharacteristic functions the general approach is to write them as 1(uw....), and then you need to
handle the ..., which you need to write as some sort of search where the condition is decidable/a total
function. Writing such search/condition is the hardest part and also what the exercise is all about.

Initially you can write this condition using predicates (for example =, >, that is not just functions) and
introducing new variables whenever you have a condition in the form "there exists ..." (often this comes up
with the number of steps, but not only in those cases).

When you're done you can start bundling all the variables in the w, for example if you used the variables y,
t and k you can say that w = (y, t, k), then you can replace all the uses of those variables with (w); where
i is the index of those variables in w (in this case all the y's become (w);, all the t's become (w)," and all
the k's become (w)3".

What's important to remember here is to not duplicate variables (that is, each variable should be present in
w only once, you should not have something like w = (y, t, ¥)) and that x should not be listed in w because
it already exists as the function argument (it may also happen that you have a function with two
parameters when using the SMN theorem, in that case you need to exclude both parameters from w).

For the sign functions, | think the most "mechanical" way to do it is to:

- replace every predicate with its characteristic function (H becomes yy for example). Remember
that those are 1 when the predicate is true, 0 otherwise. Use the negated sign to make them 0 if
true, 1 if false

- a = bbecomes sg(|a — b|), which is 0 if true and 1 if false

- a>bbecomessg(a — b)

- a=bbecomessg(a + 1 — b)

- OR operations become multiplications

- AND operations become additions

Written by Gabriel R.

14 Computability simple (for real)

- NOT operations become negated signs

In the end you get 0 if true and 1 if false, which is what you need to end the unbounded minimalization
when the condition is true.

Other things:

=
—_———

. o <
- we use cut-off subtraction (or monus, as you can see here) to (“*—- x5
. . . X = fx=
define values search and “something greater than something else”. _j =
N 2
= ~ (- 4)=4 \

- we use the sign function (or negated sign) whenever we have something which depends on
“greater/lesser” like before, but also can be either 1 or 0O (if first 1, second case 0, use sign,
otherwise use negated sign).

Consider the examples of remainder function definition or bounded minimalisation:

m (x,0) = O
Tm (x| 944 = { e, (z,y) +4 if =om (,9) +1 <=
Q othu wse = \(L(;gi\aj . s;?j(ka— ‘n,(-f-’,lad)) 4
4 (f‘ h(zré)(n&
= — - o ofhewyse
= (e (=) +1) % ’:3(00'— (eem () +4.)) (‘é’f%@fm%ﬂ)-sg (4= nizg)
_—
Z 4 P emixy) 4<
somethimg A f 3

™0 athouaise

- decidable predicates have to be transformed into semicharacteristic functions, for example like:

sca(r) = L. (S(z, (w)r, (w)a, (w)3) A (w) € Y))
= 1(#“”(‘)(3(% (w)la (w)Qa (w)?)) * XY((w)Q) - 1|))
We define different cases:
- constants will be multiplied by their expression y+1 fre K
g(w,y) =) otherwise
_Jy if-H(zazy)
g(z,y) = 0 otherwise =y x-u(r,z,9) The function g(x,y) is computable, since

g(@,y) = (y +1) - scx (x)
- equalities become absolute values subtractions from
right value to left value

A={zeN:xeW, A p.(r) =%} scalz)=1(pw. |2% — p(z)]) = L(pw. |2° — Uy (z,1)))|

“less than” becomes subtraction from bigger value to lesser value

A: = {zeN:ps(2) | A polz) <z+1} sca(z) =sg(z +1—¢.(x))

Written by Gabriel R.

15 Computability simple (for real)

Note that “less than” and not “less or equal then” (so, < instead of <) is expressed via (+1), as follows:

qt(2,y) ify <2z .
f(;r:gy)={ w10 ifex<xzo 70 o e
1 otherwise g(x) = M— M otherwise — (M —M'") sg(z+ 1= x)

Observe that f(z,y) = ¢t(2,y) + pz. (y + 1 = 2z)

- “greater than” becomes subtraction between bigger value and lesser one as cutoff subtraction

2% (x=n) fzx=n
1l otherwise

f(n,z) = =2%(z-n)+pz(n-x)

- VY values smaller than another one require a minimum bound

Solution: Let y9 = min{y | ¢, is not total}.
T sgVy <z @ytotal !

fa) = 0 otherwise flz) = { z itz <yo

=x-s —x
0 otherwise 9(vo)

- we subtract 1 when we consider the effect of unbounded minimalisation, which can give 0 as you
will see after these ones, considering predicates, like here, might be true (so give 1), we consider
that in the writing

(pw.(S(z, (w)1, (w)a, (w)3) A (w)2 € Y))
(pw.(|xs(x, (w)i, (w)a, (w)3) * xv((w)2) — 1)) s;:p_(:f) = }(;mu. Ix e+ (e, (7, (w)1)), (w)2) — 1|)

Jw. H&* D (e, (Z, (w)1), (w)s)

2.1.11 Whatis that set K | always see?

That set is the halting set, so we are talking about this one specifically:
K ={z|xzeW,}={z|yw.(x) |} = {z| P.(z) terminates}

The set is recursively enumerable, since it can be written with a semicharacteristic function, but it is not
recursive and so not computable.

We use this set with reduction from the set we have to this one; if proven correct, the set is not recursive.
Its complement, instead, so K is not r.e. and a reduction from this one proves your set is not r.e.

2.1.12 How to use the minimalisation

This is intended in words as: “l am looking for something”. This holds in two cases:

- the “normal use”, because you use partially recursive functions, you use unbounded minimalisation
- inthe case of primitive recursive functions, you have to use the bounded minimalisation

Look at the definition:

Given a total function f : N¥*1 — N, we define a function h : N¥*1 — N as follows:

miniumum z < y such that f(Z,z) =0 if it exists
WE,y) = pz < y.f(F 2) = { y f(Z,z)

y otherwise

Written by Gabriel R.

16 Computability simple (for real)

As you can see, the computation is always bounded, specifically in the range 0 < x < f (¥, z). Unlike
unbounded minimization, the bounded version is guaranteed to halt due to the restriction on the search
range.

The unbounded minimalisation, instead, is similar to the last one but the search is not bounded, given the
underlying function is not total, this operation is not guaranteed to halt for all inputs. Look at the following
definition; the function might never halt and so might not never give the desired output.

DEFINITION 6.31. Let f: N**! & N be a function. Then the function A : N¥ — N
defined through unbounded minimalisation is:

. . least z s.t. f(.?_,:,z) =0 ., ,
hZ) = py.f(Z,y) = flZ,z)l [f(&,2)+0 forz<z
1 otherwise, if such a z does not exist

We often use these ones to guarantee the desired function will terminate for sure, depending on the
nature of said functions and cases to consider.

The broader class of partial recursive functions is defined by introducing an unbounded search operator.
The use of this operator may result in a partial function, that is, a relation with at most one value for each
argument but does not necessarily have any value for any argument. An equivalent definition states that a
partial recursive function is one that can be computed by a Turing machine. A total recursive function is a
partial recursive function that is defined for every input.

Consider oftentimes we use a “fake” minimalization, which means we minimize on a variable not present
inside our set (so, for instance pz. (and z is not present) or uw) or instead do a “real” one when we look for
“the smallest y compared to x” say for instance, so you have py. (expression with y and x)

2.1.13 What are those (W)1, (W), ... | see everywhere?

(w)4, (W), are meant to be encoding in pairs and represent basically tuples — they are used to correctly
replace w, z, y and variables like that inside minimalization operator. They exist basically because there is
not a pair-minimizing operator. Nested minimalization doesn’t work either, because | would scroll the table
first only on the columns and then only on the rows.

Basically, they are used to map x, y as projection elements to transform a predicate into a mathematical
expression (coding a couple as an integer). Consider this example which extends what was written before;
basically, we use this encoding to replace x, y, t (example taken from exercise 8.26 — one of the very few to
make us understand because the process is clearly written — would love it if was always like that):

sea(zr) = L(p(y,z,t).H(x,y,t) n Sz, z,y,t))
= 1(pw.H(z,(w);,(w)3) A S(z, (w)s2, (w), (w)3)

Usually, in other cases (but the encoding depends on the specific problem, remember):

- wmyy
- (w),:t (number of steps)

The introduction of their variables is explained at the end of the Universal Function lesson; basically, when
we talk about the inverse function to determine if it terminates over input x in a defined number of steps,
we might use the encoding in pairs m, but instead we use the exponent of the first prime number 1 and the
exponent of the second prime number 2. So, we have:

Written by Gabriel R.

17 Computability simple (for real)

qr"(&a): e ®

T-‘ftﬂ%km&oﬁ

W — @, ; (W),
L

L

= m

Consider we do a minimalization on w on these ones given we are using the encoding with w letters.

Important: 95% of the cases, you are forced to use w encoding because you do not have i (which is the
encoding in pairs as just said). So, if the exercises gives you m(x, y), use that instead. Check for reference
exercise 8.52 (which can be used in 8.20) — both are using 7.

From here, the predicate over index e, on input x, produces y in n steps. When we found w, we get x as
first component. The encoding is not injective, but we don’t care about this: we only care it’s done in a
defined number of steps, hence finitely described.

f7ly = (pw. S, (W, y, (@2),

T () @, Te ()

W — CO\-D:]_ | (W),
—_— [.

= (438

2.1.14 What is that subscript 1 over function composition?

”

| simply mean (...), . It simply means “get the first component of such composition/minimalization, etc.
This is often used in semicharacteristic functions writing, but often it’s simply forgot, because it’s often
implied by the reasoning of said writing. o

_ _ _ xa(x) = (pw.S(eo, z, ()i, (w)2) v Sler,z, (w)i, (w)2))1
For instance, the following are equivalent

and Baldan is not strict if you don’t put that 1. 1(pw.(S(z, (w)1, (W), (w)3) A (w)y €Y))

2.1.15 What is the universal function and how to use it?

Consider this is always computable and one can say ¢, is computable for program e: Wy, (e, X) = ¢pX (%)

From what | got looking at the exercises solutions, it is a very limited case:

- basically, when you write semicharacteristic functions, so you are doing r.e./not r.e. exercises
considering exercises with ¢, (x) inside the exercise definition, there is:

o sca(x) = (.= Px(x))
- you simply replace ¢, with Wy (x, x)

o sci(x) =(..— ¥y(x,x))

Consider also (to make you understand how to write this):

bx(z) = Py(x,2)
by (2) =¥y (y,2)

Written by Gabriel R.

18 Computability simple (for real)

2.1.16 What are those S and H functions | see everywhere?

In this kind of exercises, there are also parts of proofs that use S and H function, never actually explained
properly, apart from putting the puzzle pieces together, present but not in a straightforward way.

General form of semicharacteristic function writing:
H(x,y,t) A S(x,y,2,t)
Syntax:

e S -function defined to stop in a defined number of steps
o S(x,y,zt)is the usual form — constrain execution to x, depend on y and z, terminate in t
steps
e When using the program code ¢, = f you can write
o S(e, x,y,t)—constrain execution to e, depend on x and y, terminate in t steps
= eisthe code, x is the input, y is the output, t the number of steps
o Thisis also written as ys when expressed as semicharacteristic function and often it’s
better, when writing the semicharacteristic functions, to pass to this form instead (so, from
S to xs to transform it from predicate to function) — Baldan it’s not strict on this one

e H-this is the “halts” function, defining where the function will stop, specifically on which input and
which output

o H(e, x,t)checks if e on input x terminates in t steps
= eisthecode, x is the input, y is the output, t the number of steps

o The usual form of this one is H(x, x, y) used in the case of the halting set
= xisthe code, x is the input, y the number of steps
= It's often used in the case of K which means —H (x, x, y) holds (does not halt)

o Thisis also written as yy when expressed as semicharacteristic function when expressed as

semicharacteristic function and often it’s better — see above

Nice explanation by this year tutor:

- The S function is almost the same as the H function, except it has an additional argument (the 3rd
one) that constrains the output of the program execution

- Thatis, H(e, x, t) only checks if the program with index e on input x halts after t steps, while
S(e, x,y, t) checks if the program with index e on input x halts with output y after t steps

- You would use H when you only care whether a program halts or not, and S when you also care
about its output

o the usual example is the inverse of a function, where you want to know whether there
exists an input x such that f(x) = y, in which case you do care that the output is y

Found inside page 79 of notes their notation:

COROLLARY 12.3. The following predicates are decidable:
(a) Hi(e, @ t) = “Pe(Z) | int or less steps”

(b) Skle,Z,y.t) = “P.(¥) |y int or less steps”

Written by Gabriel R.

19 Computability simple (for real)

Also inside page 96 (a bit late | would say) — S should be uppercase there:

o H(z,y,t) = “P.(y) | in t steps or less”;

o s(x,y,2,t) = “P.(y) | z in t steps or less”;
From what | investigated:

- if you have to express the fact the program halts or not (or you care about the input/domain), use
the function H (useful especially when writing semicharacteristic functions)

- if you care about halting and the output, use S (so we are talking about the codomain - useful
especially when writing semicharacteristic functions)

2.1.17 How to do recursive/r.e. exercises

For dummies:

- start to see if set is saturated
o usually if saturated, then not recursive, but can be r.e.
- ifitis saturated, see also if it is r.e. (so, you can write a semicharacteristic function)
- ifitisr.e., check if recursive
o use Rice’s Theorem/halting set to prove it’s not
o 98% of the times sets are not recursive — apart from exercise 8.58, usually “cool proof but
not real case” exercise to consider for this
- ifitis notr.e. use Rice-Shapiro or negation of halting set
o if notr.e. then it is not recursive

Also consider all logical implications, written in detail later.
Longer explanation; two macro-cases:

- We use Rice-Shapiro (this usually happens with functions with definitions like W, or E,) and show
the set is saturated, then show both the set and its complement are not r.e.
o Since they are not r.e., they are not recursive
= Basically we have at the same time a function which is defined but a finite
subfunction which is not defined
= Conversely we have at the same time a function which is not defined but a finite
subfunction which is defined
= On this arises the contradiction given by Rice’s theorem
o If we have a set r.e. (because we can write its semicharacteristic function)
= Then we have to use Rice’s Theorem to understand if it’s recursive or not

- We use the reduction (see also what was written here) from the halting set (this happens for more
“practical” cases, which happens when we have definitions that do not include domain/codomain)
o If afunction can be reduced from K it is not recursive
» In this case, the function is assumed to terminate (so, you have H(x, x, y)
terminating)
= Since the set is not recursive, the complement is not recursive or r.e.
o If afunction can be reduced from K it is not r.e.
* Inthis case, the function is assumed to not terminate (so, you have —H (x, x, y))
= Since the set is not r.e., it is not recursive and also the same holds from the normal
set, so not recursive or r.e.

Written by Gabriel R.

20 Computability simple (for real)

We know a set is not saturated if there is y depending on x or f(x) € W, /E,

Practical observations:

- Exercises with only domain and codomain in the definition (so, W, and E,) always require the use
of Rice-Shapiro

- Exercises with more normal definitions (like combination of y, x), something using ¢, or both of
them, then it requires a reduction from K (or its complement)

How to use Rice-Shapiro correctly? Well, considering id as the identity (always defined for every natural
number) and @ as the always undefined function (so, always undefined for every natural number).

- Aisnotr.e. (the cases are alternative between each other — so, if one holds, the other does not)
o We can have notable functions like id /@ € A and a function 8 & A
= Where the subfunction needs to be defined by cases
= Other times we have f € A (f is the original definition function) and 6 & A
o Wecanhaveid/® ¢ A and a function 8 € A
= Same observation for finite subfunction
= Othertimeswe have f € Aand 8 € A

- Aisnotr.e. (the cases are alternative between each other)
o We can have notable functions like id /@ € A and a function 6 & A
= Where the subfunction needs to be defined by cases
= Other times we have f € A (f is the original definition function) and 6 & A
o Wecanhaveid/® & A and a function 8 € A
= Same observation for finite subfunction
= Othertimeswe have f € Aand 8 € A

A general schema coming from an old tutor:

CHAPTER 3 = A\ iy RECURSVE/ R Ejr—\
@

v

\) A RECRINE
bofg NS
HapPiN OoF IV

NOT REQUEMVE

s

Ao b NoT R E
(BEcause iF BoTh A& RE
THON A RE cuRSIVE)

JSvALLY
A) ﬁ,f\- noT R.E.

:9 A R.F,(;_ NoT
5) A— LA Nol

OR

Written by Gabriel R.

21

Computability simple (for real)

=1

X, CoMPURBLE
R.E.

A ﬂs‘[’uﬁswg /7_{/ o
K <A /VA'CJF

SHow THAT "~ SHew THAT
,SCA— COMPUTA BLE SC, CoMpPUIRIE
4 4
CAIRES (¢ ~B)
- .or o 01 Ay {\DT QPCUE’SI{E

2.1.17.1 Rice-Shapiro

We use this one if A is saturated
o This usually happens when the exercises gives W, E, or both of them
o A={x eN|¢p,€A}and A ={f] ...}
o You replace W, with dom(f) and E,, with cod(f)

This way, we show 4 and A are notr.e.
o This may not always be the case; sometimes a set is saturated, but the set is r.e. (it means
you can write a semicharacteristic function y,)

* Inthis case, if Aisr.e. 4 is not r.e (hence not recursive)
» Conversely, if A is r.e., A not r.e. (hence not recursive)

Applying the definition it means either:
o we have a function which is in the set but a finite subfunction not in the set
o we have a function which is not in the set but a finite subfunction which is in the set

Usually, we use id and @

o identity = defined for all natural numbers

o always undefined function = undefined for all natural numbers
Sometimes, one can use the constant 1 function

It usually works showing you have (as above, but replace f with a logically correlated function to
the exercise definition of specified set)

o f &A,but30 finite,6 € A

o f €A, butVo finite,0 & A
This usually holds for both sets

o If both sets are not r.e. they are not recursive either

Written by Gabriel R.

22 Computability simple (for real)

There are the following implications:

- if Aisr.e. but not recursive, also Aisnotr.e. (also not recursive, otherwise they would be both
recursive)

- if Alis recursive, then y, is computable. We have 4 is r.e. and:

o ifK <,, 4, then A is not recursive

o if x5 is computable then 4 is recursive
- IfAr.e., then Aisnot—ifAis r.e., it means sc, exists, but is not recursive
- IfAr.e.then Ais not—if Aisr.e., it means sc; exists, but is not recursive

Side note (important):

- One can show a set is not recursive by using Rice’s theorem
o This occurs when the set is saturated and maybe is r.e. but we ask if it is recursive
o Then,youusee; € id/1ande; € P toproveey € A,e; € Ahence 4 # O, N
= forexample ey s.t. ¢, = id/1ore;s.t.¢p, =

2.1.17.2 Reduction

- We use this one if A is not recursive (K <,,, 4)
y (or value), x € K

T, otherwise
1 (or value), x € W,

T, otherwise
o itis computable and thus, by the smn theorem, we deduce that there is a total computable
function s: N — N such that, foreach x,y € N, g(x,y) = @5 (¥)
It can be shown to be the correct reduction function
o ifx €K, psu)(y) = g(x,y) =y (or value) Vy € N. Therefore s(x) € Wy(,) = N and

q,’)s(x)(s(x)) = sp;). Therefore, s(x) € A
= the functio\nhere is the value; if we had y? it would have been (s(x))2
o ifx&K,¢sx()=gy) TVy€ N.Therefore s(x) & W) = @andsos(x) € A

o usually something like g(x,y) = {

o avariant with the same meaningis g(x,y) = {

- We can also use the complement of the same set to show it is not r.e. (K <m 4
y (or value), —=H(x,x,y)
T, otherwise
1 (or value), x €K

T, otherwise
o itis computable since we have g(x,y) = value * scx(x) and thus, by the smn theorem,

we deduce that there is a total computable function s: N — N such that, foreach x,y € N,
g(x,y) = ¢s(x) 6]

o usually something like g(x,y) = {

o this starts from a computable function, like g(x,y) = {

The problem is that the reduction may not work for cases x & K => f(x) not in the set, since g(x,y) may still
have some values in the domain/codomain before it starts to always diverge, and those may be enough to
satisfy the set’s requirements.

- It can be shown to be the correct reduction function
o ifx €K, b5) = g(x,y) =y (or value) Vy € N. Also, we can say H(x, x,y) is false
Vy € N. Therefore s(x) € Ws(,) = Nand d)s(x)(s(x)) = s(x). Therefore, s(x) € A

o ifxeKk, b5 (¥) = g(x,y) TV y € N.Also, we cansay H(x, x,y) istrue Vy € N
Therefore s(x) & W) = @andsos(x) € A

Written by Gabriel R.

23 Computability simple (for real)

- If this reduction from complement holds, 4 is not r.e.

- ltcanalso happenK <,, Aandso Aisnotr.e.
- If both are valid (so K <m Aand K <m Z), both sets (4, Z) are notr.e.

Some logical implications | had also written in another subsection:

- Any recursive set is also recursively enumerable

- Asetisrecursive iff the set and its complement are r.e.

- Ifasetis notr.e. then is not recursive

- Asetis not recursive when a reduction from the halting set (K) works

- Asetisr.e. if one can write the semicharacteristic function, which is computable

- Aset can be shown to be not r.e. using a reduction from halting set complement (?) or via Rice-
Shapiro

- Usually, if a setis r.e., the complement is not r.e. (this depends on the problem conditions) hence
not recursive (otherwise, they would be both recursive hence r.e.)

- Ifasetis saturated, then it is not recursive (can be shown via Rice’s theorem)

- If afunction does not terminate, we argue —H (x, x, y) otherwise it terminates so H(x, x,y)

Some from reading the book:

- Aninfinite set is recursive iff it is the range of a total increasing computable function i.e. if it can be
recursively enumerated in increasing order

2.1.18 How to write the negated sets

In Rice-Shapiro exercises, it's useful to write the negated sets to actually understand the track to follow.
Remember the following rules (they come from logic, so consider this and De Morgan laws to be precise):

- 3 becomesV
-V becomes 3
- A becomes —»

All other obvious ones regard: = becomes #, > becomes < etc. Consider as examples:

Exercise 8.26. Study the recursiveness of the set A = {x Vy. if y 4+ 2 € W, then y < p,(y +)},
i.e., establish whether A and A are recursive/recursive enumerable.

Solution: Theset A={z Jy.y+zc W, A y> @.(y+)} is not is recursive, since K <, A.
Exercise 8.69. Classify the following set from the point of view of recursiveness

B={reN:Vye W, 3ze Wo.(y <2) A (pz(¥y) > vz(2))},

i.e., establish if B and B are recursive/recursive enumerable.

Solution: The set B is saturated, given that B = {x : ¢, € B}, where B = {f € C : Wy €
dom(f).3z e dom(f). (y < z) ~ (f(y) = f(2))}}.
For the complement B = {f | 3y € dom(f).Vz > y. (2 ¢ dom(f)) v (f(y) < f(2))}, we observe
Exercise 8.70. Classify the following set from the point of view of recursiveness

B={reN:VyeW,.3zeW,.(y<z) ~n (va(y) < pz(2))},

ie., establish if B and B are recursive/recursive enumerable.

Solution: The set B is saturated, given that B = {z : ¢, € B}, where B = {f € C : Vy ¢
dom(f).3z € dom(f). (y < 2) ~ (f(y) < f(2))}}

Written by Gabriel R.

24 Computability simple (for real)

2.1.19 How to do the Second Recursion Theorem exercises

The process here is fairly simple:

- you state the theorem

- you define a function of two arguments which is computable

- by the smn-theorem, this works (simply write its definition)

- by the second recursion theorem, there exists only a single index on which this holds

- use the second recursion theorem definition substituting e inside the function definition

Here you have two cases:

- use the theorem to prove there exist a single index respecting a problem definition
- use the theorem to prove a function is not computable

- use the theorem to prove a function is total

- use the theorem to prove the set is not saturated

In all three cases previously written, just to what was written above and

- if the function was not computable or total to begin with, with the second recursion theorem, any
possible index won’t be inside the domain or just will not be defined

- if the function is total or there exists a single index, simply substitute e in place of x inside the
function definition and call it a day

For the fourth case (set not saturated):

everything is the same, just change the conclusions
o Givenanye' # e and such ¢, = ¢,, we have that f(e') # f(e) and so (after proving that
on the exercise definition), e’ € A/C
= where A is the set, other times there is calligraphic C to represent the class of
computable functions

2.1.19.1 Show there exist an index s.t. function is total/computable

Give the theorem definition
Give a function of two arguments g(x, y) for instance defined by cases
o case for the normal condition
o case for otherwise
Since it is defined by cases, it's computable (since it is total, holds)
- By the smn-theorem, there exists a total computable function s: N = N s.t. ¢ (¥) = g(x,y)

By the Second Recursion Theorem, there exists e € N such that ¢, = ¢

You use the function previously defined and replace g(x, y) with ¢.(y) = @5y (¥) = g(e,y)
o inside the function, replace x with e

You conclude since you fixed the point in which all the condition you posed hold

Written by Gabriel R.

25

Computability simple (for real)

2.1.19.2 Show there exist an index s.t. function is not computable

Give the theorem definition

Note the function is computable but it is usually total, so you have say ¢, # ¢p(y)
By the Second Recursion Theorem, there exists e € N such that ¢, # @)

So, the original function cannot be computable

2.1.19.3 Show that a set A is not saturated

Give the theorem definition
Give a function of two arguments g(x, y) for instance defined by cases
o case for the normal condition
o case for otherwise
Since it is defined by cases, it's computable
By the smn-theorem, there exists a total computable function s: N — N s.t. 5, (y) = g(x,y)
By the Second Recursion Theorem, there exists e such that ¢, = ¢ ()
You use the function previously defined and replace g(x, y) with ¢.(y) = @5y (¥) = g(e,y)
o inside the function, replace x with e
Now, just take e’ # e such that ¢, = ¢, (which exists since there are infinitely many indices for the
same computable function)
So, we have ein Aand e’ & A So, A is not saturated

Written by Gabriel R.

26 Computability simple (for real)

2.2 Swiss KNIFE OF PRACTICAL DEFINITIONS

2.2.1 Totality and diagonalization

Total = defined for all natural numbers (all set), assigning a unique element to each output from input

- Afunction is total if it’s defined for cases and returns an output for every single possible input
(covers all possibilities, in other terms) — so, a function by cases is total by construction
- Technically, a function is total when f is defined for every input on set X
- Diagonalization here is a powerful tool
o We can use diagonalization to make a partial computable function that differs from every
total computable function
o It states that there are sets where you can’t list all of their members sequentially. It
assumes to have an infinite list of elements, which can’t be because the underlying thing is
total
= |f alist of a set of these strings exists...
= ..then there also exists a string that is not in the list
o Given it does not happen, there is the contradiction: the function is total, but you find a
value which is not on the list, while being defined for all values
o Tldr —use ¢, (x) as this section specifies

Partial: defined only on a subset of a specified set. Consider a partial function from x to y, this will assign at
most one element of y to every element of x

Computable = when referred to a specific model of computation (usually Turing Machines, here also URM
machines). Recall the definition given here:

o A computable problem/function is one where the steps of computation are precisely defined and
execution of the algorithm will always terminate in a finite number of steps, yielding a well-defined
output.

o Examples of computable problems include addition, multiplication, exponentiation for integer
inputs, as well as problems like determining if a number is prime or solving linear equations - all of
which can be solved by unambiguous, terminating algorithms.

o In contrast, problems like the halting problem are not computable as there is no single algorithm
that can correctly determine the behavior of all programs in a finite number of steps.

2.2.2 Minimalization

Minimalization is the process of finding the smallest value that satisfies a given property within a certain
range or domain. In the context of computability theory, minimization often involves searching for the
smallest input that makes a specific function output. Integrate this section with this one.

We use the so called pu-operator, denotes as py, can be either unbounded or bounded. In the unbounded
form, it searches for the least natural number y such that a given predicate R(y, x4, ..., X;) holds. The
bounded form, as described by Kleene, involves finding the least y < z s.t. R(y) with appropriate
conditions.

Let’s clarify the differences between bounded and unbounded minimalization.

Written by Gabriel R.

27 Computability simple (for real)

- unbounded

The unbounded minimization of a partial computable function ¢(x, y) with respect to y searches for the
smallest y s.t. ¢(x,y) = 0 (0 in the context of this example, keep in mind). If such y exists, the function
returns that value, otherwise it doesn’t halt.

In formula: uy[¢(x,y) = 0]
- bounded

The bounded minimization of a partial computable function ¢ (x, y) with respect to y searches for the
smallest y less than or equal to k s.t. ¢(x, y) = 0. If such y exists, the function returns that value,
otherwise it doesn’t halt.

In formula: uy < k[¢(x,¥)] =0

2.2.3 Why do we need to focus this much on Ackermann Function?

It is never required inside the exercises, but it's fundamental for many things:

- we need an order of elements, at least partial

- by induction, this can be proven to be defined on more elements respecting a specific property,
becoming well-founded

- forloops (bounded minimalization/PR definitions) cannot be general, given there are also non total
functions and there while loops (unbounded minimalization) is needed

At the end of the day:

- To be able to define all total functions you also need minimalization: otherwise, some functions
might be too powerful to express traditionally, like happens here.

Consider this one:

- We can't do unbounded loops with only composition and primitive recursion b/c composition is
necessarily finite and primitive recursion "counts down" as it were, to the base case.

- In other words, when we use primitive recursion we must specify a base case (usually wheny =
0) and a "demoting case", that is, a case that starts with ¥’ and ends with y (when y ! = 0).

- This clearly describes a bounded loop - yet in order to compute all the functions that Turing
machines can compute, we must be allowed to execute unbounded loops

- inasense, we need to be able to ask questions that may or may not have any answer (we need to
be able to run our program forever, since we know not where the answer lies —

f(0), f(1),f(2),f(3), etc..)

- This is what minimization seems to get us - since it asks the question - "At what point does the
function f return 0 for some inputs x4,...,x,?" - even though the function may never return 0 for
that input.

- The quintessential example of a function which is not definable without minimization is the
Ackermann function

Written by Gabriel R.

https://groups.google.com/g/computability-and-logic/c/KSgLny20KLc

28

Computability simple (for real)

2.2.4 Recursiveness and types

recursive: A set is recursive if it can be computed in a finite amount of time/number of steps
o Concretely, it means the characteristic function (gives 1 or 0) is computable
o Infunction terms, it simply means we have a function giving 1 or 0 with letter “chi” ()

1, x €A

Xa= {O, otherwise

o Consider recursive is a subset of recursively enumerable, which means that recursive first
depends on the fact the set is r.e. or not (so check that first)

primitive recursive: A function is primitive recursive if it can be obtained from basic initial functions
through a finite number of applications of certain predefined recursion schemes.
o According to a useful practical definition here:
= any function you can write where the only loops are those of the form
e "fori=1tondo.."
o Here n is fixed in advance (before the loop starts), and you cannot (explicitly)
change i nor n inside the loop. So the number of times the loop executes is determined in
advance. These conditions make infinite loops impossible.

In other terms:

o Asimplified answer is that primitive recursive functions are those which are defined in
terms of other primitive recursive functions, and recursion on the structure of natural
numbers.

o Primitive recursive functions are a (mathematician's) natural response to the halting
problem, by stripping away the power to do arbitrary unbounded self-recursion (because
you can define a function recursively going only on function you decide yourself, not out of
all the possible ones present out there) — this reasoning and phrasing comes from here

A good enough distinction from here:

Primitive recursive functions are those that can be computed (from the trivial initial functions) by
using for loops as the basic programming structure.

There are bounded loops [we know as we enter how many cycles to execute]. We can, though, nest them
one inside the other, and chain together such nested loops. 'For loops' correspond to definitions by
primitive recursion.

Recursive functions are those that can be computed (from the trivial initial functions) by using for
loops and/or do until loops.

'Do until' loops involve unbounded searches until some condition is satisfied [as we enter the loop, we don't
know how many times we will need to cycle around], so correspond to definitions by minimization.

partial recursive: A function is partial recursive is if it can be built up in finitely many steps from the

basic functions by use of the operations of composition, primitive recursion and minimization.
o In other words, the function might be undefined (or "partial") for certain inputs. The set of
partial recursive functions includes both recursive and primitive recursive functions
o Again: this one include minimalisation, while primitive recursive functions do not.

Written by Gabriel R.

https://math.stackexchange.com/questions/75296/what-is-the-difference-between-total-recursive-and-primitive-recursive-functions
https://stackoverflow.com/questions/1712237/how-does-primitive-recursion-differ-from-normal-recursion
https://math.stackexchange.com/questions/276479/representing-recursion-and-primitive-recursion-diagrammatically

29

Computability simple (for real)

2.2.5 Recursively enumerable and enumeration

enumeration: An enumeration is a listing or indexing of elements of a set in some order. It provides
a way to iterate through all elements of the set one by one.

recursively enumerable: A set is recursively enumerable if we can enumerate recursively the
number of steps (which means “sometimes” we find a function terminating/TMs accepting the
language)
o Concretely, it means its semicharacteristic function is computable (so, it’s a superset of
recursive) and mean
o The semicharacteristic function is a partial function that indicates membership in the set
for certain elements but may not provide information for others.
o Usually we write:

scp(x) = {1, XEA
AV, otherwise

Quoting Wikipedia, “for these sets, it is only required that there is an algorithm that correctly decides when
a number is in the set; the algorithm may give no answer (but not the wrong answer) for numbers not in
the set”. So you see that:

we can list the elements, so we are able to describe recursively a set
but not always this set ends
o it may happen on a finite set of indices and not for the other — meaning of saturated

Precisely, on the recursive/r.e. nature some logical implications:

Any recursive set is also recursively enumerable

A set is recursive iff the set and its complement are r.e.

If a setis not r.e. then is not recursive

A set is not recursive when a reduction from the halting set (K) works

A set is r.e. if one can write the semicharacteristic function, which is computable

A set can be shown to be not r.e. using a reduction from halting set complement (K) or via Rice-
Shapiro

Usually, if a set is r.e., the complement is not r.e. (this depends on the problem conditions) hence
not recursive (otherwise, they would be both recursive hence r.e.)

If a set is saturated, then it is not recursive (can be shown via Rice’s theorem)

If a function does not terminate, we argue —H (x, x, y) otherwise it terminates so H(x, x,y)

Some from reading the book:

An infinite set is recursive iff it is the range of a total increasing computable function i.e. if it can be
recursively enumerated in increasing order

Written by Gabriel R.

30 Computability simple (for real)

2.2.6 Decidability and Semidecidability

- decidable: A predicate is decidable if its characteristic function is (URM) computable (and so it is
total)

o Concretely, it means there is a characteristic function like the following for a predicate:

1 if P(2)
0 otherwise

el - |
o If you look better at this, you will see it’s something like the recursive set case

- semidecidable: A predicate is semidecidable if and only if the predicate is r.e. —so there is a
semicharacteristic function for that
o Inother words, a set is recursively enumerable if there is an algorithm that can list its
elements, though this algorithm might not halt for elements not in the set
o Concretely, you will see this is similar to the recursively enumerable case

sep(i) = { 1 if P(F)

T otherwise

Of a set, such that there is a deterministic algorithm such that if an element is a member of the set, the
algorithm halts with the result "positive", and if an element is not a member of the set, the algorithm does
not halt, or if it does, then with the result "negative".

- saturated: A subset A € N is considered saturated or extensional if for every pair of natural
numbers m and n, if m belongs to A and the functions represented by the programs ¢,, and ¢,, are
equal, then n must also belong to A.

o Insimpler terms, this definition asserts that if a program with a specific property is part of
the set, then all programs that compute the same function must also be part of the set.
o This notion is essential to try to use Rice-Shapiro

2.2.7 Functionals and Fixed Points

- functional: A functional (also called “operator”) is a total function ®: F(Nk) — F(N") (considering

F is the set of all the functions and the others are the arguments and the indices of the k
arguments)

o Afunctional has to be effective, given both input and output can be infinite

o They calculate in finite time using only a finite part of the input function (according to
Cutland book definition)

o Ingeneral, a functional type, in which a function takes in input a function of same type and
gives as output another function of same type

- To do this, we introduce the concept of recursive functionals
o Afunctional @: F(Nk) — F(N") is recursive if there is a total computable function
¢:N"*1 > Ns.t.v f € F(NK)
vx € N"
O(f)F) =y iffthereexistsf S fs.t.p(0,%)=y

o Insimpler terms, recursive functionals essentially produce outputs of the same type as a
finite part of the input function, acting as both input and output themselves.

Written by Gabriel R.

31 Computability simple (for real)

- fixed point: A function is a fixed point/fixpoint of a functional ® (a function which is not changed
from the transformation and is an element mapped to itself by the function), i.e. f: N —

Ns.t.d(f)=f.
o Looking here, a fixed point x in a set X s.t. x € X is a fixed point with a map to itself such
that f(x) = x.

2.3 SYMBOLS AND ACRONYMS

First thing first:
- Inside “notes.pdf” on Moodle, you will often find the subtraction with a point, something like —

What does this mean (because never explicitly told, not even by the book)? This represent a subtraction
which will never give you negative results, so it’s always positive and well-defined with no problems (if the
subtraction gives say —1, the calculation will give 0, something like that). More precisely:

- the subtraction with a point on top indicates something like a normal subtraction, it saturates to
zero when we get a negative value (not like a normal subtraction but defined only for natural
numbers). Examples:

o 3—4=-1¢N
o 3—=0
- thisis technically called “truncated subtraction”, as shown here

Regular subtraction is not well-defined on the natural numbers. In natural number contexts one
often deals instead with truncated subtraction, which is defined:

a;b: O, 1fa§b
a—b ifa>b

You can see here it’s called monus (or also cut-off subtraction as evidenced by Cutland, p. 241)
Just to pinpoint in grammar:

- according to the English language, minimalization, better minimization, it’s the right term. Here,
both the book and the notes use the “s” writing (minimalisation), which is less correct in English.
Both are used here, mainly the first one being more correct (at least from what | found myself).

Written by Gabriel R.

https://www.karlin.mff.cuni.cz/~prazak/vyuka/101/Literatura/vittorino-FP.pdf
https://math.stackexchange.com/questions/328530/is-the-set-of-natural-numbers-closed-under-subtraction
https://en.wikipedia.org/wiki/Monus#:~:text=Truncated%20subtraction%20is%20usually%20defined,subtraction%203%20%E2%88%B8%205%20%3D%200.

32

Continuing with other explanations:

The

Computability simple (for real)

(...)1: when you see an expression like this, with a 1 as a subscript (it doesn’t matter what’s inside),
means “projection on the first component of the computation”, which in other words means “take
the output from the first register” and will always hold as such for the other ones given it is

defined.
T (does not terminate/halt)

| (terminates/halts)

[J symbol specifies the end of a proof.

Moving on:

€ =inside a set

€ = not inside a set

s.t. or the pipe sign | = such that (“tale che” in italiano)
= = congruent to

Y. = sum of all things / [= product of all things

— = negation

o = composition

< =reduction (simplification hence usage of smn-theorem for parametrize) of function of left of

the symbol to the one on the right

C =For a given set B, the set A is a subset of B if every element that is in A is also in B. This is

denoted by AC B

X = vector of inputs for a given function (which means we take them all and apply projection), so

we have all of the inputs on a possible computation

y: effective bijective enumeration of set of all programs

1: encoding in pairs of natural numbers (n-tuples defined by recursion)

Just to clarify:

Set Intersection (N):

The intersection of two sets A and B, denoted A n B, contains only the elements that are common to both
sets A and B.

It "filters out" elements that are not in both sets.

Written by Gabriel R.

33 Computability simple (for real)

Examples:
{1,2,3}n{2,3,4}=1{2, 3}
{a, b} n {b, c} = {b}
- Set Union (U):
The union of two sets A and B, denoted A U B, contains all elements that are in either set A or set B or both.
It combines the elements of both sets without removing any.
Examples:
{1,2,3}uU{2,3,4}=11, 2,3, 4}
{a, b}U{b, c}={a, b, c}
So we can describe in symbols:
- V=or
- A=and
Continuing with other symbols:
- P =mapsto

2.3.1 URM Machines Symbols

- zero Z(n), which sets the content of register R,, to zero: 1, < 0
- successor S(n), which increments by 1 the content of register R,,;: 15, <« 15, + 1

- transfer T(m,n), which transfers the content of register R,,, into R,,, which R,,, staying untouched:

™ €< Tm

- conditional jump: J(m, n, t), which compares the content of register R,, and R,,, so:
o ifnr, = nr, then jumps to I; (jumps to t-th instruction)
o otherwise, it will continue with the next instruction
yk. P—
- [: projection
The jump actually does many things:

- J(1,1,SUB) =it’s a jump on a subroutine, which you can define, to encode further instructions of a
machine
- J(1,1,END) = jumps to the end of program

Other ones to note (considering a URM program P):

- I(P) = program length/number of instructions

- p(P) = largest register index (the letter is “rho”)

Written by Gabriel R.

34 Computability simple (for real)

2.3.2 General Functions and Notation

- u: minimalization (there is a “point” (.) between u and bounded function)
o It uses arandom w to only prove the minimalization argument for which the expression is
less than w thanks to u

- sg:sign function (used to represent a binary condition, usually something you don’t want to
become zero)

- sg (negative sign function, same for binary, opposite of the last one)

The two “sign functions” are often used to properly represent all the possible combinations of computation
when dealing with a defined function. It means we usually consider “binarily” the cases we have; if we have
two cases, for example, we use sign or negated sign “to represent f(x) subtracted from the other case in
the expression”, hence representing it is computable otherwise. Often it is used with minimalization.

- gt: quotient function)
- ¢y : primitive recursive k — ary function given by the x — th step of enumeration, so it can be
different from the function (so, subinputs over following computations of a function). Usually, this
is useful for diagonalization arguments, which is different from f(x)
- rm:remainder, will give 1 if the division does not have an null remainder, 0 otherwise)
Many times you will find these ones, not so often explicitly told:

- W,: function domain
o Letter W probably stands for writable, so it is possible to write down all the inputs for
which the function is defined)

- E, :image of a function (aka, all the function outputs or the values in the codomain — the first
definition is less math-like and more human-like, I'd say, but let’s try to be precise)
o remember the codomain is also written as cod(f"), where f is a function
o remember also the image can be written as img(f)
o Letter E probably stands for enumerable because it is possible to enumerate all the outputs
that the function can produce.

Specifically, we can precise that:

- image, codomain is always N if we use the classical convention
- codomain = target set and image = set of images of domain elements
- E is the image while the codomain is N

Other notable ones:

- m(x,y): a pairing function

- Y:program coding

Written by Gabriel R.

35

Computability simple (for real)

One thing important to remember is that (may seem confusing, but all cases are listed thoroughly):

If you have computable functions and perform computable operations (addition, multiplication,
composition of computable functions), the result is always computable.

If you have computable elements but perform operations that involve non-computable functions,
the result may be non-computable.

If you have non-computable elements but perform computable operations, the result can be either
computable or non-computable, depending on the specific nature of the non-computable
elements.
o Inthe specific case of functions, if you combine a computable function with a non-
computable function through a computable operation, the result is computable.
o However, if you combine a computable function with a non-computable function through a
non-computable operation, the result may be non-computable.

If both elements and operations involved are non-computable, the result is typically non-
computable. Non-computability tends to propagate, and complex interactions may lead to
undecidable or incomputable outcomes.

2.3.3 Sets, Predicates and Characteristic Functions

PR = set of primitive recursive functions (useful in the dedicated exercises and with specific
properties specified here)

K = halting function set (we can have its complement K)
o ifasetreducesto K isr.e. (but not recursive)

o ifasetreducesto K is notr.e. (also not recursive)

K={z|zeW,} ={x|p.(x) |} ={z| P:(2) terminates}

A = decidable predicate (many other times, simply a set, which can also be B)
o consider many times we need to write the negated set, useful for recursiveness exercises

Other notable sets: IP - set of even numbers, Pr set of prime numbers

Q(xq, ... xy): k-ary predicate

Sometimes you will find A which is the set of computable functions (called “calligraphic A”)
o many times in this file, will be written as A and the normal set as A
o this was because | discovered late the solution of calligraphic A (bear with me, given the
quality of file)

Similarly, you will find C (definable normally as “calligraphic C”) which represents the class of
computable functions

Similarly, you will find F (definable normally as “calligraphic F”) which represents the set of all
functions (possibly not computable)

Written by Gabriel R.

36 Computability simple (for real)

- Xk: characteristic function of the halting set, which is 1 if input halts (n € K), 0 otherwise) - Greek
letter here is “chi” (the strange X here)

- xa: characteristic function of set A which is 1 if input € A), 0 otherwise)

- sc4: semi-characteristic function (0/1 cases) of a predicate
o if the semicharacteristic function is decidable, the function is semidecidable

- Wy universal function (Greek letter is “Psi”)
o itis usually of two arguments: e (program) and X (input arguments)
o itis generally used when there is a fixed index for the function or a fixed input
o in many cases, it simply substitutes ¢, (x) as Wy (x, x) (as written here)

- 1: characteristic function, seen also in LaTeX as \mathbb{1} (for your reference)
o both in Moodle notes and here is used the bold notation, for easiness of use
o Over functions, you will see many times combinations of binary function which are trying to
express the binary conditions, as you can see by the following example. In this case, it can
be read as “all the possible combinations thanks to which in can be either 1 or 0”

- B:finite subfunction
o used in Rice-Shapiro context to show there is at least one part which has properties the
rest of the considered set does not have

e: index of computation for functions (also called many times simply “program”)
o ¢, = partial recursion over the specific index
o usually, it is used inside the Second Recursion Theorem exercises or simply to compose
function by compositions (so, f = ¢, and then you write f(x) as the combination of tuples
with e as index)

In Rice-Shapiro exercises, the following functions are often used:

- id (identity function)
o it used usually for the normal version of set to show for every natural number the finite
subfunction does not respect the conditions of the specified set and is not inside of it
o this holds because it is defined for every natural number
o it has finite indices hence finite programs calculating it
o asubvariant sometimes used is id(x), so you can define a subfunction, like constant 1 or
constant 0

- @ (always undefined function — same symbol as empty set)
o itis used usually inside the complement of set to show the finite subfunction does not
respect the conditions of the complement and is not inside the set
o it has infinite indices hence infinite programs calculating it
o this holds because it is not defined for any natural number

Inside last part of notes, there is:

- @ (uppercase phi), which represents a functional

- fo, which represents a least fixed point

Written by Gabriel R.

37

2.3.4 All book notations

Computability simple (for real)

Just because | am a good person, | compiled every notation here stole by courtesy of Cutland book.

Chapter 1
j: [nth register 9
I contents of R,, 9

Z{n) zero instruction 10
S{n) successor instruction 10
T(m, n) transfer instruction 10
Jim,n,q)
jump instruction 11
r.'=x r,becomesx 10
Play, a3,...)
computation under program P 1€
Pl(a, as,...)!
the computation stops 16

Play, az,...)1
the computation never stops 16
P(@1, @24 a)lb

the final value in R, is & 17
%€, %€, computable functions 17

5 n-ary function computed by P 21
e characteristic function of M 22
Chapter 2
Uy projection functions 25
P
PQ or
Q

concatenation of programs 27
p(P) denotes registers affected by P 2
) — l,=1] 28
x =y cut-off subtraction 36

Written by Gabriel R.

sglx), sglx)
signum functions 36
rm(x, y), qtix, y)
remainder and quotient functions 36, 37

pr=y(...)
least z less than y 39
Px xth prime number 40
(x), power of p, occurring in x 40

wix, ¥) a pairing function 41
wy(flx, y)=0)
minimalisation operator 43

Chapter 3
&, Ay (partial) recursive functions 49
g primitive recursive functions 51
Turing-computable functions 56

obtained by productions in Q@ 59
Post-system % generates 59
strings generated by % 59
coding of a word ¢ 61

" word representing n 61

G(f) graphof f 62

PE Post-computable functions 63

¢Q);-]f_",'.U,Q ;;],g

Chapter 4
URM instructions 74
URM programs 74
program coding function 73
nth program =y "'(n) 75
@4, s functions computed by P, 7677
Wi, W,
domain of ¢."', ¢, 77
EJ', E,range of ¢, &, 77

fa B IR

Chapter 5
o,

universal functions 86
cnle, x, 1)

configuration code 87

fale, x 1)
next instruction 87
aale, x, 1)
state function 87
Tale,x, 1)
Kleene T-predicate 89
Recif, g)
function obtained by recursion from f, g 91
Sub(f, g14 .+« Bm)

function obtained by substitution from f, gy,. ..,

Chapter 6
rational numbers 108
n, = logical symbols for *and’, ‘implies’ 111

1 :
R] symbols in a logical language 110

Chapter 7
A@B {2x:xeA}lu{2x+1:xeB} 122
A® B {mix,y):xeAand yes B} 122
K {x:xe W,} 123

Chapter 8
=1, v logical symbols for ‘not’, ‘or’ 143
5 statements of language L 144
J,F true, false statements of L 144
8 (n+ Ljth statement of & 144
neK formal counterpartof ne K 145
P provable statements 147

Pr* {n:nekK is provable} 148
Ref* {n:ngKisprovable} 148

Chapter 9
A=,8 A is many-one reducibleto B 158
=p, many-one equivalent 161
dglA) the m-degree of A 161
a=.,b partial order on m-degrees 162
0. m-degree of recursive sets 163
0 m-degreesof & and W 162
0

m-degree of K 163

'
]
L

38

Written by Gabriel R.

awb least upper bound of degrees a, b 165
O{n) oracle instruction 167
P URMO program P with x in the oracle 168

€* x-computable functions 169
R* y-partial recursive functions 170
by Pm

functions computed by @}, 170-171
W EG

domain and range of &7, 171
" universal function for y-computability 171
K* ={x:xe Wi} 172
P, €%, ¢ Wi ES K*
relativised notions for A-computability 172
A=rB A is Turing reducible to B 174
=7 Turing equivalent 174
dr(A) Turing degree of A 175
a=§ partial order on T-degrees 176

] T-degree of recursive sets 176
o T-degree of K 176

A jumpof A 177

a' jumpofa 177

ab a, b are incomparable degrees 179

Chapter 10
F, n-ary partial functions 182
8 a finite function 183
] code for a finite function # 183
fa least fixed point for ¢ 192
2 function defined by program » 196
Chapter 11
E, sequence of computable functions enumerated by ¢,
D diagonal enumeration 208
Chapter 12

dnh

te (x) number of steps taken by P to compute fe(x) 213
£Mx) x) 213
€, EF

complexity classes of & 223, 233

& elementary functions 225

2:
bi(z) ‘k/ 230

5

Computability simple (for real)

208

39 Computability simple (for real)

2.4 Swiss KNIFE OF USEFUL THEORETICAL DEFINITIONS

You don’t need all the definitions to know here — e.g. computable function, URM machine/URM-
Computable/Myhill theorem/First Recursion theorem/finite function one are here for clarification. The
other ones actually came out in exercises or exams. Each one will be clarified concretely and by the point of
view of the specific exercise in which it is used.

2.4.1 Computable function

DEeFINITION 1.2 (Computable function). A function f is computable if there exists
an algorithm that computes f.

2.4.2 URM-Machine

A URM-machine formalizes the notion of computable function by using an abstract machine called URM-
machine (Unlimited Register Machine) which computes instructions effectively and finitarily thanks to the
Church-Turing thesis. It has:

- unbounded memory that consists of an infinite sequence of registers, each of which can store a
natural number

- acomputing agent capable of executing an URM program

- a URM program, i.e. a finite sequence of instructions that can “locally” alter the configuration of
the URM

It has different instructions:

- zero Z(n), which sets the content of register R, to zero: 1;; « 0
- successor S(n), which increments by 1 the content of register R,: 15, < 1, + 1
- transfer T(m,n), which transfers the content of register R,,, into R,,, which R, staying untouched:
Ty < Ty
- conditional jump: J(m, n, t), which compares the content of register R,, and R,,, so:
o ifr, =1, then jumps to I; (jumps to t-th instruction)
o otherwise, it will continue with the next instruction

2.4.3 URM-Computable function

DEFINITION 3.6 (URM-computable function). A function f : N¥ — N is said
to be URM-computable if there exists a URM program P such that for all
(a1,...,ar) € N* and a € N, P(ay,...,ax) | if and only if (a1,...,ax) € dom(f)

and f(ay,..., ay) = a.

In this case we say that P computes f.

2.4.4 Reduction

DEeFINITION 13.5. Let A, B = N. We say that the problem z € A reduces to the
problem z € B (or simply that A reduces to B), written A <,, B if there exists a
function f: N — N computable and total such that, for every z € N

reA < f(zx)eB
In this case, we say that f is the reduction function.

More concisely:

Given sets A, B € N, we say that A <, B if there exists a total computable function
f N — N such that for all x € N, it holds = € A iff f(z) e B.

Written by Gabriel R.

40 Computability simple (for real)

Usually, we use these reductions:

- K <, A:to prove a set is not recursive
- K <m A:toprove asetisnotr.e.

Why do we care?

Usually, we use K (also, respectively K) which is not a recursive set (respectively not r.e.), and we show 4 is
not recursive (respectively not r.e)

How to use it
We write a function of two arguments which basically goes on like this:

- ifx € K, it means there is a function of two arguments defined by cases
o its positive case will be x € K or H(x, x,y) (meaning it halts)
o its negative case will be otherwise

The function is computable, given it can be written as the composition of computable functions or just the
product/composition of scg (semicharacteristic function which gives 1 or 0) and f.

Use the smn-theorem proving there exists s: N — N total and computable s.t. f(x,y) = ¢ (¥) Vx,y €N
andso K <, A.

- if x € K, we will have the positive case, so the domain will usually be the natural set and
conditions/indices will be respected, hence s(x) € A

- if x & K we will have T and the domain will be the empty set, so indices/conditions will not be
define, hence s(x) & A

2.4.5 Recursive Set

DEFINITION 13.1. A set A € N is recursive if its characteristic function

xa:N—->N
(z) 1 ze€ A
xalz) =
X4 0 z¢ A

is computable.

Also, remember, in words:

- Asetisrecursive if it can be expressed finitely and totally by cases and holds a trivial property
o if the property is not trivial, it's not recursive
- Specifically, a set is recursive because it is finite

2.4.6 Recursively Enumerable Set

DEFINITION 15.1 (Recursively enumerable set). We say that A < N is recursively
enumerable if the semi-characteristic function

seq(x) = {1 xe A

T otherwise

is computable.

Written by Gabriel R.

41 Computability simple (for real)

Specifically:

- Asetisr.e. if | can check a property on a finite number of points
- Asetisnotr.e. if | have to check the property on an infinite number of points

If | am able to determine the property finitely because there are values “which | can search and find”, then |
use and write a semicharacteristic function.

2.4.7 Decidable Predicate

A predicate Q(#) € N* is decidable if the characteristic function y¢ : N* — N defined
by

1 Q(F)
Xo(7) = { (0 otherwise

is computable.

The correspondence for functions is the recursive case.

2.4.8 Bounded Minimalisation

Given a total function f : N**! — N, we define a function h : N¥*! — N as follows:

- . miniumum z < y such that (7, 2) =0 if it exists
h(Z,y) = pz < y.f(Z,z) = { (Z,2) _
Y otherwise

2.4.9 Unbounded Minimalisation

DEFINITION 6.31. Let f: Nft! — N be a function. Then the function h : N¥ — N
defined through unbounded minimalisation is:

least » f(Z,z)=0

. . east z s.t. . .

hMZ) = py.f(Z,y) = (@), f(&2)+0 forz<
1 otherwise, if such a z does not exist

2.4.10 Semi-decidable predicate

A predicate Q(z) © NF is semi-decidable if the semi-characteristic function scq

N* > N defined by

1 if Q(x)
T otherwise

SCg lf?) = {

is computable.
Again:

- If lam able to determine the property finitely because there are values “which | can search and
find”, then | use and write a semicharacteristic function

The correspondence for functions is the recursively enumerable (r.e.) case.

Written by Gabriel R.

42 Computability simple (for real)

2.4.11 Partially recursive functions

DEFINITION 7.1 (Partially recursive functions). The class R of partially recursive
functions is the least class of partial functions on the natural numbers which
contains

(a) zero function;
(b) successor;
(¢) projections
and closed under
(1) composition;
(2) primitive recursion;

(3) minimalisation.

2.4.12 Primitive Recursive Functions

Definition

The general one is:

DEFINITION 8.1 (Primitive recursive functions). The class of primitive recursive
functions is the smallest class of functions PR containing

(a) zero function

(b) successor

(c) projections
and closed under

(1) composition

(2) primitive recursion

The one to use in the exam is:
Solution: The set PR of primitive recursive functions is the smallest set of functions that contains
the basic functions:

1. 0: N — Ndefined by 0(z) = 0 for each z € IN;
2. 8: N — Ndefined by s(z) = 2 + 1 for each z € N;
3. Ui‘-‘ : N* — Ndefined by Uf(ﬂsl, ..., xy) = xj for each (x1,...,2x) € Nk,

and which is closed with respect to generalized composition and primitive recursion, defined as
follows. Given the functions fi,..., f, : N¥ — Nand g : N® — N their generalized composition is
the function h : N¥ — N defined by:

&) = g(1(@), .., [ul)).

Given the functions f : N¥ — N and ¢ : N**2 — N the function defined by primitive recursion is
h:NHL SN

h(Z.0) = ()

h(Z,y+ 1) = g(Z,y, h(Z,y))
A shorter one from an exam (I don’t exactly know how precise you should be, this here is just for logical
reference, given it was as said inside of one):

Solution: The class of primitive recursive functions is the least class of functions PR <

(J(N¥ — N) containing the base functions (zero, successor, projections) and and closed
'l“
under composition and primitive recursion.

Written by Gabriel R.

43 Computability simple (for real)

2.4.13 Smn-Theorem

Definition

Given m,n > 1 there is a total computable function s;, ,: N™*1 N such that V¥ € N™,Vy € N*,Ve € N
¢ EI) = b 00 D)

What does it mean

It means that, whatever the exercise and the argument, we are parametrizing the function “to get where
we want”. Concretely, this uses a function of two parameters thanks to which we are proving some
conditions. Consider this as an intermediate to get to other things and it’s used everywhere.

The smn-theorem states that given a function g(x, y) which is computable, there exists a total and
computable function s such that ¢, () = g(x,y), basically "fixing" the first argument of g — usually, we
fix x in favor of y. It's like partially applying an argument to a function. This is generalized over m, n tuples
for x,y.

Usually, you use it to create a reduction function by first finding an appropriate g(x, y) and then using the
smn-theorem to say that there exists the previously cited function s, which is also the reduction function.
The difficult part is finding the appropriate function g(x, y), then the application of the smn-theorem is
always the same (so, finding a “mapping function” computable, then parametrize and showing it is).

Note there is the simplified version of said theorem here (we refer to the definition present above anyway)

The Cutland book says: “The smn theorem is often useful in reducing x € W, to other problems”.

Written by Gabriel R.

44 Computability simple (for real)

2.4.14 Structure Theorem

Definition

Let P(¥) € N¥ a predicate. Then P(%) is semidecidable iff there is a dedicable predicate Q(t, ¥) & N¥*1
s.t. P(X) = 3t.Q(t, X)
b P € IN* o gredi mte
bhoe s QLE) e N decdable

P(Z) =mi-decidale 4=
st P(@)= 36.Q%,2)

Note: in the “notes.pdf” the predicate is written as “decidable”, but prof. says it's semidecidable like
written here. Keep this in mind.

Why do we care

It's often asked in the oral exam; you need this theorem to show the second one (projection).
This reasoning is useful inside theoretical exercises about decidability/semidecidability because it’s literally
the same reasoning, reported here for the sake of completeness.

PROOF. (=) Let P(¥) be semi-decidable. It has a computable semi char-
acteristic function scp so

P(&)=3t.H(e,Z,t)

therefore if we can rewrite H as Q(t,Z) = H(e,T,t), in this way @ is
decidable as we wanted and

P(7) = 3t.Q(t,)

(<) Let P(Z) = 3t.Q(t,Z) with Q(¢t, Z) decidable. Observe that
sep(T) = 1(pt.|xo(t,) — 1|)

which is computable by definition, and therefore P(Z) is semi-decidable.

The converse does not hold, for example P(X,y) = (x € W,) 3x.P(x,y)
Alternatively:
- Py)=(=DAGeW)Q) =IxPxy) = =1)
- Suppose P(x,y) holds if ¢, (x) T, P(x,y) non-semi-decidable, otherwise K would be r.e.. We know

there are programs inside K, e.g. the ones calculating the always undefined function, but then
Jx. P(%,y) always holds and so it would always be inevitably undecidable

Written by Gabriel R.

45 Computability simple (for real)

2.4.15 Projection Theorem

Definition

THEOREM 15.6 (Projection theorem). Let P(x,¥) be semi-decidable; then
3. P,) = P'(§)

15 semi-decidable.

Why do we care

It’s often asked in the oral exam.

This reasoning is useful inside theoretical exercises about decidability/semidecidability because it’s literally
the same reasoning, reported here for the sake of completeness.

Proof

Let P(x,y) € N¥*1 semi-decidable. Hence, by the structure theorem, there is Q(t, x,y) S N¥*2 decidable
s.t. P(x,y) = 3t.Q(t, x, y).

Now R(y) = 3x.P(x,y) = 3x.3t.Q(t,x,y) = Iw. Q((w)1, (W),,¥) is decidable.

Hence, R is the existential quantification of a decidable predicate and by the structure theorem is semi-
decidable.

2.4.16 Saturated set

A set A € N is saturated whenever, if it includes the index (program) for a com-
putable function, it includes also all the other indexes (programs) for the same func-
tion. Formally, for all z,ye Nif z € A and ¢, = ¢, then y € A.

- Asetis saturated if it describes non trivial properties or if it contains/regards properties of
functions — it means that, taking two indices of a computation, not always they would have to
compute the same property, so it is non-trivial (I think in words this gives you the idea, thank me
later)

- Conversely, is not saturated if it does not regard a property of a function

2.4.17 Rice’s Theorem

Definition

THEOREM 14.6 (Rice’s theorem). Let A€ N, A % ¢, A # N be saturated. Then it

i not recurstve.

What does it mean in practice?

It's used to show that a set is not recursive — usually, it's more of an help when we know the set is
saturated, but we don’t want to use the reduction from K (much longer).

Consider you usually need to know the idea of the proof of this one, because it allows you to say ¢, = f (so
you use e as the index of computation to prove some properties over a defined number of steps).

How to use it

Written by Gabriel R.

46 Computability simple (for real)

You need to prove the conditions above hold, particularly using the fact the set is saturated.

Remember a set A € N is considered saturated or extensional if for every pair of natural numbers m and n,
if m belongs to A and the functions represented by the programs ¢,, and ¢,, are equal, then n must also
belong to A.

There are a few examples of usage inside the exercises on Moodle or in this section.

Basically, if you used Rice-Shapiro for proving set is not r.e., just use Rice Theorem conditions to prove is
not recursive, which is basically an extension and it’s way shorter than doing a reduction.

2.4.18 Finite Function and Sub-function

DEFINITION 16.1 (Finite function). A finite function is a function € : N — N such
that dom(0) is finite.

Also, we define the subfunction this way:

Given f: N — N, 0 is a sub-function of f if § < f
This concept might appear obvious, but it’s not. It’s used in the following one, so Rice-Shapiro.

2.4.19 Rice-Shapiro’s Theorem

Definition
Let A C C be a set of computable functions. Then if set A = {x | ¢, € A}isr.e.then
Vf(f €A < 30 Cf,0 finites.t. 6 € A)

What does it mean in practice?

It's used to show that sets are not r.e. — alternatively (in a few cases), it can be shown a set is not r.e. using

a reduction from the complement of the halting set K. Usually, it’s the easiest way. If a set is not r.e., then
it is also not recursive (given r.e. it’s a superset of recursive).

How to use it
Generally, it can be used in two ways:

- 3AfeC.fE¢ANTOCf finite,d € A= Anotr.e.
- 3AfeC.feANVOCf finite,0 & A= Anotr.e.

First, the set has to be saturated (which means there is a set of computable functions holding the exercise
property, just writing dom/cod in place of W /E). We can use here functions like:

- id, which is the identity function, always defined for every natural number
o This one is usually used to show id € A and 36 & A (or viceversa) is not r.e.
o So, this is a function and also requires the use of subfunctions
- @, which is not the empty set, but a function with empty domain, called “always undefined
function”
o This one is usually used as a subfunction (so first you need to have a function, such as the
identity or something), so like f € A but @ & A (or viceversa) so A is notr.e.
- Other times, constant functions fit the bill (like 0, 1) or just create custom functions/subfunctions

Not always a set and its complement are not r.e. —infact, sometimes a semicharacteristic function can be
written and the set is r.e. Just consider the problem conditions and see if you can find such a function —
often, it is just not recursive and not r.e. but don’t go autopilot.

Written by Gabriel R.

47 Computability simple (for real)

You can start from either the function or the subfunction - just prove that f is outside. Technically it is
enough to find a pair of functions (f, 8) where theta is finite subfunction of f, theta is in the set and f is not
in the set, this is because both are under an existential quantifier (f exists... and 8 exists...). Thus there is
no order between the two, it is just that introducing f first is generally preferable.

Why it’s used

Because it makes recursiveness proofs much shorter than using a reduction. If you don’t believe me, you
will understand overtime and prove me right.

2.4.20 Myhill-Shepherdson Theorem

Definition

(1) Let ®: F(N*) » F(N") be a recursive function. Then, there exists a total computable function hg,: N —

Ns.t.Ve €N, CD(ék)) = ¢r(1i()¢)(e) and hg is extensional.

(2) Let h: N — N be a total computable function and h extensional.

Then, there is a unique recursive functional ®: F(N") - F(Ni) s.t. for all e € N (possible programs)

CD(e(k)) = ;(li()e)

What does it mean

Myhill-Shepherdson's theorem establishes a significant relationship between recursive functions and total
computable functions. In the first part, it states that for any recursive function @ mapping functions from
N* — NI, there exists a total computable function h¢: N — N that captures the behavior of ® on
computable functions. This means that the actions of the recursive functional on computable functions can
be entirely represented by a total extensional function operating on the indices of those functions.

In the second part, the theorem addresses the reverse scenario. Given a total computable and extensional
function h: N — N, there exists a unique recursive functional ® such that, for all possible programs
e, ® (e(k)) = qb,(li()e). This implies that computable extensional functions uniquely identify computable

functions through program transformations.

Why do we care

This is basically a bridge for the two recursion theorems, and it is essential to understand the true meaning
of the second one, which is quite powerful given the general result it holds.

In particular, if you look at the definition of it, you see that we’re actually using this theorem every time we
plug an index inside of Second Recursion Theorem, describing a property holds extensionally because there
is at least one fixed point to consider.

Written by Gabriel R.

48 Computability simple (for real)

2.4.21 First Recursion Theorem

Definition

THEOREM 17.9 (First recursion theorem (Kleene)). Let ® : F(N¥) — F(N") be a
recursive functional. Then ® has a least fized point f3 which is computable,
i.e.

(1) ®(fe) = fo
(2) ¥ge F(N*) @(g)=g=focyg
(3) fo is computable

and we can see that fo = | 2" ().

n

What does it mean

Prerequisites: the definitions of functionals and fixed points given here.

This is also called “Kleene’s First Recursion Theorem” or Fixed-point theorem (of recursion theory). The
Cutland Computability book specifies it is used to give “meaning” to programs, computing a recursive
program, ensuring implementing the program will be defined rigorously over its inputs in a correct way.

The theorem above implies the closure of the set of computable functions with respect to extremely
general forms of recursion.

Why do we care

This theorem allows us to characterize a program, considering a fixed point, with a single index. This index
succinctly represents the entire set through a computable function. In practical terms, this means having a
single program that encapsulates the entire problem definition or a specific exercise.

The function recursively defined are always computable as a consequence of this one.
How to use it

While the practical application might not be directly evident, the theoretical understanding gained from
this theorem is foundational. It serves as a crucial tool in proving the existence of a single program that
precisely defines an entire problem or exercise. This program is not just a static solution but is defined
recursively on itself, making it computable.

In essence, understanding and applying Kleene's First Recursion Theorem is fundamental for asserting that
"there exists a single program that clearly defines the whole problem definition" and that "it is defined
recursively on itself," thus ensuring its computability.

This is used only as a theoretical result to understand the following theorem. No more, no less.

Written by Gabriel R.

49 Computability simple (for real)

2.4.22 Second Recursion Theorem

Definition

The Second Recursion Theorem says that: for all functions f : N — N, if f is total
and computable then there is e € N such that ¢, = ¢y (.

What does it mean

Imagine you have a total computable function, let's call it f, which takes natural numbers as inputs and
produces natural numbers as outputs. The theorem asserts that there exists a program, denoted as e, such
that when this program is applied to its own code, it computes the same function as f.

In other words, there's a program that, when executed, transforms itself into another program (denoted as
®e,) that computes the exact same function as the original function f. The key here is that the program is
changed during this transformation, but the function it computes remains the same.

The theorem emphasizes that this transformation is not just about making an identical copy of the original
program. Even if two programs compute the same thing (they have the same input-output behavior), the
Second Recursion Theorem tells us that they can be transformed into each other while still computing the
same function. This property holds true even when the function f is not extensional, meaning it doesn't
depend on the specific representations of its programs.

How to use it
There is a dedicated category of exercises on this explained fairly well what do precisely here.

Basically, we use a single index to prove there is a fixed point and the whole set will respect on that
function the overall definition. | think intuitively is just this.

Written by Gabriel R.

50 Computability simple (for real)

3 INTRODUCTION TO THE COURSE

Course reference page: http://www.math.unipd.it/~baldan/Computability

(This lesson is based on the only set of slides of the course, available as “Intro-en.pdf”)

We start by a simple reflection; can we give the enumeration of all numbers and store them efficiently? A
suggestion might be, “rather than the phone number itself, you might store a program that generates the
number”. So, instead of 0123456789 We can write for i = 0 to 39 do print (i mod 10)

It isn’t convenient; there are numbers n such that, for all program P generating n, size(n) < size (P).
These are defined as random numbers; we observe there are an infinite number of them. There is no
program capable of determining whether a number is random or not, because such a program does not
exist.

Exercise (coming from the 8% slide — solution of this exercise made at the end of the course and present
here; in any case, see it after having at least a grasp of everything, like 100% completion of the course):

1) Prove that there are infinitely many random numbers
2) Prove there is no program able whether a number is random or not

Notes on the previous:

What we do know is that not all problems are not solvable by a computer, because of power constraints
and limitations of machines, e.g. the halting problem and the program correctness (it’s impossible for even
simple specifications). A natural question we naturally ask: “Which problems can we solve by a computer /
by an effective procedure?”. Some problems are intrinsically theoretical, so they are completely
independent from the underlying computation model.

Other specific questions:

- What is an effective procedure?
o Maybe the simple program can do the job, but we must prove it formally
- What does it mean that a problem is solved by an effective procedure?
- Characterize the problems that can and those that cannot be solved
o Problems that are not always binary
- Relating unsolvable problem (degree of unsolvability)

We tend to classify solvable/unsolvable problems without limitations on the use of resources (memory and
time). For example, the complexity theory, considering the resources and classifying solvable problems in
an hierarchy according to their “difficulty”.

Written by Gabriel R.

http://www.math.unipd.it/~baldan/Computability

51 Computability simple (for real)

Computability theory is a branch of computer science and mathematics that explores the theoretical limits
of computation, this well before its proper birth. It revolves around the concept of decidability and
undecidability, focusing on what can and cannot be computed algorithmically.

So, computer science may be described as “the ability of building and using tools, according to some
(codified) procedure, is a distinctive feature of human beings”. It depends on “how we use the tools and
what we find out when we do”, according to Dijkstra.

We don’t tend to think meaningfully always, but to think according to patterns, because there is a general
combinatoric procedure to find all truths, reasoning and deriving consequences from a set of premises.

Thing is, it doesn’t depend on the language, but we can try to represent things abstractly as a set of
customized symbols (creating laws or languages), compute them logically (arithmetically) without
contradiction and evaluating problems with procedures, to avoid controversies of decidability and
solvability as criteria (Leibniz, Boole, Lullus and others) using logic as the main foundation.

Others posed the need of an artificial language, formally with syntactic and manipulation rules that can be
programmed via variables and statements.

Using cases like Russell’s paradox, we can use the same tools we already have to contradict ourselves and
pushing further, even finding new meanings, possibly having a consistent system, where it proves itself as
correct solidly (Hilbert). Many times, this observation led to creation of special-purpose machines, able to
compute a specific class of problems.

We might try to take problems considering a small set of rules, which may not be always complete or prove
the consistency of the theory (Godel). There may be a machine which computes a problem given a
computable function and the same language, given a specific input and an output (Turing).

We may express a universal machine to make any kind of calculation, storing the result of operations
(memory) and solving problem discretely (Von Neumann).

Other things:

- On Moodle there are unofficial notes
- There are the exercises with solutions

o note for the reader: the exercises, sadly, are not in order of difficulty
- There will be tutoring activities for this course

o thank God, you will see more later why :D

o inthis section, you can also find some recordings of tutorings

Written by Gabriel R.

52 Computability simple (for real)

4 ALGORITHMS, EFFECTIVE PROCEDURES, NON-COMPUTABLE FUNCTIONS

An effective procedure it’s just a sequence of elementary steps which are describing a procedure intended
to solve a problem (reaching some objective mechanically), transforming some input into some output.

We can see an algorithm as a black box of sort:

g1

l'_lb W%_,7 DETCRINGTNG

If this is deterministic, we can mathematically describe a function f: {inputs} - {outputs}, where each
possible input will uniquely determine the corresponding output (we will see later this happens on partial
functions, so maps between two sets X and Y that may not be defined on the entire set X; an example
might be the square root, where not all real numbers have real square roots so we can compute jt but not
always solve it).

A function f is computable if there exists an algorithm such that the induced function is f (so f is the
function computed if f is effectively computable). It's important to note the algorithm that computer f
must exist.

We informally expect some functions to be computable, given the definition above, such as:

- GCD(x,y) = greatest common divisor (Euclid's algorithm)
1, nisprime
- = {O, othezwise
- g(n) = p,, where p,, is the n'" prime number (eventually an n-th prime will be found)
- h(n) = ntdigitinm
o thisis a series that converge to m and we work with techniques to allow rounding the error,
such as truncating the series or rounding the computation

Let’s give an interesting example:

- f) = {1, if inm there are exactly n consecutive 5's
0, otherwise
o example:if m = 3.14....755552 ...
o fAW=1
o More generally, it can be written, for exampleas g(3) = 1 iff m = 3.14 ...i555j ...i,j # 5
= (where iff means “if and only if”)

The naive idea of this last one is:

- compute all the digits of =
- check if there are n digits of 5 in a row

This, however, is not an algorithm, because we can’t exclude entirely the generation on n 5's at some
point.

Since 7’s decimal expansion is non-repeating and doesn't follow a simple pattern, we cannot guarantee
that the algorithm won't eventually find the desired sequence of n 5's (given 7 is an irrational number), so
we may run it indefinitely and will eventually become infeasible, because we have no way of returning 0.

Written by Gabriel R.

53 Computability simple (for real)

Is this function computable? In the case of this one, we don't have an effective procedure known to us to
determine whether it's computable or not (hence, it’s not an effective procedure). The fact that we can't
exclude the existence of an effective procedure doesn't mean the function is computable, but it also
doesn't definitively prove that it is computable.

Let’s consider now a slightly different example, for a function g: N — N:

. g = {1, if mincludes at least n digits 5 in a row
0, otherwise
o ifm=3.14..755552 ...
o We deduce that, somehow, we will reach 1 as constant substituting the values

" 94 =19B3)=192)=19(1)=1400)=0
o More generally:

» ifg(n)=1theng(m)=1vym<n,
Consider K = sup{n | there are n digits 5 in a row in 1}

We then have two possibilities (with plot of the functions reported here, given its quite simple shape):

1, ifn<k
0, otherwise

d "'—ﬁ' Wxﬁu) ;
= d,ms,d;;lwvén«'(
S ohoe. richum, of

- Kinfinite,sog(n) =1,vn €N

- K finite,so g(n) = {

4(9»’&'\;\,8—“\),‘
D (v 1

This implies the function is computable, because it behaves regularly (step function, so either 1 or 0, or just
a constant function, so they can be computed by simple programs). Even though we won’t know the exact
shape of the function, this way we proved it's computable (the function shape is irrelevant in knowing
which program will compute the function, but if finite, they can be a simple tool to see it).

Can we use the same argument for f?

1, if inm there are exactly n consecutive 5's
f) = .
0, otherwise

Let A = {n | there are exactly n digits 5 in a row in m}
W §)

Aneh:
U A

vhe
rgkwn

and take:

Written by Gabriel R.

54 Computability simple (for real)

Problem is, f () is not computable in the slightest, because the set A is possibly infinite and there is no
such a thing as a finite representation for it (in the notes, it’s also present an example of a function G: N —
N whichis 1if P = NP, 0 otherwise; since the condition does not depend on the variable, it can have
either way 1 or 0 as value, so the function G remains computable, but if posed inside the set A would be
equally incomputable).

4.1 EXISTENCE OF NON-COMPUTABLE FUNCTIONS

This poses the question for the existence of non-computable functions, because it suggests f(n) is
computable, because the set is possibly infinite, so we can’t provide a finite representation.

A good algorithm should satisfy the following characteristics which can be ideally implemented in a
theoretical machine we call computational model, this way being considered effective:

- it has a finite length
- there exists a computing agent able to execute the algorithm instructions
o this agent has a memory to store the input, results and steps and it is unbounded
= even if the algorithm will be finite, we assume it is unbounded for the sake of
analyzing if it’s computable or not (large, but never using the full space)
= this way, we will be able to define algorithms working on any possible input and
there is no limit on the memory that can be used
o the computation consists in discrete steps, not probabilistic or not-deterministic
o finite limit to number of instructions and the power of their complexity
= this way representing a finite machine
- the computation can
o terminate in a finite yet unbounded number of steps — output
o diverge (never terminate) — no output

Let’s recall the math notation needed to understand the subsequent inference of non-computable
functions for every “effective” computational model.

- N =/{0,1,2...} set of natural numbers (so finite and always with a successor)
- AxB ={(a,b)|a€ A Db e B} as Cartesian product (combine two sets to create an ordered one)
o We will write, having Aset, A" = AxAx A..x A (ntimes)

1
1SN
5
S

<
S
®
Q
=g
o)
S
o
=

ks
3
D
=
5
Q
=
®
)
(%]
=
N
e
=
ol

- f : A - B, the partial function, special relation f € A x B such that
Va € A,vb,b' € B,(a,b),(a,b’)Ef >b=0D'

o dom(f)=1{al|3b €B,(ab) € F}
o Wewrite f(a) | fora € dom(F) and f(a) T for a € dom(f)

Written by Gabriel R.

55 Computability simple (for real)

- Inwords, we essentially say it's a mathematical relationship that associates elements from a set
A to elementsin a set B, but it may not be defined for all elements in A (for example, not all pairs)

- When you apply the partial function to an element a in its domain, you write f(a) | to indicate
that the function is defined and yields a result. Conversely, if you try to apply the function to an

element a outside its domain, you write f(a) T to signify that the function is undefined for that
input.

Given a set A, we indicate with |A| the cardinality (number of elements), then we define, for sets A and B:

- |A| = |B| if there is f: A — B bijective (unique and complete mapping)

Pr B

- |A| £ Bif thereis f: A — B injective (no two different inputs map to the same output)

@
®

- equivalently, if there is a surjection g: B — A (covering the entire codomain — all possible outputs)

O—==C

Observe also that if A € B, |A| < |B|, having injectivity in between.

- A countable (denumerable),|A| < N, having a surjective function f:N — A (listing all the
elements one after the other)

Loy 4o b -
Gk LIl ank Ln

- If A, B countable - A x B countable
- A countable union of countable sets is countable: Ay, A1, A, countable sets = U;ecy A; countable

Written by Gabriel R.

56 Computability simple (for real)

Idea (just to visualize the whole thing, place the elements in a matrix and enumerate them in diagonals):
P S &,y G-
B ba \J’\ \’ 2 a
0, AL %
bo (Qg \\79\ ’R1 ‘\)cb LQ-Z Yo) - -,
| Houe chuoz
b/l C\ZHQGD ('b/L\Q_D Cg‘lfoﬂ’) h W

by (h; 00 O)LFD (bay) -+

This so called “dove tail enumeration” means systematically listing all functions from A to B:

e Begin by listing the element at position (0, 0) in the matrix, which is the function that maps a,
to by.

e Then, move along the diagonals of the matrix, listing the elements in order

Let’s come back to the existence of non-computable functions: we focus on unary function over the natural
numbers (function that takes a single argument or input variable and produces a single output):

F ={f|f:N - N} setof all partial unary functions on N

We then fix a model of computation, which then induces a set of algorithms, for example a set A of all
algorithms inside of it. Given an algorithm A € A, we compute a function f, : N = N, which is said to be
computable in our model if there exists an algorithm that computes it.

Hence, we define functions computable in A like:
Fu=1{f|thereexists A€ As.t.F;=F}={F;|A €A}

Clearly we have F4 € F. Is this inclusion strict? (so,Fq_ ?F , which means (is there a non-computable
function?) 9

The answer is yes, because the algorithms are too few to compute all the functions, so they must be
countable in some way, hence by logical closure computable.

By assumption, an algorithm is a finite sequence of instructions from an instruction set I, which we assume
finite. We can interpret all of this as a big union of finite algorithms.

A=1UIxIUIxIxIU..=Ujsien!I" (countable union of countable sets = countable)
Given |A| < N and since we have A - F4, A — F, (Which means it is surjective be definition), we have:
|F4l < Al < IN|

What we say in words is this: the set of all algorithms A in our fixed computational model and F,, the set
of computable functions are as many as the natural numbers.

Written by Gabriel R.

57 Computability simple (for real)

On the other hand, the set of all functions F is not countable. Why? Assume for the sake of contradiction
that it is so:

|F| < IN|

We can list the elements of F like we did before (taking, with diagonalization, the main diagonal, then
systematically changing diagonal values):

then build a funct.ion on that, like this one:
44N N
;- \
ol 2o © ko)
R

d is a function which is total (so, defined for every natural number) in F so thereisn € Ns.t. d = f,

- if fum) ! thend(n) T # f,(n) (meaning d is not defined at n, since f(n) = f,(n) + 1 # f,(n)
and it means we are not enumerating the current function inside the natural numbers, which we
assume we can always do since is countable; so there is the contradiction)

- if f(n) T thend(n) = 0 # f,(n) (again, d not defined in n and we do not enumerate the
function assuming we can, hence another contradiction)

Since d is distinct from all the functions in the enumeration, it demonstrates that the set of all functions F
is uncountable, because it cannot be put in one-to-one correspondence with the set of natural numbers N.

Summing up in math notation (there are more function than natural numbers, even though finite
algorithms are as many as natural numbers):

F not countable, |F| > |N|
FiCSF
|Fal <IN < |F|>F, & F
Note that we can’t count non-computable functions, so:
|F\ Fal > IN|
We conclude that:

- no computational model can compute all functions
- there are more non-computable than computable functions

Written by Gabriel R.

58 Computability simple (for real)

5 URM COMPUTABILITY

To give a good notion of computability, we must choose a good model of computation, inducing a class of
algorithms and computable functions. There can be:

- Turing Machines (finite-state control, reading, writing, initial/final configuration)

- A-calculus (a design of programming where one designs/applies functions based on primitives)
- Partial recursive functions (functions calculated with specific function that build partially)

- Canonical deduction systems (system used to create proofs logically via connectives and trees)
- URM (Unlimited Register Machines)

Whatever the model, we may concern if a specific theory may be valid for the specific model.

According to the Church-Turing thesis, a function is computable by an effective procedure if and only if it’s
computable by a Turing machine (we resort to this to shorten the proof that a certain function is
computable and it’s used informally as notion of effectiveness, then must be supported by evidence). This
says that a function if computationally robust and we can choose whatever model one likes.

The notion of computable function will be formalized by using the URM-machine, abstraction based on the
Von Neumann’s model. It has many characteristics:

- memory is unbounded, using an infinite number of registers storing each a natural number (where a
sequence of registers is called configuration);

A 9_1)’ ‘*'b e o~ O_#_

%m,.\eN "1(“: ﬁm

- it executes a program, based on a finite list of instructions (and a computing agent able to execute
it);
X'\J'\ﬁl, "J‘Z‘S ﬁm%‘i%

TR
- it has arithmetic instructions, characterized by the fac t?]atht’h(:)instruc ion to be executed in the
next step is the one following the current instruction in the program. They are:
o zero Z(n), which sets the content of register R, to zero: 1, < 0
o successor S(n), which increments by 1 the content of register R,,;: 15, < 15, + 1
o transfer T(m, n), which transfers the content of register R,,, into R,,, which R,,, staying
untouched: 7, < 73,
o conditional jump:] (m, n,t), which compares the content of register R,,, and R,,, so:
= ifr, = nr, then jumps to I; (jumps to t-th instruction)
= otherwise, it will continue with the next instruction

Written by Gabriel R.

59 Computability simple (for real)

The computation:

- starts from an initial configuration of registers and executes I;
- terminates if

o theinstruction to be executed does not exist

o it’sthe last instruction

o you jump out of the program yourself

An example might be the following one: (CD!JWM‘“ NIL
10003y HEEETS e L

T 5
AT 2@55@: e, ik e

5 Ty’

71% >k S Qm: w“‘l"”'
L et 1)

In LaTeX form, to not kill your eyes that much, coming from the notes:

Ry |Ry |Ry|...|nm |Bi| Ry | Ry ... i’ Ry |Ry | Ry | ... | nin.5o
1 2 0f... 2 2 0 |... 2 2 1
Ri|Ry | Rz |...| 1 |Bi|Ro| Rs|...| Igg
—
3 2 1]... 3 2 2

As we’re using the Church-Turing thesis, we’re defining a machine, so we must describe which states it has:
there is a register configuration c, taking the register content and index the next instruction via a program
counter t. Also, operational semantics can be defined via < ¢, t >.

A computation can possibly diverge (not terminate); consider for instance this program:
1;:5(1)
,:](1,1,1)

Then the computation will not terminate. For instance

Ry | Ry |Ry | ... |nn (R | Ro | Ry | ... | na |y | Ry | Ry
0|1 0] 0|... 1 0 0]... 21010

Let P be an URM program. Given a sequence of natural numbers a4, a,,€ N, P(aq, a,, ...) indicates the
computation of P from (a4, a,, ...):

R, | Ry | R3

ay | Gz | Gy

- P(aq,a,,...) lif the computation eventually terminates (halts)
- P(aq,ay,...) Tif the computation diverges (never halts)

We work on computations that start from an initial configuration where only a finite number of registers
contain a non-zero value. So, given a4, ...a; € N, P(aq, ... a;) denotes P(ay, ... a) for P(a4, ... ax, 0, 0).

Written by Gabriel R.

60 Computability simple (for real)

The notation then extends to the previous ones, stating that at the end of a program we will have a valid
value > P(ay, ...ay) 4 a for P(ay,, ...a;) ! a and in final configuration r; = a.

5.1 URM-COMPUTABLE FUNCTIONS AND EXAMPLES

For URM-computable functions, given a function f: N¥ — N (possibly partial), we say is URM-computable if
there isa URM program P such that, V(a4,..a;) € N¥,va € N, P(ay, ...ay) | if and only if (a,,...a;) €
dom(f) and f(a4, ...ax) = a.

In words, for any input tuple of natural numbers, if you run the URM program on this input it will eventually
have a result equal to the output of the function for input. This way, P computes f.

We then define, C* = {f |f:N¥ - N computable (URM)} as the classes of computable functions.
Therefore C = U1 C¥ is the union of all of them.

We next list some examples of URM-computable functions, providing the corresponding programs:

Lo
(1) f:N* >N MBBT.
flzy)=z+y @ 2
Li: J(2,35) e ¥
I>: S(1)
I3: S(3)
I,: J(1,1,1) // unconditional jump 2
YA\ o

Idea: Incrementing R; and R3 until R, and R3 contain the same value, resulting in adding to R, the content
of R,. Specifically:

LQO? s 5 (j_lal'ai'ﬂo?)
(A
50":)
5LK|'\.\\.&T~’?)
(2) f:N>N
flz)=z-1= {2_ . "M‘\urvﬁw L =

Now, let's analyze how this program works:

e If x = 0, it will jump to instruction 8, which presumably indicates the end of the program.
o Ifx =1, it will go through instructions 2, 3, and 7, effectively setting R, (x) to 0.
e Ifx > 1, it will go through instructions 2, 3,4, 5, 6, and 7, effectively setting R;(x) tox — 1.

Written by Gabriel R.

61 Computability simple (for real)

Idea: if x = 0 it trivially terminates; if > 0, it keeps a value k — 1 in R»
and k in Rs, with £ > 1 ascending until R3 = z, at that point Re = z — 1.

5
— (4,2, BNDD < =0

SC2>
Loo®. D2 ke !

$(2)
¢ (%)
35, 1oV
wh, TON
A

The core concept behind this program is to continually subtract from the input value, considering the
partial nature of the function. This means that the program might not always terminate, even if the
function is computable, or it might terminate when the function is not computable.

In this specific example, the program checks if two values are equal; if they are, it jumps to a different
instruction. If they are not equal, it subtracts one from the value. This subtraction continues until there is
memory available for further operations.

Courtesy of notes (slightly different, but same example):

Idea: if z = 0 it trivially terminates; if = > 0, it keeps a value £ —1 in R,
and k in Rj, with k£ > 1 ascending until B3 = z, at that point R; = = —1.

Here's the program

L J(1,3.8)
I‘z! S(J)

Iy J(1.3,7)
Iy S(2)

IF,: S(-?l]

Iﬁf -1(11.-3)
Ip: T(2,1)

Let’s consider a different function:

5
3) f: N> N Qh/‘ Q‘} 7

@) = {5 if x even W

1 otherwise
B 2%

Written by Gabriel R.

62 Computability simple (for real)

The function behaves as follows:

e If the input number x is even, the function returns half of x (store an increasing even number in R,
then storing its’ half in R3)
e [f the input number x is odd, the function does not terminate (indicated by the symbol T).

The program continues executing these instructions in a loop. If the initial input x is even, it will eventually
reach a point where R (x) equals the even number in R,, and it will jump to instruction 6, halving the input
x. If x is initially odd, the program keeps increasing the even number in R,, and it never reaches the halting
condition, resulting in a non-termination, as indicated by T .

Loo: S0 3 1)

o))

5L

5011 Loo?

[} '\
(w., ', ’Ta"(

Given a program P, for some fixed number of parameters k > 1, there exists a unique function computed
by P that we denote as follows as fpk: N* — N. More precisely:

a)_ a ifP(al....,(}.k)la
TN i Play,.) !

In words: given a fixed number of parameters, the program halts if there is a final character of
computation, otherwise the function will terminate when the program terminates. Remember:

- aprogram terminates or not, a function is defined or not. A function is not computing, only the
program does (they are correlated, of course).
- the same function can be computed via different algorithms, which means different problems

Question: given f:N¥ — N how many computing are there computing F?

Answer: We can have infinitely many if and the only if the function is computable; so, 0 or infinitely many

5.2 EXERCISES

Exercise

Consider URM™, class of URM machines without transfer instructions (so, no T(m, n)). We indicate C~ the
class of URM computable functions. How does C~ compare to C? (in math notation, C = C™)

(Thoughts)

We can use T'(m,n) as we can zero in and increment the register m until it reaches n.
The idea is:

Z(n)

LOOP:J(m,n, DONE) (if the registers are equal, it exits the loop)

S(n)

Written by Gabriel R.

63 Computability simple (for real)

J(1,1,LOOP) (back the program to the loop beginning)

In plain terms, this program aims to achieve a similar effect as the transfer instruction T (m, n) by
repeatedly incrementing the value in register R,, until it matches the value in register R,,,. Once they are
equal, it exits the loop.

Proof

We show that C~ = C. Let f: N¥ — N computable in URM~ f € C~ i.e. thereis P in URM™. Just observe
that P is also a URM program — f € C. As said in thoughts, ideally we replace the transfer instruction
T(m,n) as the t — th step with the previous subroutine:

n

Z(n)
LOOP : J(m,n,END)
(
(

n)
1.1, LOOP)

J
S
J
END:
Let then f € C, f: N¥ — N. Hence there is a URM program P such that f = fpk.
. _ _ . k
We show there exists P~ URM ™ machine such that fp, = fpk.

Remember: We're assuming P is well formed: if it terminates, it will at instruction n + 1.

We proceed by induction on h, which is the number of transfer instructions T(m, n) in P. We can assume,
without loss of generality, that when a program halts it does so at the index of the last instruction plus one
(induction logic at its core, in words).

- h = 0: trivial, as P with no transfer instructions is already a URM ™~ program, hence P~ = P
- h—> h+1:let P bethe URM program with h + 1 transfer instructions. Hence, we replace T with a
jump to the subroutine:

XA

L. J (5+1) IN MovE5
T
¢ :1

L S(1asw) < SUMP (o SLB
[—

(£

INSERT T 4n 3(119,03 = Sunt o 5D
r‘ /
Ls (ot O St) 9 B0 T THY

) —A 5V L5550l

We call this program P'" which has h transfer instructions and fpk = fpn. By inductive hypothesis there is a

P' URM™ program such that fpk, = fpku. Putting things together:

/ f = fpku = fpk, with P' URM™ program
Note: for any Uéﬂbogram P theﬁt is a wel|-formed program P’ computing the same function. In fact:
I, .. L,](Tr(?n, Jif Q*S, eplace it with J(m,n,S + 1)

Written by Gabriel R.

64 Computability simple (for real)

In words:

For any URM program P, you can create an equivalent well-formed program P’ that computes the same
function. To do this, you replace any conditional jump instruction J(m, n,t) where t is greater than the
total number of instructions (S) with J(m,n,S + 1). This ensures that the program always jumps to a valid
instruction and remains well-formed while achieving the same computational result as the original
program.

Exercise

Variant URM?® machine where there are no traditional transfer instructions such that T'(m, n), but
T*(m,n) (swap instructions) like r;,, & 1, to exchange context of registers.

How does C* compareto C? (isC5 = C?)

My take on the proof

Let us prove C5 € C. We can replace the swap instructions with a few transfer instructions, formalizing
how Ty(m, n) can be encoded in means of the routine. We can explain this in terms of how a swap
instruction works in programming: we allocate a new register/new variable, we assign the variable to save
to the new variable, then the new variable will get assigned to the second variable.

So, we create something like:
T (n,new)
T(m,n)
J(new,m)

Formally, having a function f € C5, f:N = N, we have a program P as a URM? program such that fpk, =
fpk. Proceeding by induction:

- h =0, the program is already a URM program and P’ = P (such as before)

- h - h+ 1, where the program, by injection, must have at least some transfer instructions to
realize how a swap works. So, if fpk, = fpk only if this program uses both URM and URM®
instructions (the swap can’t be explained otherwise, and we need this statement to make this work
correctly).

o This way we can prove that with the (h + 1)t" swap, will have at least h swap instructions,
given the swap will be given via a jump instruction reaching the transfer instructions, hence
creating the swap.

o Inductively, there exists a URM program P! s.t. fo; = fpk for P, and P,, concluding fp"1 =
fpk for P; having h + 1 swaps recursively

Written by Gabriel R.

65 Computability simple (for real)

Exercise

Consider URM ™~ without jump (where the apex indicates “minus minus”). How does C~~ compare with C?
(is C™= = C?). [To note: it’s difficult, but one can start characterizing the shape of the functions in C™7]

My take on the proof

Let us prove C~~ C C. As said from the hint, we can characterize the shape of functions inside of it. We
first observe that C™~ is strictly contained in C, since there are total computable functions in C that cannot
be computed by a URM ™" machine due to the lack of jumps.

If we try to think logically, we have zero, transfer, successor as the available functions. This means this
function is strictly linear and can only perform execution as a fixed sequence of inputs, potentially up until a
constant number of operations. This says they always terminate, so we can have:

fx)=c

Or also (having c as the constant we were discussing above, which will be inside N):
fx)=x+c

This can be proven by induction, but operating with something that makes the computation possible. In this
case, it should be something with a number, just to prove x can come out of it. So, recursively it must
recreate the shape of x + ¢. We will use a register r; describing the execution of a given number of steps,
say s, so (s,x) is equal to x + c.

- h=0,wehaver;(0,x) = x, fine because with ¢ = 0 the base case is trivial, having already f(x) =
cor f(x) + c which will turn it 0 as f(x) alone

- h > h+1,soin this case the only thing this can do is the other three functions:

o Z(n), concluding trivially because the next step, r1(s + 1,x) = r;(h,x) havingx = 0frn =
1 and we conclude we’re inside and this is hence respected. When n = 1, infact, the
operation resets to 0 and the function will keep its form

o S(n),sor,(s+ 1,x) will allow us to get the sum of the instruction, given r;(s + 1,x) =
r1(s + x), again concluding by inductive hypothesis. This way the function will have its
expanded form f(x) = x + ¢, because we continuously sum

o T(m,n); this is uncertain because the function depends on two values this time around,
m,n; when they are different from each other, the result way be unknown (one can be 1,
the other we can’t know for sure, making the underlying function assume shapes
unknown.)

* Whenn > 1 (orn,mequal) we will know r; (s + 1, x) = r;(s, x) will do exactly the
transfer of x steps; otherwise, if m > 1, we won’t know what happen for sure, it
can jump many instructions

= The proof goes well if we assume we have exactly s steps, so the function for ¢ or
even ¢ + x can go exactly linearly assuming we will execute exactly only that
number of steps. This happens because we will keep inside the function
fx)=x+c

Written by Gabriel R.

66 Computability simple (for real)

Let’s give the official solution to the previous exercises:

- URM?, where we replace the transfer instruction (T'(m, n)) with the swap one (T°(m, n)).
Proof
We want to prove the two sets are equal.

- (CaseC < C%)
Givenf € C,f:N¥ = N,so f € CS.

If f € C then there is a program P URM program s.t. f," = f. We know that there is P' URM program
without T instructions s. t. fpk, = fp". But P’ is also a URM®-machine program.

In this case, so f,* = £, = f € C*.
- (CaseCs c ()

Take f:N¥ - N, f € CS and let P a URMS program s.t. f = fpk. We want to “transform” P into a URM
program P's.t. f,* = f.f.

So, the instruction T*(m, n) can be encoded in a new subroutine, using i which is something new and not
used by the program. So:

TOm 4
T_s com, m) o~ ’[’CCN\('N'P\ fl"‘ ro}o'w-m\p
may | M)
T*(m, n) is replaced with:
1. T(m,i): This moves the value at location m to a new, unused location i.
2. T(n,m): This swaps the value at location n with the value at location m, performing the swap.
3. T(i,m): Finally, it restores the original value at location m to the new location i.

A URM? program P can be transformed into a URM-program P’ s.t. f,* = p’k. We proceed by induction
on h, which is the number of T instructions in P.

- (h=0)-> Pisalready a URM program, take P’ = P

- (h>h+1) > Let P has (h + 1) Ty instructions. The program can be seen as:

T EA
< H 3
T ’\"(an A VO i;’ SCy 1, s0%)
'é.,p 5 It
Ton (21,89 ?
U8 Tilw)
BAS 1ALl TOn
— P o MEeT fu.'"‘

LN‘);,—-{L,U&W"LQM (\3“ N M

Written by Gabriel R.

67 Computability simple (for real)

To complete the proof, we need:

- P always terminates (if it does) at time s + 1
- i=max({n|R,isusedin P}U{k}) +1
o This equation calculates the maximum of two sets: the set of registers used in program P
and the set k. The purpose of this is to ensure that the value of i is chosen to be greater
than any register used in the program P.

Then, fp”‘ = fp" and P"' has h Ty instructions (hence, they compute the same instruction). Hence, by
inductive hypothesis, there is a URM program P's.t.f,* = ;'K . Thus, f = ff = fi'k = f,¥i.e.f € C

The proof is wrong: we’re using the inductive hypothesis on P’ which is not a URM?®-program (it contains
both T and T). You can make it work by proving a stronger assertion, specifically:

“Every program P which uses all instructions, including T and T can be transformed in a URM-program
P's. t.fp = fp'k.” This way, using all we already know up until now, we can conclude the proof solidly (so, if
it works for all values in induction, we can safely conclude).

- Consider URM~~ without jump instructions. C™~ € C
Proof
A URM™~ program has this structure, and we know it terminates after [(p) = # instructions in P steps:

ey = LoD =5 W‘&F’U““P
£ ¢ Pomsnahes ez L @ otsers>
b

All functions in C~~ are total (defined for all possible input values from its domain),so C™~ & C, e.g.
f:N - N,f(x) T Vx € N (meaning it diverges for all values, because “program without jump always
terminate”)

fec JAL1)
f & C~ because it is not total

(not sufficient to say “it uses jump” J(1,1,2) computes f(x) = x € C~~; we're basically saying this does not
hold inside C™~ because not in all cases can terminate if there’s a jump it doesn’t terminate and diverges).

Let’s restrict the program executing to unary functions (which take one argument or input); since there is
no jump and it was the only way to alter the control independently from the input, we will always do the

The shape of the functions will be either f(x) = c or f(x) = x + ¢, for a ¢ suitable constant.

Denote 7, (x, k) = content of R, after k — step of computation starting from m@.ﬂ——/‘
A

Written by Gabriel R.

68 Computability simple (for real)

We prove by induction on k thatry;(x, k) = corry(x, k) =x+¢

- (k=0)>nrn(x0)=x=x+0,s0c=0->0K

- (k —» k + 1) > By inductive hypothesis r;(x + k) = corry(x,k) =x+c forc EN

In this case we will have only three possibilities (given the fact that we can’t jump):

o e Rape & T,

As said, three cases, so:
1) I4+1 = Z(n), then we have two subcases (ind. hypoth.):

- n=1,r(xk+1) =0 (base case)
- n>1,r(xk+1) =r(xk) > OK, by inductive hypothesis, we have zeroed correctly

2) I;,41 = S(n), again two subcases:

- n=1,r(k+1)=7r(xk)+ 1> 0K, by inductive hypothesis (successor zero and all good)
- n>1,r(xk+1) =r(xk) > 0K, byinductive hypothesis (proceeding inductively works)

3) Ix4+1 = T(m,n), again two subcases:

- n>lorm=1,r(xk+1) =r(x,k) > OKby inductive hypothesis
- n=landm>1

In this subcase we’re lost, because transfer instructions can cause issues when trying to maintain a specific
structure for unary functions, particularly when the transfer instructions lead to values that cannot be
effectively controlled within the defined structure of unary functions (in other case, as seen inductively, we
know which instruction comes next, here we don’t know it for sure).

m—’t Mo > 0q My
R ZW..

So, how do we proceed?

Idea 1: T (im, n) is “useless”. Ok, but this observation requires the jump to make it work.

The key observation is that the same property holds for all registers:

r,(x, k) = content of R, after k steps of computation, starting from l Ki 0; & -~ 7

Show by induction on k that for all k
<

f e wtle

-
SC\‘-' 2= *--—--C.‘A-—eCz)

Written by Gabriel R.

69 Computability simple (for real)

The proof goes smoothly in this case (exercise here, so we get one input plus the constant for the specific
function). For h — ary functions:

-
(%n. S = AL < <
Ao T %5 "’BVAIC%JV

Solution (made by me, to take with a grain of salt):

Given all these values, let’s try to solve this inductively in cases as seen until now. We have the function
here, which will be used to compute all values and r; will store the intermediate computation value. We
will express such function, for f(xy, ... x,) with a new function g that computes h + 1 steps as:

fCer, o) = g (1 Caed, 2 (i), oo 1 (1))

where this function operates on its arguments. Let’s show this inductively:

- k:097}-(xj,0)=O+c=corrj(xj,0)=xj+c

- k> k + 1, assuming that for step k, rj(x, k)= cor rj(x, k) = x + ¢, we will now show how this
assumption extends to step k+1. 7j(x, k) = c or 1;(x, k) = x + ¢, we willassume 75(x, k + 1) =
corri(x,k+1)=x+c

o We introduce the function g as f(xq,...x,) = g(ri(xk), r2(xx), ..., 1, (xx) to represent
the inductive computation. We will consider all the subcases as before, given the
instruction I, for g and for a suitable constant c:

= Z(n)
e n=1710k+1)=0g(rn(x)-> 0K
e n>11(xk+1) =r1x k),g(rl(x, k)) - 0K
= S(m)
e n=110,k+1)=1(xk)+1,9(r(xk+1) > 0K
e n>171(xk+1)=r1i(xk)glr(x,k) - 0K
= T(m,n)
e n>lorm=1r(xk+1)=r(+k)
e n=1andm > 1, here it will hold for each instruction before given the
property can be seen as transfer of data so 7j(h + 1, x) is given by
g(r1 (), 12 (xg) .. 1j—1 () given it’s defined linearly for all the function
before

After examining the inductive step, we have shown that the properties we assumed for 7;(x, k), namely
1i(x, k) = c or 1j(x, k) = x + ¢, extend to step k + 1. This extension has been demonstrated through the

function g, which operates on the intermediate values ry (xi), 75 (x%), - - ., 1, (X1) to represent the inductive
computation for f(xq,...xp).

In summary, we have successfully established that for all steps k, the properties for 7;(x, k) hold, and by
extension, the computed function f(x4,...x;) is of the desired form:

[y, xp) =cor f(xqg,...x5) = x5+ ¢

This completes the inductive proof, confirming that the functions adhere to the specified structure.

Written by Gabriel R.

70 Computability simple (for real)

6 DECIDABLE PREDICATES

In mathematics, we often want to express properties. Consider as mathematical property the divisor:
div(x,y) = xdividesy,div S N x N
div={(n,m k) |nk € N}
As computer scientists, we can also see the divisor as a function:
div:N x N - {true, false}
div = {tr-ue if m is a divisor of n

false otherwise

In the context of computability and formal logic, we introduce the concept of a predicate, which is a
statement or function that takes one or more inputs and evaluates to either true or false, typically based on
some condition or relationship.

The k — ary predicate on N indicates the property Q (x4, ... ;) can be true or false for a set of values,
formally describing:

- afunction Q : N¥ - {true, false} (note that we represent 0 = true,1 = false as values)
- asetQ c N¥

We write Q(xq, ... X) to denote (x4, ... x;) € Q or Q(x4, ... X) = true. This means Q will be computable if
there exists a k-tuple (x4, ... x) returning true if Q(xy, ... x), false otherwise.

Then, given Q(x4,x;) S N¥. We say it’s decidable if the characteristic function (also called indicator
function, used to represent a specific property or set membership in a binary way) is like:

xg:NK > N

1if Q(xq,...,x;) is URM — computable }

Xo(xq,%x ={ .
Q(1 %) 0 otherwise

Remember also x,, is a total function (again, defined for all possible input values from its domain and
decidability of predicates involves only total functions in the process).

Let’s give some examples of decidable predicates:
1) Equality
Q(xq1,x,) € N?
Q(x1,%x5) = x; =x, decidable
x9:N? > N

1 ifx1=x2}

xo (X1, % ={)
Q(1%2) 0 otherwise

Written by Gabriel R.

71 Computability simple (for real)

This function essentially encodes the result of applying the predicate Q(x;, x;) to a pair of natural
numbers. It returns 1 if the numbers are equal (satisfying the predicate Q) and 0 if they are not.

Now, let's see how this program works to compute xq (xq, x2):

e If x; = x,, the program executes the jump in instruction 1, which sends it to instruction 3. It then
increments register 3, making it 1, and transfers this value to register 1 (x,).

e If x; # x,, the program keeps looping at instruction 2 (the self-jump) without changing the value of
register 3. Therefore, register 1 (x;) remains 0.

So, after the execution of this program, register 1 will contain either 1 (if x; = x,) or 0 (if x; # x5), which
corresponds to the value of xq (x1, x3).

2) Parity of a number

Q(x) = "x is even" decidable

A 23 o A2 Y6%)

~NO| B $>
q\ /k\ omh J(A 2 Me
K. W.UMI/LL(5(2) l
1, BwN)
N66 G
Ao, ‘ra&")

The program essentially starts with k at 0 and checks whether x is equal to k. If x is equal to k, it means
that x is even, so it increments the result r. If x is not equal to k, the program increments k and repeats
the process. This continues until x is equal to k, at which point r is set to 1, indicating that x is even.

In memory, there is the following situation:
in memory where k is a growing index and r is the result.

The program employs a simple iterative approach to determine if a given number x is even, and it does so
by incrementing k until it matches x. If the program exits with r equal to 1, it means that x is even. This
program effectively computes the characteristic function for the predicate "x is even," making it a
decidable problem.

Let’s make a digression, using computability not only confined to a specific model, but resorting to the
notion of effective encoding (used to map elements from one set [the domain] to elements in another set,
typically inside natural numbers) in a way that is algorithmically or effectively computable.

6.1 COMPUTABILITY ON OTHER DOMAINS

This allows us to extend the concept to other domains, defining then the computability on other domains.
Consider we’re interested in computability of a domain D of objects, which is countable (so one-to-one
correspondence with natural numbers), and:

a:D = N, bijective "effective"

Written by Gabriel R.

72 Computability simple (for real)

Let’s specify each notation verbally:

- bijective means “establishing a one-to-one correspondence (bijective mapping) between elements
in the domain and the set of natural numbers”.

- effective means “the process of encoding an element from the domain to a natural number should
be algorithmically computable”

- there exists an inverse function, which should map natural numbers back to elements in the
domain effectively (so a and a™?! are effective)

- once an effective encoding is established (a: D — N), it can be employed to define computability
on the domain D. This means that functions and predicates over D can be represented using
natural numbers through the encoding.

Consider for example the strings domain Z, where its size is smaller than real numbers set and it’s
countable or other sets like A% (infinite sequences of elements from a given set, also called streams), Q, Z.

Let’s define a computable function on a generic domain; given f: D — D function we say is computable if:

f*=aofoa !

D—f>

D
o] o
NTN

is URM-computable (the symbol e means the composition of functions)
In words: if f is defined, if @ and its inverse are effective, f* is computable (you can see the mapping).

Practically, if we act on domains unrelated to that of natural numbers and want to check whether such a
function is computable, it will be sufficient if its respective encoded function is.

Let’s see this more concretely, shall we? Suppose we want to pose computability on the integer numbers
(over Z). We the need an encoding a: Z — N, given the following encoding:

-2\ 24P

O.Anr-1L2 H 3

which is an effective function with inverse:

n
> nis even
-1 _
e M=_m+1)

———, nisodd

2
Consider then the absolute value function:
f(2) = |z|

Is this one computable? In this encoding, it is.

Written by Gabriel R.

73 Computability simple (for real)

f*(n) = (@o foa")(n)

(exo f) (%) n even

= n+1
(o f) (—”_—i_) otherwise
o (g) n even

= n+ .
o(5) otherwise

(] n even

n+1 otherwise
In the final part where f(n) is expressed for even and odd cases, it shows how the composition of functions
and the encoding function a results in a computable function (for all cases). Specifically:

1. Ifniseven:In this case, f(n) is computed as a(|n|), which simplifies to a(n). This means that
when n is even, the absolute value of n is the same as n itself, and the composition function f is
equal to a(n).

2. If nisodd: In this case, f(n) is computed as a(|n|), which simplifies to ‘a(n + 1)". When n is odd,
the absolute value of n is n + 1 because the negative of an odd integer is one more than its
absolute value. Therefore, the composition function f is equal to a(n + 1) when n is odd.

The expressions show how f(n) behaves for even and odd values of n in terms of the encoding function a.
The goal of these expressions is to demonstrate that f is URM-computable for all cases, making the
function f(z) = |z| computable on the integers Z by encoding and decoding integers using a and its

. -1

inverse a” .

Written by Gabriel R.

74 Computability simple (for real)

7 GENERATION OF COMPUTABLE FUNCTIONS

A function will be computable if it can be obtained from a set of basic operations that are known to be
computable. Essentially, we show that having two functions f;, f, we produce an operation inside
op(fi, f2) in a way that composing them (for example, via op(f3, f2)) is still in C.

The class C will be closed under: ‘::

- (generalized) composition
- primitive recursion
- unbounded minimalisation

To prove a function f is computable, we can write a
URM program of use the closure theorems of C
choosing the operations carefully (the ones listed
above).

The basic functions following are URM-computable:
1) Constant zero
Z:N¥ 5 N,Z(¥) =0, (xq, ...x) = 0,VX € N¥
2) Successor
S:N->N,S(x)=x+1,VxeN
3) Projection
Ujk, Ujk(ic’) = xj, (X1, .. Xp) & X;, VX € Nk
They are in C as they are computed respectively by:
1) z computed by Z(1)
2) s computed by S(1)
3) Uikcomputed by T(i,1)
Consider also, as a side note, identity is a special projection, basically over all natural numbers.

To prove the closure properties we will need to “combine” programs so we need some notation that we
will give now. Given a URM program P, we define:

- p(P) = max{n |register R, is referred in P} [aka largest register index]
- l(P) = length of P [aka number of instructions in P]
- P ifinstandard form if, whenever it terminates, it does so at an instruction [(P) + 1
o foreach J(m,n,t) instruction, t < [(P) + 1 (stopping at instruction [(P) + 1 as just said)

Written by Gabriel R.

75 Computability simple (for real)

We can define concatenation of programs: given P, Q programs (from now on we assume they are
standard), we combine programs in such a way that is computable.

So, starting from P, Q, their concatenation is obtained by considering P followed by the instructions of Q
and updating instructions properly:

¢ ¢

/_\/'V 4 .)
R Q * &{\cbnjrw_, DCM\; ');:'.-PQCP)\

&N

- Given P a program we write P[iy, ... [—] program taking the input from R; , ..., R;, and outputs
in R; without assuming registers different from the input are set to 0. We do this by using transfer
and reset operations, executing up until p, so last instruction given the whole register space.

o More precisely, it we express P[ij, ... i = i] as follows:

T, A)
2NN

s (e
: 2
7 Fany A
(6 N,

prahlom @ L2420 <@ 1 Jo- gk B~
‘r(//ll" TC}\IID
¢

Exercise: Write (*) properly in this case Y

Solution: We write the program as T(2,1), Z(2), P, T(1,1), so we just transfer a value from the output
register, do a reset operation and transfer the value back again inside the original register, considering the
problem structure.

7.1 GENERALIZED COMPOSITION

We define the composition, given f:N¥ = N, g4, ... gx: N® = N you define h: N* » N for ¥ € N"

W) = {f(,cn (@), i) i g1(2) L. ge(®) | and f(g1(F), ..., gx(F)) |

T otherwise

(In words: the composition function will be made on all the subfunctions if they all halt)

Written by Gabriel R.

76 Computability simple (for real)

For example, consider:
z(x) =0,Vx
O(x) TVx Z((D(x)) Tvx
(In words: we use the empty set function, so the emptying on all values is defined for all x and subdomains)
Another example:
Uf(x,y) =x Uf(x8()) 1T Vx,y

(In words: composition holds for both values inside functions and if value is not zero, it will output the first,
otherwise it just diverges)

Now, we argue C is closed under generalized composition.
Proof
Given f:N¥ > N, gy, ... gx:N® > N in C and consider :: N > N, (%) = f(g, (%), ... g (¥)) isin C.

Let F, G4, ... G, be programs (in standard form) for f, g4, ... gx. The program for h can be:

1\...|m m+1|... ! m+n|m+n+1|...|m+n+k
Lot s Ty gl{j) s gﬂ{f)

It is important to note that the registers from m + 1 onwards can be used freely without the risk of
interferences. Let us consider here the largest possible register, so m = {max (p(F), p(G1),..p(Gy), k,n}.

The program h for composition then is:

T(l,m+1) In words, the composition program provides inputs using additional
T() registers and auxiliary input, then applying transfer operation on
.1+ n
S / h following r r and finall m ng the result.
Gi[m+1,....m+n—m+n+1] each following register and finally computing the result
e Because the following registers can compute the result, if it was
Gglm+1,....m+n—-m+n+k|

defined before, the property continues to hold.
Flm+n+1,....m+n+k—1]

We then conclude that h € C

Let’s give another example: f(x;, x,,) = x; + X, known to be in C. We define g: N? - N with
g(x1,%2,x3) = x1 + x5, + x3 = f(f(x1,%3), x3). Are we really doing generalized composition? Yes, but we
can use projection.

We define such projection on f(f (x1,x5), x3) as U3 (X),N3 = N (we use projection on x;) and then x, as
U23 (x),N3 = N (again, projection on x,). This way, we will have a function of three arguments correctly
using generalized composition, having finally:

g(x1, 22, 23) = f(f(x1,22), 23) = f(f(UF(D),U3(Z)), U3 (L)), that is computable.

Written by Gabriel R.

77 Computability simple (for real)

Basically, in drawing form:
—2
z&u& ':?Dgfﬂ,) ﬁ o é('l,' &Lg,&?)
LA oo 000 2@)
NN NN 3

%:N1“>N I~

N 5N ANISN
N SN

Another example: let F: N — N computable, Q¢(x,y) = "f(x) = y" decidable?

)(Qf(x, y) ={1if f(x) =y,0 otherwise} computable?

if fx)=y

@y ={y
Xof oY) = 0, otherwise

Lifflx)=y
0, otherwise
result via composition (xg, means equality and we know it's computable).

We know that xgq:N* = N, xz,(x,y) = { is computable. We then obtain the computable

Therefore Xg(z,y) = Xpy(f(x),y) = Xpg(f(UR(z,y)),U3(z,y)), and
thus X is computable.

There is a big problem: we’re not considering the case of F undefined (we assumed F was total, but that
seems not to be the case, because the function is partial, so we map some values). To have it correct,
change the definition of the predicate putting: “let F: N = N computable and total”, thus it will work.

7.2 PRIMITIVE RECURSION

Recursion is a familiar concept to us computer scientists: it allows to define a function specifying its values
in terms of other values of the same function (while other functions are possibly already defined).

Two classic examples of those:

(1) the factorial (the product of all positive integers less than or equal to a given positive integer)

0l=1
(n+1)!=n!(n+1)

(2) Fibonacci (a sequence in which each number is the sum of the two preceding ones)

f0)=1
fa)=1
fin+2)=f(n)+ fin+1)

Written by Gabriel R.

78 Computability simple (for real)

In our case we define a very basic and “controlled” version of recursion (also from domains, you can see
they are recursively defined). Let’s give a proper definition then.

Given f:N¥ - N and g: N¥*2 - N functions, define h: N¥*1 — N by primitive recursion as follows:

base case where h equals f for input 0 and then uses the recursive case to compute h for other

{h(-?‘ 0) = f('_‘) So, the definition of h combines f and g to compute its value for different inputs. It starts with a
values by using both g and the previously computed values of h.

h(z,y +1) = g(Z,y,h(Z,y))
The function h exists or that it is unique, and circularity of the definition is avoided by thinking of the values
for h(x,y). Unless f, g are total, then h may not be total.

We define a set of functions over the natural numbers, an operator for computing the recursive formula, a
function of fixed points (definition of this given here — will become useful later on) where there is always an
upper bound which allows us to do operation in the continuous (so, always inductively defined).

This can be drawn as:
C ~ .
I grren TS = indeASen (W‘"")
We just say here: there might be problems given the recursive nature of computation if it doesn’t match

our requirements. Even more concisely: it’s possible to show this is defined for every natural number “on
the same function”, given there are fixed points involved and it’s continuous (always holds).

Let’s give other examples.
Consider the sum function:

h:N? > N,h(x,y) =x+y

{ h(z,0) =z = f(x) flx) =2
h(z,y+ 1) = hiz,y) + 1 = g(h(x,y)) g(x,

Then we define the product function:

h':N?2 > N,h' (x,y) =x*y

r-0=0 flz)=0
r-(y+1)=(z-y)+x glx,y,z)=z+y
Proposition

C is closed by primitive recursion, so:

- functions obtained from total functions by generalized composition are total
- functions obtained from total functions by primitive recursion are total

Proof

Let: f:N¥ - N, g: N**2 N be in C and let F, G programs in standard form for f, g. We want to prove
that h: N¥*1 — N defined through primitive recursion:

h(Z,0) = f(T)
h(Z,y+1) = g(T,y, h(Z,y))

Written by Gabriel R.

79 Computability simple (for real)

is computable.

We start from | @1 [... |xp [y [0] ...]

we save the parameters and we start to compute h(7,0) using F.

Basically, we compute and instruction, then save the next and use registers not used to save the next
instruction which needs to be computed.

ACx> o)< ‘L()Z)> { e £)
K62, "3‘—-50?.9’; hod o0 (ame &)

f;(ﬁ" ,QZ&C{?I&—M’I\(;’,R.-/\» Y4

oD 0—.{\.‘62‘\'\-2/ W:JA\ -I‘-P"P

Essentially, we compute the following instruction until we getto i = y.

As usual we need registers not used by F and G, m = max{p(F), p(G). k + 2} and
we build the program for h as follows:

1 |...!0m+1|...|m+Ek|m+k+1 m+k+3
z 1 h(Z,2) Yy 0
T(1,m+1)
T(k,m+ k)

Thk+1,m+k+3) >
Flm+1,...,m+k—->m+k+2| // compute h(x,0) & //l\ 6‘ F> z

LOOP: Jm+k+1m+k+3, END) // i=y7? >
Glm+1,....m+k+2—->m+k+ 2] /QOL >
S(m+k+1) // 1= 1i+1

J(1,1, LOOP)
END: T(m+k+21)

KGR Rz g & X, A C?,RD

In words: we’re just making a for loop using closure under primitive recursion (a function that can be
computed by a computer program whose loops are all "for" loops) and under composition (so, each
previous function can be used to compute the following one).

We simply go ahead until we reach i = y; to avoid conflicts, we determine the maximum register m
ensuring there’s enough space to do so, simply compute continuously given the problem conditions. It’s
basically like implementing recursion through iteration, given each instruction gets taken and handled
iteratively to a possible next register.

Written by Gabriel R.

80 Computability simple (for real)

7.2.1 Functions defined by primitive recursion

We define a list of computable functions, implementing recursion through composition.

- sumx+y
h:N? - N,h(x,y) =x+vy
{ hiz,0) =z = f(z) _ flz) ==z
h(z,y +1) = h(z,y) + 1 = g(h(z,y)) glz,y,z)=2z+1
- productx xy
h':N? - N, h'(x,y) =x =y
0= “ f(x) =0
(f +1l)=(z-y)+z g(z,y,2)=z+y
- exponential x¥
) =1 h(xz,0) =1 flx)=1

2t =av.x h(z,y+1)=h(z,y)-z glz,y,2) =z -z
- predecessory — 1

(_.],_. + 1:] ~ 1= h,(;r + 1) =T 5”:, 1

=
A=
e
[
ey

Ty T2Y

- difference t Y= {0

otherwise

r=0=ux flz) ==z
z=(y+1)=(z=y)=1 glzyz) =

) g(z) = 0 =0 fe) = o
- sign sg(x) = 1 250 5%{%4-1.): 4

sg(0) =0 f=0
sglx+1)=1 g(y,z)=1

- negative sign (or complement sign)

sgl(z) = 1 z=0 excise (SU_I:_JHO'.\J)
' 0 =0 5g(x) = 4 syl

Written by Gabriel R.

Computability simple (for real)

81
s9(0) =0 f=0
sgle+1) =1 g(y,2) =1
- minimum — <y
= (moy)
min(zr,y) =z = (xr ~y); =~ (e-y) =y .
- maximum
ueC(se <OLUTION
-maz(z,y) = (x = y) +y; K (2 4) = + e x

remainder, specifically the remainder of the integer division of y by x
y modx z£0
srm(x,y) =
Y r=0
We might see it visually like the following: increment the number and the results changes, incrementing the

remainder and the y value accordingly, only if next multiple is not hit.

Tm (3,4 o0 e
e qb(EX'S
2 ®
. /I
1 S
12 3% 4 5 ¢ ¢ g > - Y
By far, we use the definition by primitive recursion:
rm(zr,0) =0
rm(a,y + 1) = {?'m(;rr,y) +1 rm(x, y} +1+zx
0 ot l'l(!l"Vl s¢

= (om (g) * GE (i)
4 P em(xy) $4<E

/
smefhimg 0 othouase

- quotient, gt(z,y) = y div z (convention gt(0, y) = y), we define:

. _Jatlzy)+1 rm(z,y)+1=x
gtz +1) = {qt(;rr,y) otherwise
= gt(z,y) + sg((z = 1) = rm(x,y)) = qt {xl\&) + ?% (e (x, %HL))

Let’s give a definition by cases; let fi, ... f;,: N¥ - N total and computable and Q; (X), ... @, (¥) € N¥
decidable (mutually exclusive between each other) predicates Vx 3! j Qj(a_c’) (so, for each, exactly one of

Q1, ... Q,, holds) and let f: N¥ — N total computable where:

then f is computable and total.

Written by Gabriel R.

82 Computability simple (for real)

Proof MM / ¢ X
(X) = f1(X) * xg, (X + () ¥, (%) + -+ fu(X) * x¢, (%)

So essentially, the right function will be selected and effectively computed, given all the marked functions
are computable (sum and product) and composition is itself computable. We then conclude f is
computable.

Still, there is a mistake one can do: not assuming the functions are total; this way, the proof will never be
correct. Let’s show a counterexample:

n=2 fi(x) =x Vx computable Q(x)=true Vx
fo(x) T Vx Q,(x) = false Vx
fO) ={fi(x) if Q1(x), fo(x) if Q2()} = fr(x) =x Vx
AN

WNAAS
/ﬁ-ﬂa.c V % V
% fi(x) # 20, T () r20,0) _—" X

The mistake in the given statement is the assumption that f, (x) is computable for all x, which is not the

case in this counterexample (because it’s explicitly told it diverges). Therefore, the statement is not valid.

Important: We have a proof only if the component functions are total, otherwise it will be always
undefined. The proof is wrong if we don’t assume totality of functions; keep in mind that for now.

Let’s define the algebra of decidability. Let Q; (¥), Q,(¥) S N¥ be decidable predicates. Then:

1) —Q:(0)
2) Q(®)AQ,(0)
3) Q(®)VQ(®)

can be considered decidable.

Proof

1) x,0, @) ={1if =Q,(),0if Q,(X) =sg (le (J_C))) (evaluates to 1 if true, 0 if false)
2) xq,nq,) = Xq, (X) * Xq, (X)) (evaluates to 1 if both are true, to 0 if one of them is false)
3) xq,vq, = sg(le) + Xq, (@) (evaluates to 1 if either of them is true, to 0 if both are false)

7.3 BOUNDED SUM, BOUNDED PRODUCT AND BOUNDED QUANTIFICATION

Let f(%,2), f: N¥*1 be a total computable function and let’s define h: N¥*1 — N.

Then, we define the bounded sum as follows (composition of primitive recursive functions — total since f is:

REY) = FGEO) +fED+fEy -1 =) fE2)

z<y

{Ez(.() f(?. Z) =0,
Zz(-y+l f(&,2) = qu f(Z2)+ f(Z, z2)

Written by Gabriel R.

83 Computability simple (for real)

In simpler termes, it’s like adding up the values of the function for all z starting from 0 up to y. It starts
with 0 for h(%, 0) and then, for each increment of y, adds the value of f (%, y) to the previous total.

The bounded product [],«,, f (%, z) is defined as follows:

{Hz((} f(?. Z) - 11
Hz<y+1 f(@,z) = Hz<y f(Z 2)- f(Z z2)

It's like taking the product of the results for all z starting from 0 up to y.

By closure under composition, the bound can be a total computable function. Another consequence
concerns the decidability of the bounded guantification of predicates.

Let Q(¥, z) decidable:

1) vz<y,Q(%2) o’w\lo% -—> tsﬁs ;eﬂ.[\ébj

2) 3z<y,Q(%,2)
Solution

Essentially, use this lemma from notes:

LEMMA 6.27. If f : NF*1 N is total computable then
(1) 9(&y) =2, [(Z.y)

are total computable.

and consider everything is defined by primitive recursion, so you have:

1)

g(x,0)=0

g@&y+1) =g&y)«f(X,y)
2)

g(x,0)=0

gxy+1)=g&y) *f(xy)

We can also determine, since bound is computable, bounded quantification is decidable.

LEMMA 6.28. Let Q € N**! be a decidable predicate, then:

are decidable.

PROOF. (1) observe that Xg, (Z,y) =[], ., Xo(7. 2) (2) observe that X, (Z,y) = sg(}, ., Xo(Z. 2))

Written by Gabriel R.

84 Computability simple (for real)

7.4 BOUNDED MINIMALISATION

Nk+1

Let’s also define the bounded minimalisation. Given a total function f: — N, define a function

h: N¥*1 - N as follows:

WG y) = {Z, minimum z < y s.t. f(X,z) = 0 if it exists
"Y'=y, if thereisnosuchz

g —
O/l T 8

7 .
'4éﬁo>:§ Qes? e o

This is very useful to prove computability of functions; here, we would write h(x,y) = uz < y(f(%,z) = 0).
As such, this is called bounded minimalisation operator/bounded u —operator.

In simpler terms, h searches for the smallest integer z (less than y) at which the function f (X, z) becomes
equal to 0. If it finds such a z, it returns that value. If there is no such z, it returns y.

Observation: If f is computable then h(X,y) = uz < y. f(X,z) =X computable

The observation correctly emphasizes that when the original function f is computable, the process of
finding this minimum value z, as described, is also computable (via composition of computable
sum/product/sign)

Proof
- , ~¥{=‘:'&):O
dd:lm\ﬁ:)(‘(\, ‘0% p‘b‘.(‘f‘mh\J@ e cunsionm.
Vo Y
hWizo) = O l*] A
5 Yt
I h(2,9) —

(2 y) <y Ay EN)

(¥ h(i’,%):% b {l{: {(EI%BZO N 4
§ fEy) xo s

= hWzZy - S%(%‘— h{%l%ﬂ +
4 f Wi",g,> <Y
0 otherwyse

(‘a*gg({-‘fi,@ﬂ-% (y- h(z@ﬂ

ompotalole by gt Hive Tecymsion

Written by Gabriel R.

85 Computability simple (for real)

We then prove the above, defined this way, is then defined by primitive recursion. Let’s observe the
following functions are computable:

1)
div:N? - N
. 1,if x divides _
div(x,y) = {0 4 otherwisi =sg(rm(x,y))

(the division can be also written as the negation of remainder, so it will be 1 if there is no rest, 0 otherwise,
as you see here for dividing)

2)

SPe e

D(x) = number of divisors of x

div(y,x) =) GGrm(y,)
y<x

We can put the non-strict bound there, like z < x. Formally, we can say that is defined via composition
over the previous function, posing y < x + 1 (given its recursive nature, we compute the current one if the
last one was computed already, so if y < x holds, it will hold y < x + 1).

3)
Pr(x) = {1 xisprime, 0otherwise}
x is prime if f the only divisors of x are x and 1 withx # 1
(}
x has exactly z divisors
Pr(x) =5sg(ID(x) —z)

(So, it calculates the absolute difference between the number of divisors of x and the given value z. This
difference measures how far the number of divisors of x is from z, in other terms, we can compute this
absolute difference as |x — y| = (x —y) + (y — x)).

4)
P, = x*" prime number
Po=0,p1 =2,p3=5p,=7..
We use primitive recursion to do this.

{ Po=0
Dys1 =" " Uz z primeand z > p,

The goal is to find a number z that is prime and greater than the xt" prime (p,); there, we use quotes there
because this is not a formal definition. So, let’s define the search for the prime number properly, bounded
to the recursive product of all the other factors.

P,(z) ANz > p,

=uz < <1_[Pi) +1 sg(P(2) *sg(z —py))

i=1

Written by Gabriel R.

86 Computability simple (for real)

infact pysq < (pi) +1

\—i:-—lw_/
Let p be a prime divisor of (then pFEp;Vi=1..x

otherwise if p = pj forj < x s VT CTerpeD
STEANS T pvinsg Y
then Hpi
i=1

X
but p1 (| [+1
i=1

:]:

-p|1l-p=1 notprime

X

=>p2px+1=><npz>+12p2px+1

i=1

In summary, this argument demonstrates that if p is a prime divisor of the product of the first n prime
numbers plus 1, it cannot be equal to any of the first x primes. Instead, it must be greater than or equal to
the (x + 1) prime, which is the next one in the sequence. This establishes the relationship between
prime divisors and the order of primes in the sequence, recursively because it’s bounded.

5)
(x), = exponent of p, in the prime factorisation of x
E.g.20 =223%51
(20), = exponent of p; = 2 - (20); =2
(20); =-+p; =3-(20), =0
(20)3=1
(20),=0

(x)y = maxz s.t.py divides x
=maxzs.t. div (pf,, x) =1
=minz s,t,div(pz*t,x) =0

= pz s.t.div(pi*t, x)

When we calculate (x)y, we're essentially finding the exponent to which the prime number p,, is raised in
the prime factorization of x. This implies that we're looking for the minimum z such that if we consider p,,
raised to (z + 1), it's no longer a divisor of x. Via bounded minimalisation, (x),, represents the highest
exponent to which the prime number p,, can be raised in the prime factorization of x.

Hence, we conclude this is computable by bounded minimalisation.

Written by Gabriel R.

87 Computability simple (for real)

Also, the following functions are computable:
. V2l
[\//EJ =Tmary < ;{:.y2 <T
=miny <z.(y+ 12>z
py < z((x+1) = (y + 1))

o lem(z,y)

lem(zy)=pz<z-y(r|zryl2)

=pz < x-y- sg(div(z, z) - div(y, 2))

o GCD(z,y)
GCD(z,y) < min{z,y} and it can be characterized using the minimum
number that can be subtracted to min{z,y} to obtain the divisor of z,y

GCD(z,y)

min(x,y) — pz

P/

min(z,y).(1 = div(min(z,y) — z,x) - divimin(z,y) — z,y))

e number of prime divisors of x

D<o Pr(z) - div(z,x)

This seems strictly rigid, but let’s reason on another example, the Fibonacci function.

The Fibonacci function, as conventionally defined with two base cases and a recursive relationship involving
the previous two values, is not a strictly primitive recursive function in the traditional sense of primitive
recursion within computability theory.

The reason for this lies in the binary nature of the recursive relationship (adding the previous two values),
which goes beyond the simple predecessor relationship found in typical primitive recursive functions. Given
that f(y + 2) is defined in terms of f(y) and f(y + 1), it does not completely adhere to the classical
primitive recursion schema (because the inductive step requires a prior pair of values).

£(0) =1)
f() =1 = “"e%
fr+2)=fM) +f(n+1) —= pimiovire 2oeozrian

We can show that f is computable by resorting to a new function g:
g:N - N?

gm) = (f(), f(n+ 1))

Written by Gabriel R.

88 Computability simple (for real)

7.5 ENCODING IN PAIRS

Let’s see an encoding in N of pairs (and n-tuples) of natural numbers that will be useful for some
considerations on recursion. Define a pair encoding as, given D = N?

7:N* >N
m(r,y) =22y +1) -1

A pair encoding refers to a method of representing ordered pairs (and n-tuples) of natural numbers using a
single natural number. The goal is to encode the information in a way that preserves the relationship
between the elements of the pair or tuple while allowing for effective (computable) operations on these
encodings.

Note 7 is bijective (uniquely decode for original pair to encoding) and effective (encoding/decoding are
computable), so computable. For example, if you have a pair (x, y), you can use 1 to encode it as a single
natural number m(x, y). Later, you can use the inverse operation to decode the original pair from the
encoded value.

We also have ! effective and can be characterized in terms of two computable functions ; and m, that
give the first and second component of a natural number n seen as pair:

-1 2
T N->N

771 (n) = (m(n), ma(n))

where 71 (n) = (n + 1), and ma(n) = (zfj—(i) —1)/2.

It can be easily generalized in case for encoding n-tuples, defining the recursive nature over functions
previously computed and with projection always obtain a natural number given m as factor.

On this encoding, let’s consider the Fibonacci function, which is defined as:

f(0)=1
fa)=1
fm+2)=fM)+f(n+1)

Given the function is not totally defined as the primitive recursion definition, we can show this is
computable using the encoding in pairs. We then define:

g:N—->N
gm) =n(f(n), f(n+ 1))

therefore, by primitive recursion, we can write fib by primitive recursion:

9(0) =n(f(0),f(0+1))=n(1,1) =2'2*1+1)-1=5
gn+ 1) =n(f(n+1),f(n+2) =n(m,(gn)) m(g()) + m,(g(n)))

and so g is computable by primitive recursion and f(n) = m;(g(n)) is defined computable by composition.

Written by Gabriel R.

89 Computability simple (for real)

More in detail:

- using the primitive recursion principle, g(0) and g(n + 1) are defined based on the pair encoding
and the previously computed values

- since g(n) encodes the pair (f(n), f(n + 1)), f(n) can be derived as w,(g(n)), where 1 is a
projection function that extracts the first component of an encoded pair. This means that f(n) is
defined and computable by composition

7.6 UNBOUNDED MINIMALISATION

Generalized composition and primitive recursion produce total functions when starting from total
functions. We then introduce unbounded minimalisation (same as the bounded, but here the search is not
bounded, hence not necessarily total). The key point of this one is this: it allows us to obtain non total
functions starting from total functions and we use it basically to “search for something”.

Given f:Nk*1 — N (not necessarily total), specifically as f (¥, y), define h: N* — N,h(¥) = uy.f(X,y) =
=leastys.t.f(X,y) =0
— such y could not exist
- f(X,z) could be undefined before finding y
(so, we set the minimum u as before, but if f(X, z) is always # 0, then h T)

_{y, if thereisys.t.f(X,y)andVz <y, f(¥,z) L #0
T, if such ay does not exist

You can compute uy. f (X, y), but the result of such minimalisation is undefined.

f(xX,0) =0 ? yes — stop out 0

no
C7 f(%,1)=0? yes - stop out 1
no
Q-Z_):\? yes — stop out 0

There also can be problems is the function is undefined on a value z’ less than z which zeroes the function
and h will be undefined also in this case.

Proposition: Class C is closed under (unbounded) minimalisation
Proof
Let f: N¥*1 - N in C. We want to prove h € G, h: N¥ = N, h(X) = uy. f(X,y)

Let P be a program (std form) for f, like:

A 1< Jm-&-’(M Mice]

Xa- o~ = e | Q. .~ - . (T2 i o

[~ [ETI T Y Y
W K1

L]
= Az &7
Written by Gabriel R. ,QO< ,«L)
/

>

L d
+

90 Computability simple (for real)

Pose m = max {p(P), k + 1} to get the largest possible register
(not used by the program F). The program for h can be:

T(l,m+1) //save input X

T(k,m+k)
LOOP:Plm+1,.m+km+k+1-1] //f(Xi) in Ry
J(L,m+k+2END) < //f(& i) =0?
Jm+k+1) //i++
J(1,1,LOOP)

END:T(m+k+1,1) //outputi

In essence, the program for h extends the program for f to perform a minimization operation by iteratively
searching for the minimal value of i that makes f (X, i) equal to 0.

Observe F may not terminate and this program does not terminate; hence:

- the u allows us to obtain non-total functions starting from total ones
- unbounded minimalisation is nothing more than a while implemented with goto.

Example 1 (Perfect square)
fiN-N,f(xy) = |x—y?|

f(x) VT if x is a square &D“\V\J\Jl'
x) =
o + otherwise

fl) =py."y? =x"
= uy.|ly *y — x| » computable by minimalisation
Example 2 (Inverse function)
g:N?2 5> N

_ L afy # 0 and y divides =
gl y) =47 :
1T otherwise

We can use only computable functions, like:
9(x,y) = pz.[z x y — x]
—

- O

=0 M) Qw%-)do“MTb

Written by Gabriel R.

91 Computability simple (for real)

gx,y) =pz.([zxy —x] +5g»))
g\
Y 4
. - (@]
So, we get: A L& aao /? »\.4 3
f(x,y) = pz.(lyz — 2| + Xocony=o(z,9))

Observation
Every finite (domain) function is computable.
Proof

Let 8: N — N a finite domain function (for example, let’s define the domain as dom (0) = {x4, ... x,}):

'yJ. r=x
Bx) =
Yo T =T,
h) otherwise
then: P

0 = {(x1,y1), (x2,¥2), ovvs (X, Y0)}

is computable (note, we use the weighted sum and product, and we map values in pairs).

e — RS 7D coriab
e(x)—zyl*sgax xil) +uz | [1x -l o2
———

A&i‘ > z%xq M?ixé%(e)
vf_h___,! 40 gherre .
L&.‘_ -.L)(&Y‘_ :)/Ak XQ‘MC€>

Example (where both are computable and respect the 0/1/undefined definition for bounded minimalisation
given just before):

J:N—=N g: N — N lixed a program P

0 ifz=0and P# NP 0 ifz=0and P(z)]

flz)=<1 ifz=0and P=NP g(x) =<1 ifx=0and P(z) 1
T otherwise 1 otherwise

Observation

Let f:N = N computable and injective. Then:

fo z ifrisst. f(z) =y
1 if there is nox d.t. f(z) =y

is computable.

Written by Gabriel R.

92 Computability simple (for real)

Proof

1) = px. |f(x) =y

The challenge arises because, in some cases, certain input values may not be defined by the function. This
problem is consistently related to the concept of a "non-total" function, where not all possible inputs have
corresponding outputs. This, in turn, can lead to difficulties in finding inverse values, as there may exist
output values for which no valid input exists.

Hence, not working for non-total functions.
f:N->N
f)={x—-1 ifx>0, T ifx=0} computable
=(x—=1) +pz.s5g(x)

) =y+1 % Mx-|f(j_)__—)’| .,

The key point in this context is that for computable, injective functions, you can define their inverse in a
computable way using the minimalization operator. Then, it depends when is defined or not.

If f is non-total:

\‘ZO 4 2)
0

g T

og(mpuh‘lbg
<F

do e b& Mo
o s

om e\’% possibe impuf”
S

&

to be Jeromolized

Let's consider the function f and examine its behavior when applied to various inputs.
In words, this is doing in a dove-tail execution pattern (different computations simultaneously):

- 0 steps of the program on argument 0
- 1stepon0

- Ostepsonl

- 2stepson0

In this graphical representation, each point on the input axis corresponds to a specific input value. We can
see that for some inputs, f yields valid output values (red values).

However, there are regions on the graph where there are gaps or undefined points. These gaps represent
cases where f is not defined for certain inputs, which makes it a non-total function. This non-totality can
pose challenges when attempting to find the inverse function f 1 for every possible output (so the red
computation continues and goes on and on).

Written by Gabriel R.

93 Computability simple (for real)

To formalize this process, we can use program P to compute f for every possible number of steps on every
possible input, but it's important to be aware of the regions where f may not yield valid results.

Every time the program terminates in a certain number of steps k given the argument y, we check the
output f(y); if f(y) = x we stop, otherwise we continue.

Written by Gabriel R.

94 Computability simple (for real)

8 PARTIAL RECURSIVE FUNCTIONS

The URM is just one of the various possible computation models to formalize computability. We can
alternatively use what we briefly described in the beginning of the course, like:

e Turing Machine
e J-calculus
e Post system (canonical deduction)

All of these refer to the same class of computable functions, leading to the following thesis (yeah, always
this one, for obvious reasons):

Church-Turing Thesis: A function is computable if and only if it is URM-computable (so, a URM-model)

For our program:

- class R of partial recursive functions
- prove R = C (remember the C we’re talking about was defined here and we want to prove is
equivalent to the URM)

We define then the class of partial recursive functions R, which is the least class w.r.t (with respect to) C of
functions which contains:

(a) zero function
(b) successor function
(c) projections

and closed under:

1. composition
2. primitive recursion
3. minimalisation

We argue this is a well given definition and we will give some remarks in detail.
We can define a rich class of functions if:

1. it contains (a), (b), (c) [so, all basic operations]
2. itisclosed w.r.t. (1), (2) (3)

R is arich class s.t. for all rich classes A, we have R € A.
- Note: given A;,1 € I a family of rich classes then N;¢; A; is rich (so, a rich class is closed under

intersection).

- Another note: the class of all functions is rich = R = N4 rich class A (it's a way of showing that
there is a fundamental set of functions that are rich and that encompasses the richness of other
classes)

Equivalently, we note R is the class of functions (a), (b), (c) which you can obtain from the basic functions
using a finite number of times (1), (2), (3).

Theorem: C = A (we’re now showing that the class of URM-computable functions coincides with the class
of partial recursive functions)

Written by Gabriel R.

95 Computability simple (for real)

Proof

- (R <€ C):just keep in mind R is a rich class, while C is the smallest rich class, so this inclusion is
trivial and simply > R € C

- (€ € R): this is quite more difficult; let f: Nk - N, f € C be a computable function, so there is a
URM-program for f, call it P for instance, such that £, = f. We want to show f € R, so we reach
with program after all input a function computing all its things (the vector one):

|I4.,_. xK,OO - - -

'3

Fal = - -

cp:NF*1 > N
cp(X,t) = content of Ry after t steps of computation of P(X)

(Above we consider Cf which is the content of R; after t steps of P(X) and will give the output of function
if the program terminates in less than t steps. This function is clearly total).

Now, we’re defining the function for the instruction to be executed after t steps of P(X) (also a total
function), which is
jp:NKt1 5 N
IP . |NKH - tM
_— imtuctom o be exeayted &—F e € 3\6\95 053 PC=)
.‘LJ =
0 i} P(R) foemimetes o b oskps @ fwe

Letx € N¥
> if f(X),then P(X) | in a number of steps
to = ut.jp (%, t) (the least number of steps to reach a state where jump is undefined)

hence f(X) = cj (%, ty) = cp (¥, ut. j, (%, 1)) (the value of function is determined by number of steps to
have it undefined)

= if f(X),then P(X) T (must be undefined, given the undefined behavior of jump)
hence ut. j,(%,t) T
therefore:
f&) = (% ut.jp(E D)1
In all cases (in words: the combination of these functions is able to describe a URM program):
f@) = cf (% ut.jp (@ 0))

Written by Gabriel R.

96 Computability simple (for real)

If we knew czl),jp € R, we would conclude f € R. To resolve the problem and complete the proof, you
need to demonstrate that the functions are indeed partial recursive functions.

Let’s then try to c},,jp are in R. We take a program P in standard form (composed by a list of instructions).

What we’re going to do is working on sequences encoding representing the registers and program counter
configurations (respectively, ¢, and j, in general form, so “computation” and “jump” defined by
composition and primitive recursion), then manipulate these with functions that are also composite and
recursive, obtaining as a result c; and j, themselves.

We can see this as:
MMM P AB\M w
‘_7_[(omidly, ast rhow
-9 @Wﬂ-c or"""
5 /wrorw/cho ml&)
reert~o"Y)

lE't ’u‘lin‘) }—_— .., rlq\i f (ﬁmﬁ # o¥ ’Msm')

S A
A A)] 2 o A P L] P z
~2 o A
N L SR 2
In the context of this memory encoding, we establish a representation for the configuration of registers.

This representation, denoted as c, is calculated as the product of prime numbers, with each prime number
raised to the power of the value stored in the corresponding register.

The product spans over all prime numbers, and the allocation position is indicated by the factorization of
the prime numbers. In formal terms, this can be expressed as:

[T -[Ir

i=1

with P; representing the prime numbers and 7; representing the values stored inside registers.

Consider ¢, and j,, with the recursive definition given before:

1. pyk+1
cpi N - N
c3(%,t) = content of Ry aftert steps of computation of P(%)

:EP . rN K4l - |}\j|

(2.0 imtuckom o be exeayted o for £ steps c? PC2)
= =
{O i P(Z) toemimodes im © skps @ Dwae

Written by Gabriel R.

97 Computability simple (for real)

We define ¢, j, by primitive recursion as follows (first, the base cases):

k
&p(®,0) =]_1[1’ EERTATIEA

Jp(%,0) =1
The recursion cases follow. We define:
cp(X,t+1)
Jp(Z, t+1)
using a simplified notation:
cp(X,t) =c
Jp(E,t) = J
NOT ATYON
qf.(pif)”,c) ifl<j<l(P) & I, =Z(n)
Pyt C ifl<j<l(P) & I[;,=5(n
cp(Z,t+1) = qp:[pif]’ o) pidm ifl <j < IEP; i fj- = ;Enz_n)

¢ otherwise
P\ 1e),

e

c lﬂ‘-j& 0 — O”“L-Is: -j(th"‘)
La?,\ L

In words, to explain properly everything that was defined above for each case in the same order:

- Incase 1 the quotient of the number to be reset to zero is done so as to reset the exponent relative
to the register in the numeric representation of the memory.

- In case 2 the multiplication of the prime number associated with the register is done to increase
the exponent of the prime number associated with the register in the numeric representation of
memory by 1.

- The case otherwise occurs when the program terminates or the jump instruction points outside the
program, in either case the program memory does not change

We the define the transfer of said program:

j+1 itl<j<lUP) & I; =Z(n),S(n),T(m,n)
or J(m,n,t) with (€)m # (¢)n

Jp(Zt+1)=<u fl<i<lP) & [; = J(m,n,u)
& ()m=1(0)n & fl<u<I(P)
0 otherwise

Written by Gabriel R.

98

Computability simple (for real)

In case 1, if the instruction is not jump, or it is a jump but with condition false, the instructiont + 1
is the next one.
o If the jump has condition is true and the instruction to jump to is internal to the program,
the next instruction is q.
o Otherwise if the program is terminated or the jump instruction is finished outside the
program 0 is returned.
The two functions are then defined using a "per case" definition and combining previously defined
functions with basic operations (recursive primitives), so these two functions are in PR and
therefore are also in R.

Hence j, ¢, € R and thus f(X) = (¢, (55, pt. jip (X, t))1 and therefore f € R.

In this context, relying solely on unbounded minimalization and composition, we can confidently assert that
the instruction pointer and program counter consistently yield valid outcomes. This assurance guarantees
that the instruction pointer performs computations within defined boundaries, with a particular emphasis
on the input for the first component (indicated by the subscript '1'), which is the register computation
guaranteeing the successor instruction will be defined.

This way, the program will compute its code effectively, without going out of bounds.

Written by Gabriel R.

99 Computability simple (for real)

9 PRIMITIVE RECURSIVE FUNCTIONS

We define the class of primitive recursive functions PR as the smallest class of functions which:

- Includes the basic functions
o Zero function
o Successor function
o Projections
- Isclosed under
o Composition
o Primitive recursion
o Minimalisatien (not defined in all cases, because this is unbounded e.g. while loops)

Intuitively, PR corresponds to bounded iterations, e.g. for loops. This way, we use a model to formalize
structured program replacing jumps with for/while loops. This model can correspond to a class called
Ctor,white, Which coincides with C = R.

We also know that PR & R, because Cror coincides with PR only with the for construct, this way we can
include all cases if well-defined.

- PR does not contain all computable functions, because PR has always total functions inside,
obtained by composition and primitive recursion. We study this class to understand the expressive
power of for/while loops.

One can still suppose PR includes all total recursive functions, defining a set containing them all as Tot, so
PR = R N Tot (as was theorized by Hilbert). This is false (hence PR € R N Tot).

- The key reason for this is the while construct. Primitive recursive functions, as defined within the
class PR, are inherently based on bounded iterations, such as for loops
- Total functions always terminate, and while loops may not

Essentially, the while construct allows for both total/ending computations but also unbounded, even
when considering total functions, potentially opening to unbounded results. As a consequence:

- only minimalization can be used to define non-total functions
- the PR class is not able to define non-total functions and cannot define all total functions

9.1 THE ACKERMANN FUNCTION

A function which witnesses the inclusion PR € R N Tot is the Ackermann function (the Greek letter below
is “Psi” and an animation of the function here and my general summary on its point here)

The function is an example of a total recursive function that is not primitive recursive (so, not primitive
recursive but computable, only not using the set of primitive recursive operations, as it has more cases). Its
definition involves unbounded recursion, which is not guaranteed to terminate.

()‘ 1 '0))@c)‘(‘fy

. 9 .
The Ackermann’s function is ¢ : N — N defined as

¥(0,y) =y +1 """1.6“‘%,,‘ (% 9)
P(r +1,0) = ¢(x,1) A Y >)
Plr+Ly+1)=1 \a-“ Lex C”u

Written by Gabriel R.

http://gfredericks.com/sandbox/arith/ackermann

100

Computability simple (for real)

The function takes as argument two non-negative integers, so x and y. Specifically:

Base case: the result is simply one more than the second argument y, which resembles the
behavior of a successor function.

In another base case where the second argument y is 0, the function behaves as follows:
PY(x,0) = Y(x —1,1). Here, when y is 0, the function recursively calls itself with x decreased by
1 and y set to 1. So, first argument simply diminishes.

In the most complex case, when both x and y are greater than 0, the Ackermann function proceeds
with deep nested recursion. It evaluates as Y¥(x,y) = Y(x — 1,¢¥(p,y — 1)). This case involves
two levels of recursion. Initially, it calculates Y (x,y — 1), effectively decreasing the second
argument y. Then, it calculates Y (x — 1,y (x,y — 1)), resulting in a nested recursive structure.
o So, in this case, we have a case in which the first argument gets smaller, another when the
second argument gets smaller

In other terms, the arguments of the function diminish in a lexicographical order on N? (two-dimensional,
because it depends on both x and y) inside sequences of numbers: (N2, <;.,.), (x, V) <jox (x',y") if x <

x'or (x =x") and (y < y'). We can show (N?, <., does not allow for infinite descending sequences.

This means that given two pairs (x, y) and (x',y"), the lexicographical order <;,, dictates that (x,y) is
considered less than or equal to (x’,y") if either x is less than x’ or, in the case of equal x values, y is less

than or equal to y'.

(1000,1000000) <., (1001,0)
(1000,1000000) >,,, (1001,0)

Here, when you compare (1000,1000000) and (1001, 0):

The lexicographical order first compares the first elements: 1000 and 1001. Here, 1000 is less than
1001, so (1000,1000000) <;., (1001, 0) because the first element x in the first pair is smaller
than the first element x in the second pair.

If the first elements were equal, the lexicographical order would then compare the second
elements y. In this case, the second elements are 1000000 and 0. Because the first elements
x have already determined the order (1000 < 1001), there's no need to further compare the
second elements y. In lexicographical order, if the first elements are different, the comparison
stops at that point.

Concretely: the function grows enormously, but the argument diminish according to an order.

An example:

fZ-7

0, z=>20

f(z)z{f(z—l), Z2<0

Simply, we say that this has a finite recursion 2> f(—1) - f(—=2) = f(-3) ...

In the example of f(z), when the input is initially negative (z < 0), the function repeatedly reduces the
value of z by 1. This process continues until z reaches a non-negative value.

Ackermann function has a logically sound recursion and to show so, we use need more notions.

Written by Gabriel R.

101 Computability simple (for real)

9.2 PARTIALLY ORDERED/WELL FOUNDED POSETS

Definition (partially ordered set)

We define then a partially ordered set (abbreviated as “poset”, elements defined in an increasing order) as:

(D, =) < reflexive x<x
< antisymmetric x<yandy<x=>x=y
< transitive x<yandy<z=>x<z

So basically, we analyze a binary relation in which elements are ordered (reflexive), there are no circular
relations between elements because elements are different (antisymmetric) and elements have a
predictable order (transitive).

In a partially ordered set, some pairs of elements may be related, while others may not be related at all.
Definition (Well-founded posets)
(D, <) iswell — founded if Vx € D ,x # 0, has a minimal element

In other words, within any non-empty subset, you can always find an element that is minimal with respect
to the given partial order (so, we have no infinite descending chains) — this is what happens in Ackermann.

- This means there's no other element in X that is strictly smaller than d in terms of the order
relation (<).

- If the computation is well-founded, there is always a step which leads to a smaller value and
eventually the program will terminate, given we will always find a minimal element.

2

d € X minimal s.t.if d' < dthend =d
(given the partial order, “we can’t mix different things together” aka “you can’t mix pears with apples”).
D = {(pear,n), (apple,n) | n € N}

(y) <@L yDif x=x)and (y <y')

,

(129 f Coppde P
e\ Captle, Y

(gen,0) (optle 0)
! R 4
. WL

Written by Gabriel R.

102 Computability simple (for real)

In this context, we’re dealing with a partially ordered set (poset) that consists of pairs of elements, where
each element is associated with a label (such as "pear" or "apple") and a natural number (n).

The partial order on this set is defined such that elements are ordered first by their labels and then, within
the same label, by their associated natural numbers. The key relationship here is "<," which denotes the
partial order on this set.

e Anelement (x,y) is considered less than or equal to (x',y") if and only if both the labels are the
same (x = x') and the natural number associated with the first element is less than or equal to
the natural number associated with the second element (y < y").

Here's the explanation for the example in the context of the partial order:
- Suppose you have two elements, (x,y) and (x,¥") in D. These elements represent items labeled

"pear" and "apple," along with natural numbers, respectively.

- The partial order specifies that you can't mix items of different labels, meaning you can't compare
"pears" with "apples" in this order. So, comparing (x,y) and (x', y") only makes sense when x
and x’ are the same (both "pear" or both "apple").

- Once you've established that the labels match (x = x'), you can compare the natural numbers (y
and y'). The element (x, y) is considered "minimal" if there is no other element (x', y") in D with
the same label (x = x') where y'is less than or equal to y.

We note also:

- Is Z well-founded? No (we can’t always find a minimal element)
- Is N well-founded? Yes (given it’s a well-ordered set, we can always find a minimal element)

Note: (D, <) is well-founded if and only if there is no infinite descending chain dy > d; > d, ... in D. This
way our computation descends a decreasing sequence of values, which is necessarily finite.

(In words: This fact can be useful when dealing with termination problems. If we can conclude that the set
of configurations is well-founded, we simply need to prove that inductively this is all defined. This works
also here with Ackermann: given the computation is based on smaller values, at some point it will end)

Remember from before that (N? <,,,) is well-founded.
Let x € N?,x # 0:
Xo = min{x | 3y. (x,y) € X}
yo = min{y | (xo,¥) € X} = (x0,Y0) = min X

Essentially, what we just said simply means there is always a smallest element according to the
lexicographical order and there is always a well-defined order.

To explain the further concepts, we need to properly define induction.
Given P(n),n € N, P(0) and assuming P(n) you can deduce P(n + 1)
U
P(n) holds Vn

(essentially, given a case, if it holds for a base case, it will hold for all natural numbers). Let’s give a simple
reasoning by induction: a binary tree formation.

Written by Gabriel R.

103 Computability simple (for real)

Statement: “A binary tree with height h has at most 2"*! — 1 nodes” m’l :“\‘l LM

- Basecase (n =0) » numberofnodes=1<2*"1-1=2-1=1 ‘& WML\M M‘q\

- Recursive case (n > n + 1) A\ Ma.%a\q_”
M4 “an'A andde
o Ad e
W\ V

9.3 COMPLETE/WELL-FOUNDED INDUCTION AND ACKERMANN PROOF

As shown here, normal induction reaches cases where it can’t conclude (basically, the height of a binary
tree can vary, because it would involve proving that if statement holds for trees of different height using
always the same k; this is not linear, and the proof would require bounding the height to a value and
inductively show the thing).

We then need the complete induction, in which this can be applied to any well-founded poset.
e

Specifically, to prove that P-G"Z) holds Vn € N, show\

‘ vn, assuming P(n") vn' < n then P(n) J

All of this is a well-founded induction. We define here (D, <) well-founded order, P(x) property over D, if
Vd € D, assuming Vd' < d, P(d"), we can conclude P(d) “holds everywhere”:

U
vd € D P(d)

All this tour leads to a conclusion: the Ackermann function is total and if a property holds for all numbers
before, then it will hold for all those after.

Formally:
1) ¥ is total

e V(x,y) € N2, ¥(x,y) | proceed by well-founded induction of (N2, <,,)

Written by Gabriel R.

104 Computability simple (for real)

Proof
Let (x,y) € N?, assume V(x',y") <iex (x,¥), ¥(x',y") |, we want to show ¥(x,y) {
We have three cases:

1) (x=0)->¥Yxy) =¥0,y)=y+11!
-\
2) x>0,y=0)->¥Y(x0)=¥Yx—-1),1)
x—1)< x,y) hence ¥(x — 1,1) | by inductive hypothesis
) <iex (x,¥) () L by yl— is Cytﬁ)
3) x>0,y>0)->¥Y(xy) =¥Yx—-1),¥Yxy—1) =¥(x—1,u) ! (byind. hyp.)
<iex (x,¥) = ¥(x,y — 1) I = u by inductive hypothesis

Essentially, we prove Ackermann is total given two non-negative numbers which are well-defined in their
order. We consider three cases based on the values of x and y:

- Case 1 (x = 0):Inthis case, if x is 0, we know that ¥ (x, y) is ¥ (0, y). This leads to a
straightforward result, which is y + 1. The function W(0, y) is guaranteed to terminate, so this case is
covered.

- Case2(x > 0andy = 0): When x is greater than 0 and y is 0, we have ¥(x,0) = ¥(x —1,1).
We know that ¥ (x — 1, 1) terminates because it's part of our induction hypothesis. This means
that ¥ (x, 0) also terminates.

- Case 3 (x > 0andy > 0): In the most complex case, where both x and y are greater than
0, ¥(x,y) involves a nested recursion. It's defined as ¥ (x — 1, ¥ (x,y — 1)). Our induction
hypothesis ensures that ¥ (x, y — 1) terminates (denoted as "u"). Since (x — 1, u) is smaller than
(x,y), and we've assumed that for all smaller pairs, ¥ terminates, we can conclude that ¥ (x, y)
also terminates.

If you want to discuss infinite things:
(szSlex)
(0,00 (0,1) (0,2) ... (1,0) (1,1) (1,2) (2,00 (21 (2,2) ...

v—‘r\J\-—f——\’\J_/-ﬂ*\—-J
N IN N

We are highlighting that, even though this set contains an infinite number of pairs, they are ordered in a
systematic and predictable way. As you move through this set, the values in each pair follow a pattern,
allowing us to compare and order them consistently.

Within this well-ordered set, the Ackermann function operates by moving through these pairs in a specific
manner. It doesn't "jump out" of this structured order.

- The function goes through a process of descending values within this well-ordered set
- This way, it can compute values within the natural numbers (N) without running into infinite or
unbounded operations.

Written by Gabriel R.

105 Computability simple (for real)

One could argue by using the Church-Turing thesis: the computation of W(x, y) is always reduced to the
computation of 1 on smaller input values until we reach a base case where the successor is used. The
above is unsatisfactory. Given it is always defined, it is total.

JWER=C

¥(1,1) =¥(0,%(1,0)) = ¥(0,2) =3
WWKﬁ
i\
(1,1,3) (0,2,3) (1,0,2) (0,1,2)

In words: we reach sets of values defined by recursion, in this case triples defined inside these sets.
Especially, we characterize:

(x,vy,z) € N3 - 7Z=¥(x,y)
— S contains all triples needed to compute ¥(x,y)
A set S € N3 is considered valid if, for all (x, y, z) € S, it satisfies two conditions:
1. zequals ¥(x,y), ensuring that the results in the set are consistent with the Ackermann function.

2. S contains all the triples needed to compute ¥ (x, y) for different values of x and y.

Formally, you just need to recall the function is defined (Ackermann system of equations definition), so S €
N3 is valid.

- (0,y,z2)eES—>z=y+1

- (x+10,2)eES—>(x,1,2) €S

- (x+1lLy+1,2)eS—>3Fu(x+1,y,u)eSand (x,u,z) €S

You can show:
V(x,y) EN?,z€ N - ¥(x,y) = z iff A valid set of triples S € N3 and S finites.t.(x,y,z) €S

(essentially, we have W(x,y) = z if f a valid finite set of triples is defined by complete induction, knowing
the set is preserved under union)

Then (in words: every triple can be encoded as a set of numbers and then as a number using primes)

Y(x,y) ="u(S,2).(S € N3 finite valid set of triples and (x,y,z))"

MG\D“‘#\WQUI

-YeR=C

(so, there exists the smallest finite number in which a valid set of triples minimizes correctly and gives
values recursively enumerable inside the resulting function — aka computable and quantifiable).

3)y ¢ PR

This part of the proof wants to show that W is not a primitive recursive function showing it grows faster
than every other function in PR. We combine nested primitive recursion to show Ackermann cannot
compute a finite number of nested primitive recursions.

Written by Gabriel R.

106 Computability simple (for real)

By using primitive recursion you can define the sum via the successor:

- x+y

x+@+D=@+y)+1 Mimaly a€ Tecrtyon)

. x4y 4‘”%

x*0=0

x+@+1)=((x=x*xy)+x

x0=1

xO*D = (x¥) x x \(

(so, essentially, basic arithmetic operations under primitive recursion is defined).

Consider x as first parameter:
Y (y) = P(x,y)
1 () = We(Pra 0 = D) = Wi (¥ (Pasa 0/ = 2))) = By s ¥ (0)
& kame» \Ux (’D
= w= WY (D)
Y% <1
Roughly: increasing x to x + 1 you need iterating ¥,, , y + 1 times — additional for loop
So, we need minimalization > ¥ € PR

(So, number of nested recursions is infinite and with primitive recursion we can’t quantify it prior; it’s
necessary to use the unbounded minimalisation, hence Ackermann is not primitive recursive)

Yeah, that was quite a ride, wasn’t it?

- Short explanation in words:

Intuitively, if x grows so does the level of nesting in the functions, which is equivalent to say that we need
more nested for loops. Since x can grow to infinity and for loops cannot be nested to infinity, a while loop is
needed. The for-loops nesting level won’t be able to catch up in a bounded way, so is not in PR.

- Longer explanation in words:

The discussion transitions to ¥, 1 (y), representing the Ackermann function for the next value of x. The
key insight here is that when you increase x by 1, you need to iterate ¥, (y) a certain number of times,
specifically y + 1 times. This represents additional loops or iterations in the computation.

The key insight is that you need a form of "minimalization" to determine how many additional iterations
are required when x increases by 1, but primitive recursive functions lack this capacity.

Written by Gabriel R.

107 Computability simple (for real)

For the final part, to account for this additional looping when increasing x, a process of minimalization is
introduced. This is because the Ackermann function doesn't fit neatly into the framework of primitive
recursion, as it requires also unbounded iterations, giving we need additional loop and iteration “to try to
reach a finite value”.

To properly move ahead with the function, you need to iterate the function multiple times, which goes
beyond what primitive recursion can handle. This leads to the conclusion that ¥ is not a primitive recursive
function, as it necessitates unbounded iteration and minimalization, making it a more powerful and
complex function.

- Atthe end of the day:

To be able to define all total functions you also need minimalization: otherwise, some functions might be
too powerful to express traditionally, like happens here.

Mathematically, we have:
Y eERNTot,¥Y & PR
and so:

PRESRNTot

Written by Gabriel R.

108 Computability simple (for real)

10 ENUMERATING URM PROGRAMS

0 PG
0, [——
E——

<

We are postulating the existence of a universal program that can take programs (P) represented as
numerical input (vector of inputs, so the usual X) and produce computations as output by processing the
given instructions (so P(¥)). To do that, we will establish the set of all programs is effectively denumerable,
having an effective coding of programs by the set of all natural numbers — aka compiler.

The goal is proving the enumeration of URM programs, so we give the following definition:
Definition (Countable set)

A set X is countable if |X| < |N]| i.e. there is f: N — X surjective (enumeration/denumerable), in which we
can list all elements one after the other with no repetition (so, we can list all URM programs without
repetition and without missing any) as:

HONIONIOR

X

bijective (complete mapping).

- If fis also injective, this is called bijective enumeration.

- We require this enumeration to be effective (so finite and computable) and this happens if f itself
is effective; this doesn’t talk about computability, instead we use already computable components
arguing about effectiveness

Lemma
There are bijective enumerations of effective functions (bijective support functions)

1) m:N? >N
2) N3N
3) T:Ups1 NF >N

Proof

On each set, we give a function which effectively shows the lemma:
1) m

We saw already that the following function:

m:N? - N
n(x,y) =2*Qy+1)—-1

is computable and we give its inverse:
7 1N - N2

n7t () = (my(n), T, ()

Written by Gabriel R.

109 Computability simple (for real)

So, given:

my, ' N > N
m(n) =M+ 1)
(for your reference, remember the 1 in subscript represents the first component of output)
n+1

2";(") —1=qt(2,qt@™,n+1)) -1

m,(n) =

2)v
Consider the function:
v:N3 > N
v(x,y,2) = n(x,m(y, 2))
is computable and its inverse is built upon projections:
v~ N -» N3
v71(n) = (v, (), v2 (), v5(n))
vi(n) = m;(n)
v(n) =my (”2 (n))
v3(n) = m,(m2(n))

having v;, v,, V3 computable (so, projections leverage multiple successor functions and allow us to map
natural numbers and get back triples effectively).

2) 1 (this letter is “tau”)

T: UNk

k=1

k
(X, o Xp) = nPix" -1
i=1

The encoding of tuple is not injective, given it probably won’t always map distinct elements (because we
calculate a product and if there are same values, we might have multiple tuples mapping to the same value
and violate injectiveness); the presence of subtraction further elevates the chance of having a collision.

The idea is incrementing the last component in the following way:
(1,0) > pi,p?—1=2'x3-1=1

(1,0,0) > pf #pS *pd =21 +3° 50— 1 = 1

k-1
(X1, o Xp) = (1_[Pixi) * ka"+1 =2
i=1

The function 7 is designed to increment the last component of the tuple by 1 and then compute the
product of the other components.

Written by Gabriel R.

110 Computability simple (for real)

We treat in a special way the last component (which is ka"+1) to determine the injectivity of the sum, given
it will map finite components determined by the following inverse function:

771:N - UN"

k=1

t™i(n) =a(n 1) a®n,2) .. (nl(n))

I(m) N> N

The overall idea is to take a natural number n and determine how many components should be in the tuple
(length of decoding), as determined by the function [(n). Once you know the length, you can use the
function a(n, i) to compute each component of the tuple.

Now, given we can determine the length of the program, we want to determine the value of the single
component (the last one [(n) is computable, it’s asked to show it by exercise; this is shown by inserting
correctly values via injection):

k-1
n=rt(.)=([R R+ =2
i=1

k=1(n)
l(n) = largest k such that p;, divides n + 2
(computable, "show it as exercise")
Solution (made by me, best to take with a grain of salt)
To show this is computable, we want to test some k values which will respect the property of [(n).
So, givenn = 2 and so [(n) = 2, we must find k:

- Start with k = 1. We check if P; (first prime number that we have at our disposal across all the
possible ones, so 2) divides 2 + 2, which is 4 (givenn + 2 = 2 + 2 = 4). In this case, it happens.

- Continue with k = 2. Check if P, (second prime number, so 3) divides (2 + 2). This does not
happen.

We conclude the length of tupleis k = 1.
(Moving on)
We see another definition of [(n) in notes, which uses bounded minimalization to exist.

In words, we can summarize its reasoning like this: observe there is always a smaller h which is defined as
bound for x for which the division of the prime number for (x + 2) will either give 1 or 0 (hence, the usual
negated sign function).

So, given minimalisation is used, we can formalize it like:
x—uth <x)

Usually, this is accompanied by usage inside the division function, so:

59(dv(py—n, (x + 2)))

Written by Gabriel R.

111 Computability simple (for real)

Finally:
l(n) = max{k : div(pg, (x + 2)) =1} =z — pulh < z) . 5g(div(py—n, (r + 2)))

Let’s give another function:

N (n+2),;, i<l(n)
a(n i) = {(n +2),—1, i=I(n)

I:N - N, a:N? - N computable

We can now encode programs or instructions using a mapping that allows us to access program elements
by computing the successor function i times, where i is determined by the length of the program. This
approach enables effective encoding and decoding of programs using instructions, lists, or other data
structures which compute elements continuously.

A more general but alternative encoding is this one (which works with composition on two elements):
o T(x1,...,ap) = w([1, p2, k)
e [(n)=m(n)
o a(n,i) = (mi(n));
Observation: Let P the set of all URM programs. There is an “effective” enumeration which is bijective:
y:P = N ("to every program assign a number")

(the Greek letter is “gamma”). The previous one also uses f5: Istrygry = N, which “to every instruction
assigns a number”. Two key observations:

- Since programs are a sequence of instructions, y is nothing more than the product of the power
elevation of the encoding according to the instructions present.

- Since computable programs are enumerable and since computable functions are those that have a
program that computes it, then such functions are also enumerable

Let F = {Z(n),S(n), T(m,n),J(m,n,t):m,n,t = 1}, we consider B: F — N. We then put instructions in
numbers in the following way:
20 o) T S g O T 5 D (B N
¥ t t { ¢ + t |
S S R P 3 3 10 -
What we want here is achieving a bijective effective correspondence using enumerations of pairs and
triples of only computable functions sending. Multiplication by 4 is used to "make room" in the encoding so

as to continue to have a biunivocal function. Final sums also serve the same purpose.

- Z(n) instructions to multiples of 4

- S(n) instructions to numbers congruent 1 mod 4

- T(m,n) instructions to numbers congruent 2 mod 4
J(m,n, t) instructions to numbers congruent 3 mod 4

B(Z(n))=4+(n—1)
B(S(m)) =4+(n-1)+1
B(T(m,n)) =4xa(m—1,n—1)+2
B(Jimnt))=4*xv(m—-1,n—1t—1)+3

Written by Gabriel R.

112 Computability simple (for real)

We can then define the inverse B~1: N - F such thatx - r = rm(4,x) and q = qt(4, x).

(Z(g+1), ifr=0

_ _ S(g+ 1), ifr=1

B l(x)‘i T(n,(q) + Lmy(q) + 1), ifr=2
J(wi(q) +1,v,(q) + 1,v3(q) + 1), ifr=4

And this way both 8 and ™1 are effective. Now y: P > N can be defined as follows; if P URM program is
composed by a list of instructions, then via composition we can apply :

Iy

P’2

2y, =1(BU) - BUs)
Is
This way, putting the inverse y ~1, we will get the number back from the corresponding program:
inverse:y 1:N - P
Yy ') =P ={l ..I)p}and I, = p~*(a(n, i)

This ensures y is bijective because of composition of bijective functions,

From now on, we have a fixed enumeration of URM programs, thus it’s bijective given it comes from
program composition and P is denumerable (mapping one-to-one with positive integers of programs).

To define the code of P, given y the fixed enumeration of URM program, we define the Gédel number of P
as y(P) (also called code of P), we write P, to represent ¥ ~1(n) as the n*" program of such enumeration.
(formally, to a well-formed formula, it assigns a unique natural number).

Given this one, we can determine a fixed enumeration for programs, making us able to effectively compute
their codes and to find the nt" program in a sequence.

——~—\x
Now, let’s consider this program as an example, encoded by the f function: 7 2 O-1+0)-1
r—w
T(1,2) - B(T(L,2)) = 4*m(1-1,2 = 1) +2 = 4 *7(0,1) + 2 = 10
p= S2) > BSR)=4+2-1)+1=5

T(21) -»B(T(21) =4*m(2-1,1-1)+2=4x*n(1,00+2=6
So, given the results here, the program will get these numbers as a list as shown before:
y(P) = t(10,5,6)
=pi®*ps*ps*t -2
=210%35%57 -2
= 19439999 998

So, we want a machine taking in input this very big number and the only thing we care is, given the finite
nature and effective enumeration, the program able to execute it and retrieve it as output (hence the well-
formed reasoning behind).

This program computes because of ux.x + 1 (which means that using minimalisation, we’re able to
retrieve, from the last computation, the following numbers, hence composing a specific result. This can be
mapped back to the corresponding program, given it’s enumerated as “the one able to compute it”)

Written by Gabriel R.

113 Computability simple (for real)

The program P’ able to execute the successor function (so P': S(1)) computes the same function (and the
encoding follows):

y@) =7(B(SMW)) =11 -D+ D) =1(1) =pi*t-2=22-2=2

Basically, the numbers 19,439,999,998 and 2 represent two programs that calculate the same successor
function. So, given n = 100, what is P;o? = (y~1(100))? Let’s show it.

Remember the encoding for n was:

k-1
(1_[Plxl) " kak+1 =2
i=1

We can observe:
n+2=100+2=21%31x171
= pi * p3 ¥ p3 * pd * P2 * pd * p3

And so the program will contain 7 instructions:

1(100) = 7
71— S(1)
87N - S(1)
B7H0) = Z(1)
B7H0)— Z(1)
BH0) - Z(1)
B7H0) = Z(1)
B7H0) - Z(1)

All this program does (number 100) is calculating the constant 1.

Clearly, an enumeration of URM programs induces an enumeration of computable functions. So, fixed an
effective enumeration y: P = N, we define:

o c|>§lk): N* — N (as the function of k arguments (k-ary function) computed by the program
P, =y (n) can be seen as ¢r(lk) = P(f))
o W =dom(gf) ={x e N*| 0 (@) 1} c N
= (as the domain, representing the set of argument vectors for which ¢ converges)
o EX =cod (o ={o|zewP}eN

=>» as the codomain, representing the set of values that qbﬁ can produce when applied to

arguments in Wn(k)

When k = 1, we omit it ¢, for q,'),(ll).

(This statement means that, when dealing with unary functions (functions that take only one argument),
the subscript indicating the arity (in this case, k) is typically omitted. In other words, for functions of a
single argument, you don't need to explicitly specify k because it's understood that k is 1. So, for k = 1, the
function is commonly denoted as simply ¢,,)

Written by Gabriel R.

114 Computability simple (for real)

What this mess above means

- Afunction has a domain and a codomain or arguments which are defined over the k combinations

of those
- Giving the function is surjective, either there are no programs that calculate it or there are infinite
ones

Example
$100:N > N
$100(x) =0 Vx€EN
Wigo =N Ejg0 = {0}
The following is an enumeration of all unary functions:
: e "

4’ ‘t ‘b Cb “ba '“‘¢A9qa$359338

/\}Mwwmszatm)

In this list, there are definitely repetitions, which |nd|cate that certain unary computable functions result in
the same output, particularly when we compute their successor values.

L

How many repetitions? Infinitely many (which means there is an unending occurrence of functions that
yield the same results).

We're able to express, for every countable set, that the cardinality of every countable set is less than or
equal the cardinality of the set of natural number (holds for set with one element but also any finite value
of k):

lc®| < IN|
|c®| < IN| VK
So, the union of all countable set C is countable too.

n
U c®

K=1

This expresses the idea that the union of finite or countable sets remains countable, and the cardinality of
each set in the union is bounded by the cardinality of the natural numbers.

Written by Gabriel R.

115 Computability simple (for real)

10.1 EXERCISES

Exercise
Take R, the class of partial recursive functions, precisely the least rich class which:

- includes basic functions

- isclosed under:
o composition
o primitive recursion
o minimalisation

We then consider the originally defined by Gédel-Kleene R, least rich class which:

- includes basic functions
- isclosed under:
o composition
o primitive recursion
o minimalisation used only when result is total

The question for us is trying to compare the original definition of R with this one (which has more
constraints). In math terms, it can be defined as Ry, € R N Tot, (? ©).
0 _,-—sf"\-‘)

This is not obvious since one can obtain total functions from partial ones: 404‘53
f:N? >N

-1, ify<x

f,y)=40, ify=x
T, otherwise

h(x) = py.f(x,y) = x

So, we use minimalisation to find the smallest element here, which is x. Starting from the partial functions,
you use combinators from R and still obtain total functions.

Solution (made by me, to take with a grain of salt)

To show the subset property, we’re essentially trying to cover the case on which the partial recursive
functions can use minimalisation, which happens if their result is defined. So, we want to give an example
which is defined for “at least some elements” and get back something total.

The building blocks would be the usual ones, all the basic functions (e.g. zero, successor, projection, etc.)
and operations (primitive recursion, composition, etc.). One can say for instance this could be easy; one
founds a function which can’t be defined in all cases and then call it quits. Thing is, to properly prove this
we need a bound, which in partial recursive functions, we don’t always have. Minimalisation allows us to
use bounded operations and combine low-level operations like sg, —,sg, etc.

To do this, we can consider a case in which we nest a finite function, which is total, inside a partial function.
In this case, the minimalisation would formally ensure “we stay inside bounds as long as the situation is
total”. So, we define f(x) as follows:

1, if min(x,x — 1) is defined
X, otherwise

e ={

Written by Gabriel R.

116 Computability simple (for real)

Then, we define the said total function g(x) that utilizes f(x) to ensure totality and checks the result of

f(x):
0, iff(x)=0

(x), otherwise

9 =,

So, the minimalisation can be used like g(x) = uy. f (x), finding the smallest y for which f(x) is defined.
Given the class definition, this is defined for the values of the subset for f(x), when the function is total,
minimalisation is allowed and allows us to get defined results.

Therefore, we have shown that R includes functions that can be derived from partial functions in R (by
applying minimalization) and that become total functions when their results are defined.

This confirms that R, is indeed a subset of R N Tot, as it includes functions that are both in R and total, in
accordance with the additional constraint of R,.

Exercise

ey M
- /\(mo) ° ®

/

EXERCISE 8.9. Given a box with an arbitrary number of balls in it, each one with
a number in N, do the following:

e extract a ball;

o substitute the extracted ball with an arbitrary number of balls, each one
with a label lower than the extracted one.

Prove that this process always terminates.

To prove it, we must define a well-founded order and decreasing it to prove the conjecture.
Solution (made by me, to take with a grain of salt)

Essentially, we want a set in which the minimalisation is always defined and recalling the well-founded
poset definition. The well-founded order on N ensures that there are no infinite descending chains, since
the problem explicitly tells us we’re dealing with natural numbers.

The property of order in N is as follows:

- given two elements, call them a, b, we know that a < b if a is less than b, leaving trace for a
smaller natural number.

This respect the well-founded order definition, so, given a well-founded poset (P, <) every non-empty
element has a minimal elementd s.t.Vd' € X,d’ < d = d' = d. This says that, from starting from N, we
can take any subset of numbers and the well-foundedness will hold.

Written by Gabriel R.

117 Computability simple (for real)

Given natural numbers are well-ordered, the well-foundedness of the order is trivial, given there is always
the least element in the subset and minimalisation is always present. In other words, you can start with any
natural number, and by repeatedly applying the "successor" operation (adding 1), you can generate all the
natural numbers

Now, let's consider the process of extracting a ball and substituting it with balls labeled with lower
numbers. At each step of the process, we extract a ball with a certain number, and by our well-founded
order "<," we know that the number of balls labeled with lower numbers is finite.

Let's provide a concrete example to illustrate the termination of the process. We can consider a box with
an arbitrary number of balls labeled with natural numbers (N). The process is as follows:

1. Extracta ball.

2. Substitute the extracted ball with an arbitrary number of balls, each labeled with a number lower
than the one extracted.

Let's say we start with the following set of balls in the box (call it S € N):
{5,3,7,1,4}

Now, let's apply the process step by step:

1. Step 1: We extract the ball labeled with 7.

2. Step 2: We substitute the ball with lower-labeled balls: {5, 3, 1, 4}
Now, we repeat the process:

1. Step 1: We extract the ball labeled with 5.

2. Step 2: We substitute the ball with lower-labeled balls: {3, 1, 4}
Once again:

1. Step 1: We extract the ball labeled with 4.

2. Step 2: We substitute the ball with lower-labeled balls: {3, 1}

Now, let's consider the well-founded order defined earlier: a < b if a is less than b. In this case, the well-
founded order is based on the natural numbers, where each number is less than the next. Since the
extracted balls are labeled with natural numbers, and we always replace them with balls labeled with lower
numbers, the process is guaranteed to terminate.

In this example, the process terminates when we have no more balls to extract because we always
substitute them with balls labeled with lower natural numbers. This demonstrates that the process of
extracting and substituting balls will always come to an end, regardless of the initial configuration of the
box.

Written by Gabriel R.

118 Computability simple (for real)

11 CANTOR DIAGONALIZATION TECHNIQUE

Roughly speaking, the diagonalization technique allows, starting from one object, to build an object of the
same nature that differs from all values inside the collection, because the object itself is meant to be
different from all the set values.

Why do we care then?

- Because it is a powerful argument to show functions are not computable, building them in a way
and then using a partial function, the enumeration of such differs from all inputs and is not
computable (source of this last one, which is pretty clear here).

The key is that it's different by construction, which means that you're choosing the digits of the different
number, say d, specifically so that it will be different from every other item in the list (more here in case).
This technique was created by Cantor to show that there are different levels of infinity and not all infinity
levels are equal.

The idea behind is, given a countable set of objects, x; € I, we can build another object in the same nature
of x s.t.x # x;. The idea has the following structure:

Xo X1 Xp X3 ... X; < positionkof x;
aim:build x s.t.x # x; x differs from x; at position i

Cantor introduced the notion of cardinality, which is a measure of the size or "number" of elements in a
set. He famously showed that not all infinite sets are of the same size. Here, we discuss Cantor's work on
demonstrating different degrees of infinity, using the example of finite sets and power sets (sets of all
subsets) as a basis for the argument.

For finite sets, the cardinality is clear for each case, as you can see here. This also holds for infinite sets, so
this gives the idea there exist more infinite sets and more different orders of infinite.

Vx set, | X| < |2%|, 2 ={ylycx}
if x is finite x = {0,1},2* = {0,{0},{1},{1,2}}
x| =2 < |2%| = 2P =22 =4
Example: [N| < [2V]

Proof Assume |N| > |2V], i.e. |2V| countable (so, the thesis is false — we assume the power set to be
countable). This means that there exists an enumeration of 2V (N — 2N), which is surjective.

We take the diagonal here, which is seen as a set. This is taken and then changed systematically; this will be
different from all the sets listed above. |

A No
7 Y65 NP

Written by Gabriel%. .

L

https://disi.unitn.it/~zunino/teaching/computability/2008/computability.pdf
https://math.stackexchange.com/questions/1541316/understanding-cantors-diagonal-argument

119 Computability simple (for real)

We can define a diagonal D such that the i-th element differs from X; on i, which means that we can
always map an element in the diagonal such that “it will always be inside a set”.

D={ili¢X;}SN

=>3Jk eNs.t.D =xy

Problem: k € D?

- Yes:k € D=k ¢ X, = D - contradiction
- No:k & D = k € X;, =D > contradiction

= 2N is not countable, |N| < |2N| - the proof can’t be done without contradictions.
In words, the diagonalization holds some logical implications (coming from a great answer here):

- It basically states “There exist some infinite sets that cannot be put into one-to-one
correspondence with the set of natural numbers”

- There exist some infinite sets for which one of the following must be true: either such a set has no
well-ordering, or it is larger than the set of natural numbers

- No matter what language or formal system one uses to describe mathematical objects, there exists
some encoding that maps every different statement in that language or system to a unique natural
number.

- Thus, the set of all possible unique descriptions of things is equal in size to the set of natural
numbers. This implies that the set of all of the different mathematical things that could possibly
exist is equal in size to the natural numbers

- Under other considerations, the diagonal argument implies that certain sets, those that are
referred to as “uncountably infinite”, have no well-ordering. They are uncountable not because
they are too large to be counted, but rather because there does not exist any way for them to be
arranged in order to be counted.

In a nutshell: this shows there exists infinite sets that are uncountable (like real numbers set).

11.1 EXAMPLES

Exercise:
F={f|f:N>N}
|F| > IN| (which means ||N| - |N|| > |NJ)
There are two approaches to consider:
1)
F,={f € F|f:N - Ntotal} € F,img(F) < {0,1}

To be more formal, we need bijection, so |F,| = |2N| and for bijection F, —» 2N, f » {n| f(n) = 1}

ok~ Al

¢, At 1F
LF‘W
230

Written by Gabriel R.

https://www.quora.com/Is-there-ambiguity-in-Cantors-diagonalization-proof

120 Computability simple (for real)

In words:
1. Define a subset of F, denoted as F,, which consists of functions in F that are "total" (defined for all

natural numbers) and whose image (range) is a subset of {0, 1}.

2. The goal is to establish a bijection between F, and the power set of N, denoted as 2.

3. To define this bijection, for each function f in F,, you can associate it with a set of natural numbers
where the set contains all n such that f(n) = 1. This association creates a function that maps
functions in F, to subsets of natural numbers, or in other words, F, — 2V,

It's important to note that the identity function is needed as a component of this bijection in order to have
actually enumerable elements; in any case, the function itself is uncountable.

(2% possibility) |F| > |N]

Consider an enumeration of elements in F:

Here the diagonalization tries to enumerate every single function over the i values, which are not finitely
countable hence numerable, since we have more numbers than the natural set like the previous approach.
We have f # f,, Vnsince f(n) # f,(n) by construction.

Hence, there is no enumeration of all functions in F = |F| > |N| (since you cannot establish a one-to-one
correspondence between F and the natural number).

Observation: There is a total non-computable function f: N — N:

(a1 () b (nE W)
O 0, ¢u(m) T (n& Wy

Written by Gabriel R.

121 Computability simple (for real)

We can notice two things:

- f is total (defined for all natural numbers, thanks to diagonalization)
- fisnot computable, f # ¢, Yn € N (letter here is “phi”) — differs from all functions in the
diagonal

Consequently, the enumeration does not contain all the functions of F, hence F not enumerable (bottom
line: if you have infinite functions, it doesn't mean you have all of them) — so, if you take whatever
enumeration of computable functions, you have a function always different from all other computable
function.

This means it “exists” but cannot compute all inputs. Infact, Vn, f (n) # ¢, (n):

- ¢n(m) Lthen f(n) = ¢p(n) +1 # ¢p(n)
- ¢n(n) Tthen f(n) = 0 # ¢p(n)

So, the use of diagonalization actually makes us establish a total function, but actually gives an input which
makes the enumeration incomplete; in other words, it works based on the idea of creating a new element
or object that is systematically distinct from all the elements in the list, thus showing that the list is
incomplete. Given we can’t count them, there exists an infinite list of non-computable functions.

f is total since it is always defined. With the fact that the function f(n) = ¢,,(n) + 1 if n € W, it will be by
definition different from all computable functions, so it will be not computable.

Exercise

Let F: N — N be any function, m € N. Show that there is a non-computable function g:N - N s. ¢.

gn) =fn),vn<m

The idea here is using a “translated diagonal”, which is used to construct a non-computable function
g: N — N based on a given function f: N = N and a natural number m. This technique is often employed
to show the existence of non-computable functions that are distinct from a given computable function f up

to a certain point (n < m).
fﬂ ‘.? ‘ﬁ 9 e by
N (R
\

1

m -1
LR |
M - - ;

[

[

wwxL e

fn), n<m
Gn—m(m) +1, n=mand ¢p,_,,(n) 1

g(n) = 0,1 > m and tp_p(n) 1

g is not computable since ¢,(n + m) # g(n+m),sovn ¢, # g

Written by Gabriel R.

122 Computability simple (for real)

Hilbert's Hotel is a famous thought experiment in the field of mathematics, particularly in set theory,
proposed by the German mathematician David Hilbert.

Here's a description of it: imagine a hotel with an infinite number of rooms, numbered 1, 2, 3, and so on,
extending to infinity. This hotel is fully occupied, with every room containing a guest.

Now, let's consider several paradoxical situations:

- New Guests Arriving: Suppose a new guest arrives at the hotel and wants a room. In a typical finite
hotel, this would be a problem because all the rooms are occupied. However, in Hilbert's Hotel,
accommodating the new guest is not an issue.

e Solution: The manager can simply ask every current guest to move to the room with a
number one greater than their current room. So, the guest in room 1 moves to room 2, the
guest in room 2 moves to room 3, and so on. This frees up room 1 for the new guest.

e First drawing below shows this one.

- Infinite New Guests: Now, imagine an infinite bus filled with an infinite number of new guests
arriving at the hotel. Each guest needs a room.

e Solution: The manager can accommodate all the new guests. He asks the current guest in
room 1 to move to room 2, the guest in room 2 to move to room 4, the guest in room 3 to
move to room 6, and so on. In this way, all the odd-numbered rooms are now vacant, and
the new guests can be placed in them.

- Adding More Infinity: If an additional infinite bus with infinitely many new guests arrives, you can
continue this pattern to free up additional rooms for new guests. For example, by doubling the
room numbers, all the rooms originally occupied by guests become vacant.

e Second drawing shows this one.

-
—
<

oo

Written by Gabriel R.

123 Computability simple (for real)

Alternative:

f(n), n<m
¢,(n) +1, if pp(n),m=>n
0,if pp(n) ,m=n 3_7}-
~

g is not computable: e \

gn) =

‘fp ?1 ?'n-1 ‘Q'm L?nr't

3 Yozl N
&4 O infiedy woy oAb,y
for all computable functionshan>m h=¢, *g

= g is different from all computable functions = g not computable

(Basically, since each function appears infinitely many times in the enumeration, skipping the firstm — 1
steps does not create any problem. The contradiction arises because we’ve shown that there exists a
computable function h such that g(n) is different from h for some n = m.

The key insight here is that, by construction, g is designed to be distinct from all computable functions for n
greater than or equal to m. This shows that g is non-computable, as there is no algorithm that can compute
g for all inputs without contradiction).

Exercise

Show that there is a function g: N — N total, not computable s.t. g(n) = 0,Vn even (returns 0 when the
input is even, because there is no surjection — mapping; you can see the point in the following drawing)

TR N
@ | |

/l —.

@

7
@ L~
©

9

-
—

Written by Gabriel R.

124 Computability simple (for real)

0, if nis even
$pn-1(n) +1, if nisodd and pn-1(n) |
2

— 2

9 0, ifnisoddand pn-1(n) T
2

— g is total

— g(n) = 0foralln even

— g not computable since g # ¢, foralln € N

g) = ¢p(2n+1)
g(1) = ¢o(1)
93) = ¢.(3)

1

I
v

Solution and idea

It’s total because it’s defined for all natural numbers, but not computable. Consider, for W, the set of
natural numbers for which the function does halt, the following reasoning: if there are even numbers, in
any case there will be natural numbers expressing them, but we find at least a value which we cannot
compute, given the function was designed to be different from all others from the start. This can be seen as:

- f2n+1eW,=f2n+1)=¢,2n+1)+1+#¢,2n+1)
- f2n+1eéW,=>fCn+1)=0#¢,2n+1) 7T

g differs for ¢, for all inputs regardless of whether the computation halts or not, so:
vnf(2n+1) # ¢,(2n+1)

Exercise

for fi, f2 - (fi)ien given, define f: N - N s.t.dom(f) # dom(f;) Vi €N

Solution and idea

To define a function f: N = N such that the domain of f is not equal to the domain of any of the functions
f; foralli € N, you can use the concept of disjoint domain selection. The idea is to construct a function that
selects values from a different set than the domains of all the f; functions.

For each natural number n € N, define f(n) as follows:

1. Ifniseven, let f(n) = 2n. This ensures that f takes even numbers and maps them to even
numbers.

2. Ifnisodd, let f(n) = 2n + 1. This ensures that f takes odd numbers and maps them to odd
numbers.

The key idea here is to make f map even numbers to even numbers and odd numbers to odd numbers.

As a result, the domain of f is the set of all natural Idea:

numbers (N), but the domain of each f; is either the set of
even natural numbers or the set of odd natural numbers, In this way
depending on the value of i. Vn n e dom(g) < n ¢ dom(f,)

(n) = 0 if n¢ dom(f,)
g = T ifnedom(fy,)

Similar to before, g differs for f, for all inputs regardless of whether the

Written by Gabriel R computation halts or not.

125 Computability simple (for real)

12 PARAMETRISATION/SMN-THEOREM

Here | want to give a careful intuition on what the theorem is all about. In computability theory, we often
want to express a function that takes a function as an argument.

The smn-theorem (also called “s-m-n-theorem” on the book, I'll refer to the first notation) provides a way
to represent such functions in a normalized form. It essentially provides a method for encoding and
manipulating functions, which is particularly important in understanding the computability of functions.

- This s also called parametrisation theorem/translation lemma because it shows an index e for a
computable function can be found effectively from a parameter
o some links useful to understand: here, here and here).
- The name of it comes from the three arguments, which infact are S,m,n

Let F: N — N computable, so there exists e € N s.t.f = ¢§2) (Pe =y (e))

fy) = ¢ (x,y)
(with P, the program which computes F and y ! the inverse function to find e).
Let x € N be fixed, we obtain a function f a single argument:
fri: N> N

£0) = fxy) = 6P (xy)

Given x is fixed (constant), for every value of x, you get a new function with one argument, which we'll call
fy- It's like plugging in x and leaving y as a variable, obtaining an index effectively from the unary function.
The following are examples on this:

e.g.-fx,y) =y*

fo) =y"=1

A =y'=1
L) =y?

Since for all fixed x € N, f, is computable thereisd € N s.t. f, = g M on Q)é o f$(€ »)
{

Now, the key point here is that for every fixed x, the function f, is computable. In other words, you can
compute f, using some program represented by a natural number d.

Hence there is a function s: N? —» N, s(e,x) = d

e The smn-theorem introduces a function s that takes two natural numbers, e and x, as inputs and
returns another natural number, d. This function maps pairs of natural numbers to another natural
number d which is itself computable.

e Insimpler terms, there's a way to determine, using some program or procedure, which program
computes the function f, for any given x.

Written by Gabriel R.

https://en.wikipedia.org/wiki/Smn_theorem
https://cs.stackexchange.com/questions/80837/is-smn-theorem-the-same-concept-as-currying
https://math.stackexchange.com/questions/4340129/finding-the-computable-function-in-s-m-n-theorem

126 Computability simple (for real)

The smn-theorem additionally says that s: N> — N is computable.

defP,(x,y) (defP.(%%)

X,
fay) = - * =
y y
return,,,, return,,,,

Idea: (‘)'1 (LZ

Given e € N, we structure the program here on the right: m a s QJ c v T

for each x € N fixed, 21

we want a program P’ as shown here: lﬂ:

What is P’ doing? ‘?&‘n M)

move y to R,
P’ ={write x on R, (set as constant during execution of P’)
execute P, (P’ runs the program that corresponds to the index e)

To get:
s(e,x) =y(P")

Essentially, the computation of s(e, x) involves:

- Get the program P, = y~1(e) that computes ¢e(2)(x, y)

o Means “find the program for which we can map back the original natural numbers”
- Get the program that computes f, = Ay. f(x,y) with fixed x from P,

o Means the function will be bounded over a fixed parameter effectively

Intuitively, we get the program which will map back our couple of inputs and from that we can build a new
program able to advance the computation. Even fixing an argument we take, from a transforming function
over it, an effective program.

q,')éx) (x,y) computed by P, = y~1(e)

For any fixed x, one obtains a function of y only. The following are all computable and the program which
computes them all is obtained algorithmically.

x=0 yr¢P0,y)
x=1 y»¢P1y)

Written by Gabriel R.

127 Computability simple (for real)

The program which computes the functions above for each fixed x can be obtained algorithmically starting
from P,, starting with two arguments and hardcoding the indices, we will get the output effectively.

The name of theorem comes from working with function of form f(¥,y): N™*" — N starting from a total
function called S, as seen before (hence, smn).

Fe O,

8 ~—D /Nk e,

‘
More generally: f: NQ%" - N

¢?W@@=§&po

12.1 SMN-THEOREM

Theorem (smn-theorem) (according to Kleene)

Givenm,n > 1 there is a total computable function s, ,,: N™*+1 - N such that VX € N™,Vy € N*,Ve € N
FVED) = b D)

The smn-theorem states that given a function g(x, y) which is computable, there exists a total and
computable function s such that ¢, (¥) = g(x,y), basically "fixing" the first argument of g — usually, we

fix x in favor of y. It's like partially applying an argument to a function. This is generalized over m, n tuples
for x,y.

Basically, we have that the program over two indices m, n is the same as the transformed function over x
inputs. Fixing an index, we obtain a program with the same features.

Proof

Intuitively, givene € N, X € N

(m+n)
e

- We get the program P, = y~1(e) in standard form that computes ¢ , so starting from the first

drawing (this below), in which we compute the ¢e(m+n) over all inputs (¥, y) (so ¢)(§m+n)(5c’,)
_ " M1 ihidaal
/ st S O.-.-
e
Ve J

/‘- ‘O'MM\ = D
P (<)

Written by Gabriel R.

128 Computability simple (for real)

You want, for each ¥ € N™ fixed, a program P’ & depending on e, ¥ (mapping back its inputs effectively
and composing function parameterizing its values, this you can see below).

A .. m
[8’]
\
2
a —_—
Lo T
P’ has to N t?:"‘"’"“ st"é')

- Moveytom+1,..m+ n(so, move forward computation of m registers)
- Writexin 1...m (so, load the value in the free m registers)
- Execute P, (so, execute the computation)

The program P’ can be:

T(m,m+n) //movey,toRyin

T(L,m+1) //movey;toR,q

Z(1) // write x; to Ry
S(1)

Xa Lioen
S(1)
Z(m) // write x,, to R,
S(m)

S(m)

Concatenation will update all the jump instructions, hence moving and writing values for all function
parameterized inside, mapping back effectively with P, = y~1(e). Once the program P has been built, we
have S(e,x) = y(P"). Given each function is effective, existence, totality and computability of s are
informally proven.

In the context of the smn-theorem, ¢k is the et" partial computable function of k variables. The theorem
establishes that there exists a total computable function, denoted as S(m,n)» which can effectively

"translate" or encode the computation of (;bémm) (x,) into the computation of qb;‘(ex) .

In summary, also given the book example (p. 90), we can establish given the effectiveness of y and y 71,
that sJ;, is effectively computable, given the bijective mapping and computability of both.

Written by Gabriel R.

129 Computability simple (for real)

The formal proof of computability is long and involves the combination of many parametrized functions as
auxiliary to construct the smn function (which is primitive recursive for all indices). Consider each for cases:

1) sequential composition of programs
: , o Fe,
Given two program codes (e, e;),we want the sequential encoding like — y(P)
€2

Consider the update function:
upd:N? > N

where upd(e, h) = (code of the program obtained from P, = y~1(e) by updating all jump instructions
J(m,n, t) to J(m,n,t + h)). Basically, this updates a program's jump instructions based on e and h.

We define an auxiliary function working on each single instruction encoded with 3:
upd~:N? > N
where upd~(i,h) = (code of the instruction obtained from B~1(i), updating the target if it is a jump)
Note: B(](m, n, t)) =v(m—1,n—1,t —1) * 4 + 3 (calculates an encoded value based on parameters m, n, t)
Giveni,h € N,q = qt(4,i),r = rm(4,1i), we formally define like:

i, if rm(4,i) # 3
v(v1(q), v,(q), v3(q) + h) x4+ 3, if rm(4,0) = 3,q = qt(4,1)

=i* sg(frm(4, 1) — 3D + (w(1(9), v2(q), v3(q) + h) * 4 + 3) x5g(|rm(4,1) — 3|)

upd=(i, h) = {

Overall, this function updates the encoded instruction i based on whether it's a jump instruction or not,
adjusting the jump target when required, calculating each time a new value thanks to the present triplet
(which consider the two sign functions in order to “encode the two different characteristic functions,
covering all cases in which will be either 1 or 0, deciding if it’s useful to jump or not”).

Now:

upd(e,h) = t(upd~(ale,1),h)) upd~(a(e,2),h) upd~(a(e l(e)) h)
1(e)—1
= (1_[pypdN(a(e,i),h)) % pupdN(a(e,l(e)),h)+1)
i i
i=1
This, in words, represents a formal way to express the update of a program by modifying its jump
instructions, considering the effect of the other two instructions when applied recursively.

Basically, we are doing a kind of pattern matching via parametrization and making it computable thanks to
composition and primitive recursion. The goal is to make the entire program computable by ensuring that

jump targets are correctly adjusted, reflecting the desired program behavior, also doing some “fine-tuning’
(the minus 2).

4

We encode the input sequence of values like the following, where each instruction in adjusted to the
current one, the next one and the fine-tuning that we quoted above:

n-1

Ty o Ym) = HPL-” « Pyt — 2
i=1

Written by Gabriel R.

130 Computability simple (for real)

Consider [(e) = length of the encoded sequence. For 1 < i < I(e), we get back the corresponding
component, which is a(e, i) = i*" component.

Now we will use the concatenation of sequences as a function.
c:N?2 5> N
The concatenation of sequences follows here, considering the mapping of each encoding with
c(ey,e;) =1(aleq, 1)a(el, l(el)) aley, 1) ... a(ez,l(ez))

The concatenation of programs can be defined as:

seq:N? - N
B,
seq(ey, ;) =y p)= c(ey, upd(a,l(ey))
2

Essentially, in words, we concatenate the first one with the update over the length of the second one.

Then we use the transfer function: ‘
T(n,m +n)
2) transf:N? - N \)
T(m) T(1,m+1)
nn+m
transf(m,n) = y(T(l,m +1)) * z(1)
s(1)
Technically, this one simply shift registers n positions forward. ... // x1 times
s(1
Continuing, we will use the set function: 1)
3) set:N? > N
z(m)
73) s(m)
set(i,x) =y/| S = - - * // x,, times
S@) s(m)
P,
It allows you to set a specific value x into a particular register or g

location i and possibly perform some operations like incrementing the value.
Finally, this brings us to:
Smn(e,X) =
seq(transf(m,n),
seq(set(1,x;),

seq(set(m,xy,),e) ...)

All of this mess can refer to the following prefix function because it defines a sequence concatenating multiple sub-
sequences “prefixing” other ones, hence obtaining the final function.

This proves that the smn-function is computable and total (actually, we can observe it’s also primitive recursive)
since it is a composition of primitive recursive functions, themselves effective.

In other words: s, ,: N™*1 5 N, s, . (e, X¥) = seq(prefm (%), €) which isin PR (remember the class definition
given here).

Written by Gabriel R.

131 Computability simple (for real)

12.2 SIMPLIFIED SMN-THEOREM

Corollary (Simplified smn-theorem): Let f: N"*™ — N be a computable function.

Then there is a total computable function s: N™ —» N s.t.Vx € N™,y € N"
- > _ (Tl) —
f(xd’) - ¢5 f)(y)

Note for the reader: You need to know the normal definition. This one is used “concretely” inside exercises
(e.g. see recursiveness/reduction/second recursion theorem exercises to see how pattern-like it will be)

Proof

Since f is computable, thereise E Ns.t. f = ¢§m+n)

fEP) = @) = ¢ (o) v, 5

We conclude by setting S(¥) = S,,, (e, X) /j\‘ Q/M/WMM

In words: this is called simplified because you use a total computable function as index, simplifying the
whole setting of the argument and all of its specifications.

Example of usage of smn-theorem

i i : o K widh
Prove that there is a total computable function k: N - N rﬁ_& (Y wms h
such that Vn € N, Vx € N: _ 3 \
n
by (X)) = Vx| n
] def wot (571)
This means that ¢, is an enumeration of functions in def ot (=) —x 3
E —_ = v
= 3

form [\/}nj; so, given n, it returns the program N
. n ek U=
computing [Vx |

This is what right figure is saying.

Proof
The function f: N2 - N
fnx) = |[vx"|
= maxz. "z" < x"
=minz. "(z+ 1)" > x"
=uz<x. x+1—(C+ 1"

is computable (because it is a bounded minimalisation of a composition of known computable
functions; as seen here, we put it and bound it correctly).

U

by (corollary of) smn theorem there is k: N — N total computable s.t.

by @) = f(n,x) = [Vx]

Written by Gabriel R.

132 Computability simple (for real)

12.3 EXAMPLES

Example

There is a total computable function k: N — N s.t. Vn, ¢k is defined only on nt" powers (on y™ for y €
N), i.e.

Wiy = {x |3y s.t.x = y™}

We define
(4 if dys.t.x =y"
flnx) = {T, otherwise
=uy. "yt =x"
=py. ly" — x|
computable.

By the (corollary of the) smn-theorem, 3k: N — N total computable s.t.Vn,x € N:

brm)(x) = f(n,x)

T, otherwise

Gy () = f(n,x) = {\/;n' ifdys.t.x=y

Observe that the domain of W is the set of powers:

Wiy = {x|3y.x = yn}

In fact: % éCM'\)()

x € Wy iff Pxamy@) Liff Iy.x =y™

Exercise (homework)

Show that there is a total computable function s: N - N s.t. Wsk(x) ={(yy, Y | Z5 v = x}
Solution

The smn-theorem states:

THEOREM 11.2 (smn theorem). Given m,n = 1 there is a computable total function
Smn t NPT N
such that Yee N, ¥ e N™ e N"

(@) = oV @)

We define a function:

k
Fay) =42 Zyi”
i=1

T, otherwise

Written by Gabriel R.

133 Computability simple (for real)

We want essentially to bound the computationtom = k — 1 and n = 1 as we are dealing with k
projections. We’ll use the smn-theorem to find a function s, _1 ; (e, x) s.t.

ok =0

k
:MZ. "Zyi—x"
i=1
k
= pz. Zyi —x
i=1

By the (corollary of the) smn-theorem, 3k: N — N total computable s.t.vn,x € N

Psay(x) = f(n,x)

n K
Psemy(®) = f(n,x) = ;yi, if;yl'=x

T, otherwise

Written by Gabriel R.

134 Computability simple (for real)

13 UNIVERSAL FUNCTION

We now discuss how the theory developed up to now allows us to prove the computability of a universal
function, i.e., a function which, roughly speaking, embodies every computable function of a given arity
(which, for a specific value, makes capture all k-ary functions).

For instance, for arity 1, the universal function is ¥y : N2 — N

‘I;U(:Ev y) = Pe (y)

It captures all unary computable functions @1, 3, In fact, for all e e N

9(y) = Yule,y) = pely) > g=pe

so Uy represents all the computable functions of the form N — N.

More generally, we have the following defition.

Let W,:N? - N, ¥, (e,x) = ¢.(x) well-defined (where e is the index of the program, x is the input)

Is it computable?

-1
LI VI N (0““""” feo5 @
: oveyz >x

When e varies on the natural numbers

w,00,..) W,(1,..) ¥,(2..)

b0 P11 P2

The function ¥, is indeed computable because it merely acts as a "translator" or "emulator" for other
computable functions. It takes an index e for a computable program and an input x, and it calculates the
result of applying the program ¢, to x. Since ¢, is a computable function by definition, the computation
carried out by ¥, is also computable.

In the context of the example, it means it will be computable for any natural number. The key is that we
just introduce the smn-theorem in order to modify arguments of functions and make them computable
with introduction of additional parameters, hence computing the function output.

We take a metaphoric example here: a company called Turing s.p.a which is asked to produce a software
able to recognize these numbers below.

Written by Gabriel R.

135 Computability simple (for real)

Instead of programming, we take the universal machine, hardcoding the input instead of real input, giving
the desired output:

AL LS
£

= 12415

|.p000 .00

J

—_

x

\
0 AR
wé*f_7
m g A 099 .o
>

The problem is the index; there is no precise way of working them in writing the program (so, if you put
number x, you won’t necessarily get number y universally over all indices). We write for this reason a
general theorem working on any number of arguments.

13.1 DEFINITION

Theorem (Universal Program)

Let k > 1. Then the universal function W,: N¥*1 > N, ¥(e, ¥) = e(k)(f) is computable.

(consider e is the index of the program P,, which we’re given a description of what to run and the
arguments X; in words here, the universal function takes the parameterized program inside and over all its
values will be able to contain all programs and compute them effectively)

This here is important: it makes ¢, (x) computable, so the program is computable when we are able to
effectively describe a computation over itself on its index; a universal program only needs the ability to
decode any number e and hence mimic P,.

Proof
B =
A 2 ‘

- —
-2

=<1

givene, X é/ 8

Fixedk > 1

<

g0

Written by Gabriel R.

136 Computability simple (for real)

How can P, work

= determine P, = y"1(e) !g el ’ _ rZ) AM
A | o8
PR Gt
e
Unokid ooy |
Qbﬂﬁ &\>

The idea here is:

- Getting the program P, = y~1(e)
- Execute P, on input ¥
- If P,(x) !, the value Wy (e, X) is in R, otherwise the program correctly diverges

Since all operations are effective, that’s why the Church-Turing thesis holds, and the function is
computable. The above argument still gives the idea, but it’s not satisfactory on formal terms. Let’s try to
give here the idea. We need to encode the content of memory, where the configuration of registers is

¢ =1Ilis1 piri and from that we can obtain the value of each register as r; = (¢);

@ - 10w Jo)e) .
134 .
C-T % e = €

A

From the encoding, we can obtain the value of each register and we show how to simulate the execution
steps of a program using only computable functions.

Given c: N¥+2 - N:
- ¢i(e, X, t)= configuration of the memory after t steps of P,(X) (if P,(X) terminates in t steps or less = final configuration)
Given j,: N¥*¥2 - N:

index of instructions to be executed after t steps of P,(X)if P,(X)does not halt in t steps or fewer

T hlexn= { 0 if it does halt after t or fewer steps

Observe:
e P, (X) lthenitstopsinty, = ut.j,(e, X, t) steps hence qbék)(ic)) = (ck(e, X, ut.jx (e X, t)))1
e P, (X) Tthenut.j.(e %, t) T, hence (;bék)) 1= (ck (e, %, ut. ji (e, %, t)))1

We essentially mean we’re interested in the configuration obtained inside the first register.

Therefore, in all cases:
(e, %) = ¢80 @) = (i (o5t jp (e 7,0)))
1

(What we mean by that is the partial recursion gives as result the combination of every possible subinput,
effectively — note: usually, composition of computable functions uses this 1, but it’s often implied)

Written by Gabriel R.

137 Computability simple (for real)

If we show that ¢y, j;, are computable, we can conclude that ‘Pl(,k) is also computable.

Aim: show cy, j,, computable (this allows us to show that, via composition and parametrization, this will
prove the computability of ¢, j,, with a fixed program P). We build these functions out of the following
smaller components:

- Given i € N instruction code i.e. i = f(Instr):

B Zarg(i) =qt(4,i) +1 = ﬁ(Z(n)) =4*x(n—1)
- Sarg(i)zqt(4‘:i)+1 i=ﬁ(s(n))=4*(n—1)+1
Targ(i) =m(qt(4,0)) +1 i= ﬁ(T(m,n)) =4xa(n—1,n—-1)+2

C Targ() =mp() + 1 QM

jarglvjargzrjarg3

- Effect of executing some algebraic instruction on configuration ¢

zero(c,n) = qt (pr(f)",c) E :! n’), S‘/j Mm 7

succ(c,n) = c *p, C - p:’l , () Ly] P A
2

tvv—M a

transf(m,n) = zero(c,n) * pr(lc)n
A comddil 0,

- Effect on configuration ¢ of executing instruction with code i

zero(c, Zgrg (1)), if rm(4,i) =0

o succ(c, Sgrq (1)), if rm4,i)=1
change(c, i) = transf (c, targ, (i), tar;; @), if rm(4,i) =2 g M{“Jwﬂ!e,

c, if rm(4,i) =3

- Configuration of registers starting from configuration ¢ and executing instruction number t in
program P,

change(c,a(e,t), if1<t<l(e)

nextconf (e,c,t) = { I otherwise

- Number of the next instruction to be executed after executing i = f(instr) and this is in position
t in the program

A=
ni(e,it) = { t+1, if(rm(4,0) # 3) or(rm(4,1) = 3 and () jarg, i) # (©)jarg,)

Jargs (D), otherwise /Q

- Next instruction if we execute instruction in position t of P, in configuration ¢

;r\ll-rﬂ

ni(c,a(e, t),t), if1<t<l(e)Al<ni(calet)t) <l(e)

nextinstr(e,c,t) = { 0 otherwise

Written by Gabriel R.

138 Computability simple (for real)

Now, by primitive recursion, we obtain the state of the program. We start from the initialization and
content of the memory, then we apply recursively the next configuration and next instruction, both
computable and defined. This way we apply a primitive recursion over single and defined components.

K —_— .
e, 20 =] | B el T<Yolol- -
i=1

jk(e, 3?, 0) =1
e, X, t+1) = nextconf(e, cr(e, %, t),ji (e %, t))

Ji(e, %, t + 1) = nextinstr(e, c (e, X, t), ji (e, %, 1))

—

Ck, jx defined by primitive recursion from computable functions are computable (actually, they are in PR,

given we never use minimalisation). Thus, we can now say:
Wi (e, %) = ci (&%t jple,20)).

is computable.

Corollary

The following predicates are decidable:

e Hyp(e x,t) =“P,(%) int steps or fewer”
e S.(ex,v,t)="P(X) ! yint stepsorfewer”

Proof
a)
The characteristic function:

1, l'fHk(e,J-C),t)
0, otherwise

0, if P,(¥) lint steps

=5g(k(e X, t) =
sg(Uk (e, %,t) {;e 0, otherwise

xy, (e,%,t) = {
is computable by composition.
b)
The characteristic function:
Xs,.(e,%,y,t) = xp,(e,%,6).57 |y — (ck(e,%,1)), |
is computable by composition.

Note: when k = 1, we often omit it > H(e, x, t) for H,(e, x, t)

Written by Gabriel R.

139 Computability simple (for real)

Exercise: Computability of the inverse, reprise
Letf:N >N t% injective and computable then f~1:N - N

PN xs.t. f(x) =y if it exists
7o) = {T, otherwise

is computable

fE) px 1f () =yl
without totality: l

%D’ by oA
:'2 WWS‘
3

f is computable - thereise € Ns.t.f = ¢,

input x

look for {number stepsn

s.t.P,(x) I yint steps

SC‘ZP‘I ﬂ 11’>

(we are trying to say that given a program over underlying inputs, we are able to execute it and go to the
following instruction, effectively halting the program over a finite number of steps)

1 =ux-un,(5(e.x,y.t) e i %
ux.uny S(e,x,y,t) " fmt‘k')‘-
Mﬂiw

(we are trying to see if given a pair, the mapping will be injective: infact, this does not happen, as you can
see from following drawings and corresponding mappings)

f)= (= S(e, W)1,y, W)2)1

Tt (wy'= (7'[1 w), 7T2(W))

w - (W), (W), w=3=2%31..5(01)
A~
» ™ w=6=2"%31.->(1,1)

w=30=21%31%32 . > (1,1)
not injective

Instead of using this injective way, we can omit the totality option given there is at least more than one
combination for which |f(x) — y| is defined. We then use the minimalisation operator in order to find at
least a solution for which it is computable, which does happen at least for one value. Given this assumption,
if it is bounded, then we can omit totality from the discussion because it will be computable anyway.

Written by Gabriel R.

140 Computability simple (for real)

Observation

Function which is total and not computable

_ b () +1, if p
| 4:" "f

NaT p
prosien

_ {‘Pu(x, x)+ 1, if ()1

0, otherwise

We define this as total, and we argue the above is not a problem. Infact, for every x, if ¢, is total, then
¢, # [(where ¢, is the partial recursive k — ary function given by the x — th step of enumeration, so it
can be different from the function). Since we said this:

fO) = (X)) + 1 # ¢r(x)

so f is not computable. It can be seen as computable as a combination of minimalisation and composition
of computable functions, but since our function is not computable, it would be absurd anyway (below | put
the example in question to see for yourself).

flx) = (pw.(S(z, z, (w)1, (w)2)) A Tot(x) A (w)z = (w)2 + 1)

Tot(x) = “p, is total”
(=) 4 v((w)s =0~ =Tot(z))

In words: we look for a w such that we get ¢, (x) when x is total, 0 otherwise. We add 1, considering the
encoding in tuples (W), (W),, (W)3) will give us ¢, (x) + 1 or 0 otherwise. It is decidable since only
decidable predicates are used and thanks to S we will find the number of steps in which that function ends.

With S, if the function is total | will find the number of steps with which it ends.

13.2 RELATED EXERCISES

Exercise: Show that the predicate below is undecidable (this is the “infamous” Halting Problem)

true, ifp,(x)1 (i.e.x eW,)
false, ifp,(x) T (i.e.x & W)
Idea: By contradiction: we show that assuming Halt(x) decidable, we can prove f computable. To achieve

this, we use the diagonal method constructing a total function which is different from every computable
function, yet such that if Halt is computable, so is f. In doing so, we use the universal machine.

Fx) = {qu(x) + (1).)(if dp(x) 1 _ {‘Pu(n, x)+1, if Halt(x)

otherwise 0, otherwise

Halt(x) = {

=Wy, x) + 1% x4 (%) }
1] Halt o A uon &
0 i"‘

The equality just written is wrong: when ¢, (x) T then W, (x, x) + 1 = the expression is T

Instead (basically; encoding of tuples of all the components, where using bounded minimalisation we
express the computability of the current computation).

fx)=ult,y) . Sk x,y,t)Az=y+ 1A Halt(x))V

Written by Gabriel R.

141 Computability simple (for real)

(z=0 A = Halt(x) - 0),
= uw . (s, x, (W), W)1) A W)3 = (W), + 1 AHalt(x)) v

(w)z3=0n —.Halt(x))3
W)=t W)=y, W)z =2
If you call (in words: the combination of the previous conditions in a function)

Qx,w) = (s(x, x, W)z, W)1) A (W)3 = (W), + 1 A Halt(x)) v

((w)3 = 0 A =Halt(x))
decidable.

= (. [XgCow) — 1),

(in words: bounding the minimalisation of the characteristic function, which seems computable because it
combines also computable functions, but it is not, since from the beginning the function is not computable,
hence the problem is not decidable)

computable as it arises as minimalisation of computable = contradiction = Halt(x) not decidable.

Exercise: Let Q(x) be a decidable predicate, f3, f2: N = N computable and define:

(@) if Q)
fo) = {fz @), if 2Q)

We want to prove this is computable.
Proof
If f,, f, total
fO) = f1(6) * Xo(x) + fo(x) + X_o(x)
ASTER P ;“,
At o A
= f computable (in words: we use the bounded product combining the above functions)
In general, let ey, e, € Ns.t.¢,, = f1 and ¢, = f;
f(x) = pu(t,y).(S(er, x,y,)) AQ(x)) v
(S(eq,x,3,t) A=Q(x))
>y
= pw. (s(er, x, W)z, W)1) A QX)) V
(SCez x, W)1, W)2) A=Q()),
W ok ~ " o

éw)‘).oa- %

= f is computable

Written by Gabriel R.

142 Computability simple (for real)

(in words: we define two components of the primitive recursion happening above and we bound the
composition of the sum on the two combinations of such function, using the smn-theorem. Combining
computable functions, basic operations and bounded minimalisation over the recursion, thanks to the
universal machine, the indices will give us computable outputs, hence this is computable and decidable).

Exercise
0
flx) = {T: gig% I not computable
If Halt(x) is decidable, then f is decidable
Exercise

Let’s start from totality and define this predicate:
Tot(x) = "¢, is total" = "P, is terminating on every input"
is undecidable.

In fact (in words: we use diagonalization as happened other times to give a computation different from all
total computable function, given the primitive recursion is total and will be not equal to the following value.
This leads to a contradiction, because if the predicate is decidable so it would be the function, which is not):

£lx) = {qu(x) +1, if Tot(x)

0, otherwise

Tot(x) = f(x)=¢,(x)+14

= f is total {—|T0t(x) = f(x)=0

- fisdif ferent from all total computable functions
(if ¢y istotal = f(x) = g (x) + 1 # ¢ (x))
U
f not computable

If we assume that Tot(x) is decidable, we derive f computable — contradiction

_ f1(x), if Tot(x)
fx) = {f:(x), if =Tot(x)

where:
fifo:N >N
fix) =, (x)+1=%¥(x,x)+1Vx
fo@) = 0vax conpbelle
= by the previous exercise, f is computable, which is absurd = Tot(x) not decidable.

(in words: f(x) is essentially saying, "If the Turing machine represented by ¢, halts on every input, return
the value of the machine plus 1. Otherwise, return 0." Now, we assume that Tot(x) is decidable, meaning
we can reliably say whether ¢, halts on every input or not. We run into a contradiction because we can
show that f(x) is computable under this assumption).

Written by Gabriel R.

143 Computability simple (for real)

13.3 EFFECTIVE OPERATIONS OF COMPUTABLE FUNCTIONS

The existence of the universal function, together with the smn-theorem, allows us to formalize operations
that manipulate programs and derive their effectiveness. This allows us to combine domains of functions
and get indices which can be computed and obtained effectively, allowing us to get effective operations.

1) Effectiveness of product: there exists a total computable function S: N2 - N

Vx,y ¢S(x,y) (z) = ¢r(2) * ¢y(z) vz

Ve — ' Psc><,3> i’!(Fsox,g) &N:
P _— } V}: v-'?)‘(ﬁ)
¢ Vi _dbcr)
Proof F&A'm \x Jvé

We define g: N3 > N
Dsy)(2) = g(x,,2) = Px(2) * ¢y, (2)
= Wy(x,2) * Py (y, 2)
g is computable (composition of computable functions)

Hence (by corollary of) smn-theorem, there is S: N? — N total computable such that

¢S(x,y)(z) = g(x, Y, z) = ¢x(Z) * ¢y(z)

o ke S Jokey €od
__;-7 ___'Ex &) = ‘fo a 1§ ol ok e Me
— 6 Mo{xﬁ-ka&oéa-ﬂ
—> | e Ik Re

* e

2) Effectiveness of the inverse function

There is a total computable function k: N = N s.t.Vx if ¢, is injective then ¢g(x) = (Pt

Vo A ¥z0 fx(a)la
Q
_"/9 — Cf x\ {5\ A P\(f"') =Y
Proof J
Define

g, y) = () () = {Z, 3zs.t. p(2) =y

1, otherwise
(if by is injective)
= (u(z0).5(x,z,y,1),
= (uw. S(x, W)y, ¥, (W)2)1
= pw. (|Xs(x, W)y, ¥, (W)2) — 1)

Written by Gabriel R.

144 Computability simple (for real)

computable

(in words: given the inverse function, we get a value from it, and we can map it back injectively to get the
original value. Bounded minimalisation ensures, in combination with smn-theorem, that we can
parametrize two functions over x and y, hence bounding a finite value via the characteristic function. This
results in something computable).

Hence, by smn-theorem, there is K: N — N total computable s. t.
Pk @) =900, y) = (@)7'() if ¢y injective
What do we get when ¢, is not injective? ¢) is one of the counterimages of y.

Question: Can you get the least counterimage? To put it more explicitly:

Given f: N — N computable, define g(y) = {mm{x 1f &) = y%, lo];i?exri;its[(x) =Y
Is g computable?

Exercise to do here (tip: define minimalisation before finding the 0, for the current function and all
arguments before the current one)

Possible solution (to take with a grain of salt)

We use minimalisation defining a computable function:

_ (2, Azs.t.p(2) =y
9(xy) = {T, otherwise

And then we apply, defining a function S over the parameters via smn-theorem:
g(x, }’) = (W S(X, zZ,Y, t))z = ‘Ll.(W (le(x' (W)l' 8z (W)Z)Dl

which is computable and via smn-theorem corollary:

¢S(x,y)(z) =g(xy) = {1’ if px(2) =y

, otherwise

Exercise: There is a total computable function S:N? —» N s. t. Wsxy) = Wxe UW,,

Gsxey) (@) Viff ¢x(2) L or dy(2)

Pl
1/\3 8 \—”)

Written by Gabriel R.

145

We define a function g: N3 - N s.t.

Computability simple (for real)

9(6,y,2) = @ if ql)x(z). Lor ¢, (z) 1 (inother wordsz € W,V z € W)
T, otherwise

=1(ut.H(x,z,t) VH(y, z,t))

where 1(x) = 1Vx (keep in mind the bold 1 is the “indicator function”; we use it because it can be true

either for x or for y)

g is computable and thus by smn-theorem 3s: N? — N total computable s.t.

¢S(x,y) (Z) = g(x:

(1, if p(z)dlore,(2)!
y,7) = {T, otherwise g

S is the desired function (this part has borders drawn in red because quoting the professor “in exam you
don’t write this, it's clear S has the desired properties).

S WS(x,y) iff ¢)S(x,y) @1 iff qu(Z) ‘L ¢y(z) ‘L

Exercise

élOfafl:\

iffzeWyorzeW,

iff z€ W, UW,

There is a total computable function s: N — N s. ¢.

ES(x,y) = Ex U Ey

(Ps(x,y) Produces as outputs all values produced by P, and P, and to do this, we simulate ¢, on even

numbers and ¢,, on odd numbers — what the drawing wants to say). We define a function g: N3 - N:

2 3

" o et

~@
A

z
bx (E)' zeven One may be tempted to use

9g(x,y,z) = z—1 composition over functions and

¢y(T)' zisodd

decidable predicate this way,
which does not work, because one
or both functions can be
undefined (hence, we mark them
in read)

= u(v,t). (S (x,— v, t) Az even) v

1
(S (y,T,v, t) AZ 0dd> \Y

= (uw. (S(x,

v

qt(2,z), w),,(w),) Azeven) v

(5(3’&15(2;2), (W)ll (W)Z) ANz Odd))lj

Written by Gabriel R.

VSRS

146 Computability simple (for real)

Here we express the program with bounded minimalisation and so we cover all input cases and express all
possibilities for z even or odd. This way, we can ensure that is decidable, given the bounded
minimalisation.

An alternative might include the use of max function and remainder, which ensure we take the bounded
maximum for the even and odd division, making it computable:

(pw . |max{ys(z,qt(2, 2), (W), (w)2) - sg(rm(2,z)),
Xs(y,qt(2,2), (@)1, (W)2) - sg(rm(2,2))} — 1)1

By smn-theorem 3s: N? — N total computable s.t. Vx, y, z:

by (g), Z even
¢S(x,y)(z) =g(x,y,2) = (Z _ 1)
y)

> z odd

I claim that s is the desired function, i.e. Eg(x,) = Ex UE),
(S)lve Es(xy)
3z 5.t Pg(xy)(2) =V
|
B

hence two possibilities (whatever happens, we are in the codomain, and we still remain inside the union).
S V& b U Yy

(2)veE, U Ey, > v € Egxy)
i.e. (l)veE, - ve Es(xy)
(2)v €E, - v € Eg(yy)
They are analogous and we prove only one; assume we are in the codomain of x:

l)vEE, iedzs.t.p(2) =v

Therefore: sy) = (22) = Py (@ = ¢x(2) =V > V € Egy)
& even

2) identical (as said, the computations are the same here as last point)

Exercise: variant of URM machine in which you remove the successor, and you insert the predecessor:

URMP z(n)
3« P W —Wm-4
T(m,n)
J(m,n,t)
ep URMP- computable function. What is the class of relationship between them?
9
Cy =C

Written by Gabriel R.

147 Computability simple (for real)

Possible solution (to take with a grain of salt)

Consider the simulation of URMP for URM normal machine to simulate the predecessor, which is not
present in URM. In this case, you can consider a combination of both transfer and jump instructions. The
predecessor should have the same configuration as current register minus one step of computation. So, we
just need to jump back and transfer the content back:

Jm,n,t +1)
T(mn—1)

We will be unlucky here; still, there will always be predecessor instructions, because the model is not
powerful enough. So, the inclusion C & C? holds.

In the case of URMP simulating the successor, we’re basically doing the same thing forward:
Jm,nt+1)
T(mn+1)
Exercise: Are there f, g: N — N functions s.t.

1) f computable, g not computable, f o g computable (composition of those)
2) f not computable, g not computable, f o computable

Tip: the answer is “yes” to both (computability is preserved by composition, non-computability is not
preserved by composition).

Possible solution (to take with a grain of salt)

The function f can be something simple like:

(x+1)
o= o

T, otherwise
While g can be:

_ (o) +1, xeW
g(x)—{ v, xgW,

In the second one, we have ¢, (x) # f(x) Vx € N, hence this is not computable.

In this case, the composition holds computable, defining a predicate Xi which is g = xi and:

x<0
otherwise

fog@={y

Written by Gabriel R.

148 Computability simple (for real)

13.4 OTHER EXERCISES SOLVED IN LESSONS

Exercise
URM? instructions
Z(n)
T(m,n)
Jim,n,t)

0 =0
S—Gﬂ} P(n) Tn<_rn_1={ ’ n

r,—1, 1, >0
We conjecture if C? € C is true and holds or not.

Instead, we will understand from the first part of the following part that the inclusion is strict, so we’ll show
CP c C. Let’s structure the proof.

(CP < C)

Given a program P in URM?®:

A AN A A)

I2R(wy S(1508) } ol el
: A A
su8 JCm‘m-mlk—M)
S (m+2)
LOoP - le "2 RS5)
5Cm)
S(M+2)
2 (1, 1,Leof)
RS S~ ‘rCfm-M' M)

Formal proof: Ma, .26“01 S [”\.\ ’TL'M,M.\ ,.5 (W/AJO QC;L:' ‘:“M.)

For every program P for every k € N, there is a URM-program P’ s. t. fp(,k) = fp(k) (proof by

induction on the number of*predecessors).

4

There is a problem: if you try to replace the predecessor instruction, you will still have other predecessor
instructions recursively (a sort of hybrid between the two languages), so the full inclusion is not respected.

Note (my try on that, so could be wrong, but just to exercise myself):

There is this part on this exercise which makes the proof work not only for this machine but in general. This
can be proven inductively too. In general, given as a base case a URM program P’s. t. fp’0 = po’ this would
be trivially true given the programs are equal.

Written by Gabriel R.

149 Computability simple (for real)

Inductively, this would be working too, assuming we get f,” = fJ"*, computing fp'(m+1) = f"*1. Assuming

the claim works for k = m, we will build a program P’ using a register not referenced here, like ¢ =
max{p(P), k} + 1, something like.

Start: 1,
j:J(1,1,SUB)
L(P): Iyp)
J(1,1,END)
SUB:J(n,q,ZERO)
Z(n)

S(n)
T(m,n)

P(n)
ZERO:J(1,1,j+ 1)
The program here will contain the h instructions of desired type and will be equally effective, then showing

fp'((k>) _ £

» »Which is the desired program.

(Coming back to the exercise)

Now we try to prove the other part:

m
(cech) [ToT 15—

—

Given a program P of URMP and ¥ € N* the maximum value in memory after any number of computation
of P(X) is < max x;

1<isn

We proceed with a proof by induction of the number t of computation steps.

1 "
= 0) th is: ’ ’ - T
(t) the memory is P - o) ... W\p_y, /\(‘L;MX X&.

s 1EAEM

(t = t + 1) the content of memory after t + 1 steps is:

[V é B'a' hoduohs e]

) -
]:Ft; c Tty - ma-5< H(J—{W%zb

A M i

N

o - Fm - T

)

Written by Gabriel R.

150 Computability simple (for real)

Several cases according to the instruction executed at step t + 1:

Z(n)
T(m,n) max7; < max r] < max x;
Jim,n,t)
P(n)

* The successor S:N = N S(x) = x + 1 is not URMP- computable.

[o]o cﬂ.-... oy ;=0

—

A
é’ﬁ NoYe 'z A npomill Gy

O| - ----- C“Q—Ho“)
V
Note: Termination is decidable for the URM® model (exercise) m —= e (P)

Z):«(_,i,,n SXAO])

C ~)

My take on the solution (to take with a grain of salt)

To prove the termination is decidable for the URMP model, we define a function assuming the model is
computable, and we define W, as the input set composed of the instructions we saw before:

_(fx)+1, x €W, (Pylx)+1, if x eW,
f(x)_{ 0, xt,i_Wx_{UO, if x & W,

We can see the problem as:

1, if Py(x +1)
0, otherwise

9(x,y) = {
By the smn-theorem, there is f: N — N total and computable s.t.

P @) = g0, y) = 1(Py(x + 1))

We then constructed a total computable function deciding h, which will give as domain the values of the
URMP model and as range its outputs, effectively halting or not. Hence, W, is decidable and so its model.

Written by Gabriel R.

151 Computability simple (for real)

Exercise: Show that there is a total computable function k: N — N s. ¢t.
Ekx) = Wy (in words: set of outputs of the function = values of its domain)
P, = Pgxy withset of outputs
= set of inputs where P, terminates
def Py () ’ﬂﬁ\ S) S WHAT
= WE WA A&

P.(y)

returny [NTU T\ \Q,y

Define f: N2 - N as follows:

£,y = {y. if $x ()

T, otherwise

= 1¢x(y) *y 1(x) =1vx

6 if 6.0 L
1 otherwise w“"A‘_f"Q({e'
= 1(Wy(ry)) * y (resrray,) ,,&wr-ua%”{'}ﬂ\

Hence, by smn-theorem, there is k: N — N total and computable s.t.

bk @) = flx,y) = {y, ifp.(y) L

T, otherwise

(in words: partial recursion allows us to cover all cases for true/false thanks to characteristic function, then
the smn-theorem allows us to get the function in two parameters as above, effectively terminating).

* k is the desired function Wy = Exx)
(Wy € Ex(x) lety e Wy = ¢ (W) L= () =fx,y) =y
hencey € Eg(y)
(Ex(x) € Wy) Lety € Ex(y) i.e.thereisz € N s.t. g (2) =y
‘\Q 2y
=>z=yand p,(y) I >y €W,

(in words: all cases, thanks to partial recursion over ¢, allow us to get to y as output, this thanks to smn-
theorem)

Exercise: There is a total computable function k: N — N s. ¢t.
Wiy =P (P isthe set ofeven numbers)
Exapy={yEN | y =2 x}
Define f:N? - N as: N

y is even

, otherwise

Written by Gabriel R.

152 Computability simple (for real)

=x+qt(z,y) + uw.rm(z,y)
W
b enen

Drﬁwb«
* dhewng,

Hence, by the smn-theorem, there is k: N — N total computable s.t.

computable.

x + Y if yeven
Pk =f(xy) = 2’
T, otherwise

k is the desired function:
- WK(x‘)’ =P (ok)
> Exwy ={y | y2x}
Ex) = {Pkn @) |y € Wi}
= {¢x) |y € P}

= {pxx)(22) | z € N}

={x+§ z € N}

~z
={x+z|z€N}

={y ly=zx}
Exercise
Are there f, g with f computable, g not computable s.t. f o g computable?

The usual mistake here is constructing a function with some non-computable parts and assuming this will
be not computable. The function is not computable because it’s wildly irregular, as shown here:

_A M A)
A Y e E L AR
0 o%ante,

46‘):0)(f)(

f(g (x)) =0 Vx computable (constant function, so it is computable at least once)
= f(x)
Then for the second part of the exercise:
- Arethere f, g with f not computable, g not computable s.t. f o g computable?

L ¢x(x) !

, not computable
0, otherwise p

-9 ={

Written by Gabriel R.

153 Computability simple (for real)

0, ifx<1

f(x)=R¢d(x)+1, if x>1and p(x)
0, ifx>1 and ¢, (x) T

not computable. This is intuitive, but to be more formal:
f#Ep, vx>1
Vy Ix>1stoe=0¢,>f+d, =0,
— f different from all computable functions)
but
f(g(x)) = 0, Vx computable!

Exercise: Show that every computable function f can be obtained as the composition of two non-
computable functions g, h.

My take on the solution (to take with a grain of salt)

Let’s assume h(x) = f(g(x)) as computable, having the underlying function g: N - N as follows:

_ ¢x(x)+1' if x € Wy
96 = { T, otherwise

The function is not computable, given ¢, (x) + 1 # ¢,, so the composition will be

by + 1, if x e W,
T, otherwise

h(x) = {

Both will not be computable; define an arbitrary computable function such as:

_(2x +1, x>0
fl) = { 0, otherwise

Since g ignores its inputs, (h o g) just effectively applies f to some constant y.

So by choosing a simple computable f, we get a computable function from the composition of non-
computable g and h.

Exercise: Prove that pow2: N - N, pow,(x) = 2*is PR
by using only the definition of PR.

(least class of functions including basic functions (zero, successor, projections) and closed under
composition and primitive recursion)

One way can be observing the sum is primitive recursive and using:

o x+0=x
s 3 {x+(y+1)=(x+y)+1
xx0=0
x*& {x*(y+1)=(x*y)+x
Y x% =1 = succ(0)
X {ny“l:(xy)*x

succ:N - N

pow2(x) = 2Y = succ(succ(O))y succ(x) = x + 1

Written by Gabriel R.

154 Computability simple (for real)

Alternatively, one can use primitive recursion directly:

{ pow2(0) = 2° = 1 = succ(0)
pow2(y + 1) = 2Y*1 =27 + 29 = pow2(y) + pow2(y)

and observe that + (the sum) is in PR.
Alternatively, you don’t need the full sum:
{ pow2(0) = 2° = 1 = succ(0)

pow2(y + 1) = 27*! = twice(2”) twice: N - N?

{ twice(0) =0
twice(y + 1) = twice(y) + 2 = succ(succ(twice(y))

Exercise
Xp EPR

(1, if x is even
Xp(x) = {O, otherwise

Xp(x) = 5g(rm(2,x))
N complas!
{ Xp(0) =1

Xp(y+1) =5gXp(y))

5g(0) =1
{@(y +1)=0

directly

Written by Gabriel R.

155 Computability simple (for real)

14 RECURSIVE SETS

Until now, we defined classes of computable/decidable properties and techniques for proving
computability, specifically characterizing:

- recursive properties (easy — decidable)
- recursively enumerable properties (less easy — semidecidable [can only answer in positive case])
- non-recursive properties (hard — undecidable [not always you can give an answer])

We are trying to characterise mathematically classes of undecidable predicates/non-computable functions,
giving a structure to the class of non-computable functions and sort out general classes of problems which
do not admit an algorithmic solution. Every interesting property of program behavior is not computable
(correctness, absence of bugs, termination).

Specifically, we are focusing on the sets of numbers x € N and on the corresponding membership problem

n ')ll ,\
x € X7 ’PM‘

In most cases X will be seen as a set of program codes and thus it can be seen as a program property, e.g.:

- X ={x| ¢, = fact} (factorial function)

- X ={x| P, has linear complexity} (the program underneath has linear complexity)
- X ={x| P, does not modify R;} (the program does not modify the registers)

- X ={x| P, executes each of its instructions for at least one input}

We will discuss and distinguish between:

- decidable properties/recursive sets, in which it is possible to answer “yes” or “no” when the
property holds or not;
o These are those problems for which there exists a corresponding Turing machine that halts
on every input with an answer — yes (accepting) or no (rejecting).

- semidecidable properties/recursively enumerable sets, in which it is possible to answer “yes” when
the property holds or T when the property does not hold.
o These are those problems for which a Turing machine halts on the input accepted by it but
can either loop forever or halt on the input which is rejected by the Turing Machine.

Written by Gabriel R.

156 Computability simple (for real)

Graphically, you can see the correspondence between sets like:

Q. ‘528/4\

RRLLLSINE
%Es/mo

14.1 DEFINITION

Definition (recursive sets)

A set A € N s defined as recursive if the characteristic function:

Xa:N - N
xa(x) = {é’ fc ; :3 is computable

(& in other words if predicate "x € A" i decidable) - so, a set A is recursive if and only if there is a verifier
program, returning “true” on A and “false” on its complement 4 (partial verifier/semi-verifier)

If x4 € PR we will say A is primitively recursive and the notion can be extended to subsets of N¥.
Examples
The following sets are recursive:

- N recursive, since yy = 1 Vx computable
- @ recursive, since yg(x) = 0 Vx computable
1, if x is prime

- P (prime numbers set) recursive, given xp(x) = sg(rm(2,x)) = { 0. otherwise

* Observation: All finite sets A € N are recursive.

Proof

Let A = {xg, %y, ... X}, Wwith A € N and |4] < o

n
X,(x) = @(nlx — xil) computable

i=0
The following set is not recursive:
K={xeN|¢,(x)}={xeN|xeW]}

(from now on, K means the halting set, where programs will terminate). Hence:

w={b T

not computable
0, otherwise P

Written by Gabriel R.

157 Computability simple (for real)

Also: {x | ¢, total} is not recursive.
Observation: Let A, B € N recursive sets. Then:
1)A=N\A

2)ANB

3)AUB

are recursive.

Proof X&ER

TN e,

1, ifx€A —
1 X—xz{' =5sg(X,(x)) computable
) a%) 0, otherwise g(a()) P
xafi
(2) — (3) [see decidable predicates — you can describe a bounded product/sum of both predicates and will

be computable]

14.2 REDUCTION AND RELATED PROBLEMS

Now we will define reduction, a simple but powerful tool when studying the decidability status of
problems, formalizing the idea of having a problem A which you argue is “simpler” than another problem,
calling it B. Intuitively:

Areducesto B
(every instance of A can be transformed easily into an instance of B)
Definition (reduction)

Given 4, B € N, we say the problem x € A reduces to "x € B" (or simply that A reduces to B) if there is a
total computable function f: N - N s.t.Vx € N

x€Aiff f(x)EB

In this case, we say f is the reduction function. Graphically:
2
Yeb
&fq/n.a
— 2 —-a => G \—
__.—-—-9 R '

_— 4
\ 4&&5?

Tl =0
i bt |

In this case A <,,; B (the symbol is read like “which reduces to”, with “m” standing for “mapping”: more
here on notation and meaning. Translate it as “many-one-reducible” or “m-reducible” [also look here])

Written by Gabriel R.

https://courses.engr.illinois.edu/cs373/sp2013/Lectures/lec23.pdf
https://disi.unitn.it/~zunino/teaching/computability/2008/computability.pdf

158 Computability simple (for real)

Observation

LetA,BSN, A<,B

1) if B is recursive then A is recursive

2) if A not recursive then B is not recursive
Proof

1) Let B recursive

1, ifx€B

xp(x) = {0’ otherwise computable

since A <,, B, there is a total computable function f:N - Ns.t.Vx = x € A iff f(x) € B. Then:

1, x €A
x40 = {;

otherwise AB (f(x)) computable by composition

- A is recursive (in other words; we simply observe that x4 = xg °© f).

2) this part is equivalent to (1), given the composition works in both ways.

k={x|xeW}={x]|¢p,(x) !} notrecursive

T ={x| Wy = N} = {x| ¢ total}

Assume that we have:

P Py olireprs oleloned

T \— aw//v\a

Written by Gabriel R.

159 Computability simple (for real)

Given P, we construct Py, s. t.
P.(x) L iff Pg(yis defined everywhere

then we could construct:

S/mo

P By Priy 16 o7 ¥
N LN I + t
— [

bos slues K

The idea for defining f: P C)}) \L,
>

—_ ~oy P (%) qV
dd Qo) - g’mek ?

P x0Y N P 0O
>

P~

Given we argue: moéw ’ V) P:&—O‘) @) /1\
X €W, & ¢y is total rom
We define: /1‘0“‘0&
9@xy) = {1 J(;;le[;l”%vise
Formally:
9(x,y) = 1(¢ () 1(x) = 1 vx
= 1(¥y(x,x))

By the smn-theorem, thereis f: N — N total and computable s.t.
bre) = g, y) = 1(dx(x)) Vx,y
We claim that f: N = N is the reduction function for K <,, Ti.e.Vx, x € K iff f(x) €T
- ifxeEK—- f(x)eT
fx€K-> o)l = ¢ry(y)=1 Vy =
= Q) total ie. f(x)ET
- ifxegK->f(x)eT
ifx€K—> ¢(0)T = ¢rn(T Vy =
= ¢rx) nottotal i.e f(x)&T

Therefore, f is the reduction function for K <,,, T hence, since K not recursive then T is not recursive.

Written by Gabriel R.

160 Computability simple (for real)

Example (input problem)

Let n € N fixed. Consider 4,, = {x | ¢ (n) !} which is not recursive.
Proof
We will prove K <, 4,

We define a function f's.t.x EK & f(x) € A, i.e. x € Wy & ¢s(xy(n) L. Ideally:

definedonniff P.(x) !

- P(x)l = Pyl Vyinparticular Priyy(n)
- P()T = Ppuy(y) TVyinparticular Priy(n) 1

Define g: N2 —> N:

glx,y) = 1(¢x(x)) = 1(‘PU(x, x)) computable
By the smn-theorem there is f: N = N total computable s.t.

br (@) = g0 y) = 1 (x))

The function f is the reduction function for K <,,, A,
*x€EK—- f(x)€EA,
if x € K then ¢, (x) . Therefore, ¢y (y) = 1(¢x(x)) = 1Vy. Inparticular ¢ (n) L, thus f(x) € A,.
*x g K- f(x) ¢ A,

If x & K then ¢, (x) T. Therefore, s, (y) = 1(¢x(x)) T Vy. In particular ¢¢,y(n) T, thus f(x) € A,

K <,, A, since K not recursive, 4, is not recursive
Exercise A, <, K (home)

My take on the solution (to take with a grain of salt)

Let n € N fixed. Consider 4,, = {x | ¢(n) !} which is not recursive.
We will prove 4,,, <,, K

We define a function f s.t.x € 4,, © f(x) € W, = f(x) € K. We define f as a function running over a
program P, s.t.P.(y) = 1if y = m, T otherwise.

Written by Gabriel R.

161 Computability simple (for real)

Define g: N2> > N:
glx,y) = 1(¢x(x)) = 1(‘PU(x, x)) computable
By the smn-theorem there is f: N = N total computable s.t.
Preo) = g(x,y) = 1(¢(x))
The function f is the reduction function for 4,, <,, K
- x€d,- f(x)EK

if x € K then ¢, (m) L. Therefore, sy (¥) = 1(¢x(m)) = x Vx. In particular ¢, (m) {, thus f(x) €
K.

- X € An - f(X) €K
If x € K then ¢ (x) T. Therefore, ¢y (¥) = 1(¢x(m)) T Vx. In particular ¢,y (m) T, thus f(x) € K
Example: ONE ={x| ¢, = 1}
pX 'Px'ﬁschawb+
— onS > M-Z(’V\Moﬁ-

K <,, ONE same reduction function as before
Example (output problem)

Letn € N. Consider B, = {x | n € E, } not recursive
0 ey Dot presiole m
D[S\ oot 4
HNOoNL

k <, By

Show

P

S| ¢ Bi‘g” s> el 0 gon)

P}c OV) J Px()‘)
Define: /ZZ,‘.“ w WM

gx,y) =nx* 1(¢py(x) =n=* 1(‘P(x, x)) computable
By the smn-theorem there is f: N — N total computable s.t. ¢y (¥) = g(x,y) = n = 1(¢x(x)) vx,y

f is the reduction function for k <,, B,

Written by Gabriel R.

162 Computability simple (for real)

- ifx € Kthen ¢, (x) .
So:
breo) =n*1(p () =n vy
Thus:
ne Ef(x) = {Tl}
hence f(x) € B,
- ifx & K then ¢,.(x) T. Thus
(»bf(x)(y) =nx* 1(¢x(x)) T vy
Thus:
n&Ep =0
hence f(x) € B,
We conclude k <,,, By, hence B,, not recursive.
Exercise

1) There exists f: N — N total computable s.t.

[Wr (| = 2x
|Efon| = x
Vx

Solution

Solution: We can define, for instance,

fle,y) = { qt(2,y) iy <2z

t otherwise

Observe that f(z,y) = qt(2,y) + pz. (y + 1 = 2z) is computable and finally use the smn theorem
to get function s(x). O

2) Functions computed by programs which can only jump forward
Ii: J(imyn,t) t>1i
are all total (what if we allow only for backward steps?)

My take on the solution (to take with a grain of salt)

h

We will prove this inductively on a program P by induction on the instruction it over the index t.

- Base case: The first instruction has the instructiont > i > 0 (at least 1)

- Inductive case: At step t + 1" step, the previous instruction has an index > t, so at step t + 1, the

jump address must be > t, therefore the instruction will have index > t + 1.

After t steps, the index would definitely be greater than the program length, at > [(P), so the program
must halt at the (t + 1)" step of computation, effectively halting the program.

Written by Gabriel R.

163 Computability simple (for real)

15 SATURATED SETS AND RICE’S THEOREM

Rice’s theorem helps showing program properties are not decidable or not recursive, basically.

More in detail, it roughly states that no property of the behaviour of programs which is related to the
input/output (besides the obvious ones) is decidable or, in other words, that no non-trivial property of
computable functions is decidable. We can see it like this:

Ptg?ql{g? Every property of programs which
Mtﬂt‘a lT 49 /mo concerns the I/O behaviour of
/".'?’-—b - b programs is undecidable

We consider properties we already know they are not decidable:

“ P is terminating on every input “
“ P has some fixed x € N as an output “ undecidable

“ P computes a function f “

“the length of program P is < 10 “ decidable

What is a behavioral property of a program?
ACN
T
set of programs (program property)
Let’s give then:
T = {n| B, is terminating on every input}
= {n| ¢, is total}
={n|¢, €T}
ONE = {n| B, is a sound implementation of 1}
={n|¢,is1}
= (n| ¢, € (1))

A S N (program property) is a behavioral property if, for all programs n € N the factsthatn € Aorn ¢ A
only depends on ¢,

(the computed function in I/O, nothing else; so, we might say a behavioral property would be a set of
programs that share a common behavioral trait during their execution and their behavior reflects how a
program behaves during runtime).

Written by Gabriel R.

164 Computability simple (for real)

15.1 SATURATED SETS

Definition

A subset A € N is saturated (or extensional) if Vm,n € N

if meAand ¢, = P, thenn € A
(in words:

- given two programs, if the first program is in the set of programs satisfying the property and two
programs are computing the same thing, then also the second program satisfies the property

- this means that if one program with a certain property is in the set, all programs computing the
same function must also be in the set)

The property does not depend on the program but on the function it computes. A saturated set contains all
the indices (which are infinite) of programs that compute functions with a particular common
characteristic.

g
A saturated if A = {n | ¢,, satisfies a property of functions} = {n | ¢,, € A}
where A C F
A
Examples property of functions set of all functions
- T = {n| B, is terminating on every input}
={n| ¢, is total}
={n|¢, € T}
Where T = {f € F | f total}

- ONE = {n| B, is a sound implementation of 1} (which simply means “computes 1”)

={nl¢, =1}
={n|¢, € {1}}
- LEN10 = {n| B, has length < 10}
m € LEN10
and bm = Pn
m & LEN10 $m = ¢n =0
constant zero /'
e.g.

m= y(Z(l)) € LEN10 (program with 10 lines; the next one has more lines, but they do the same thing)

7(1)

Z(1)

m=y >11 ¢LEN10

2(1)

Written by Gabriel R.

165 Computability simple (for real)

- K ={n]| ¢,(n) 1} (this is the halting problem, checking if it terminates over the program code)
={n| ¢, € K}

K={f|f?)L} 7?7 (here we would like to have a function able to compute the halting problem in the
same set, but this does not happen)

It seems that K is not saturated (we can’t conclude the proof, because we are not able to define something
which “behaves as the halting problem” itself and then given K does not depend on the underlying
function, we would like to have “something able to prove it universally”).

Formally, | should find m,n € N s.t.
meK ¢,(m)!
meK dn(m) T

and ¢, = ¢y

(they have different values, but they are computing the same function).

If we were able to show there exists a programm € N s. t.

1, ifx=m *’

bm (x) = {T, otherwise

we can conclude:

W ER] fu(m) L

2) for a computable function there are infinitely many programs hence there isn # m s.t| ¢, = ¢,

s K]

Pn(n) = (M) T

b\

bn = Om n*m

J

K is not saturated! (hence, they don't compute the same thing)

What about (*) ? def P(x):

J—?fh if x € P then 1 fx = et e
d/_ "
if x ¢ Pthen1

We check if x corresponds to the program we are defining.

Written by Gabriel R.

166 Computability simple (for real)

15.2 RICE’S THEOREM

Definition (Rice’s theorem)

Let Abeasetand A + 0,A # N, A € N. If A is saturated, then A is not recursive.

In simpler terms:

- the saturation property implies that A contains all the indices of programs that compute functions
with a common characteristic
o this property holds extensionally, meaning it solely depends on the elements within the set
without consideration for their internal representations.
- the significance of this in proving non-recursiveness lies in the inherent uncertainty: we cannot
definitively determine whether a program possesses a specific property precisely

Proof
We start from the halting problem, making it reducible to A. So:
K <,, A (since K is not recursive = A is not recursive)

To remember, this happens with reduction “behind the scenes”:

Let ey be an in index s. t. ¢, (x) T Vx (program for the function always undefined — consider, as note, we
assume ¢, # 0, which could be not true). We distinguish two cases dependingone € Aore & A.
1) Assume e, € A

Let e, € A (it exists since A # 0)

and define:

¢e1(Y): if x €K
e, V), if x €K (or x € K)

~ {qbel), ifxeK [p(x)]
- T, ifx€K [P0 1]
= o, () * 1 (¢ (%))

4 gmmd
T ofwuwee

= ¢e, () * 1(¥y (x, X))

g(x,y) ={

computable!

Written by Gabriel R.

167 Computability simple (for real)

By the smn-theorem, there is s: N — N total and computable s.t. Vx, y:

be,), ifx€K

d)s(x)(}"):g(x:}’):{d)eo(y), ifxEE

s is the reduction function for K <,,, A
- x€EK>=>s(x)eA

if x € K then ¢5)(y) = 9(x,y) = ¢e, () Vy

i.e.dsx) = Pe, since e; € Aand A saturated » s(x) € 4
- x¢K=>s(x)¢ A

if x € K then ¢s0(y) = g(x,¥) = ¢e,(y) Vy

l.e.dsx) = Pe, since eg & A and A saturated > s(x) € A

Hence, as expected by our construction, s is the reduction function and since K is not recursive, we deduce
A is not recursive either.

2) ifinstead gy € A4,

we have ey & A

A C Nis saturated (since 4 is)
A # @ (since A = N)

A # N (since A # @)

— by (1) applied to A we deduce 4 not recursive — A not recursive either

15.3 EXAMPLES

Example (Output problem)

We proved that B,, = {x | n € E,} and we observed it was not recursive by showing K <,, B,,. We can
conclude the same using:

- By is saturated (hence, given codomain=image, they compute the same values)
B, = {x | ¢x € B, }
B, ={f In € cod(f)}

- B, # @ (we get at least one element from natural set, hence it is well-defined and total)
eg lete; ENbest ¢, (y) =y Vy > n€E, =N
— e, € B, # @ (so, using the identity, we find all possible numbers as output)
- B, # N (there are always different elements we can map)
eg.lete; ENs.t.¢,,(y) =m (#n) Vy
e, € By (sincen # E,, = {m})

Written by Gabriel R.

168 Computability simple (for real)

= by Rice’s theorem, B,, is not recursive

Example

I = {x € N| P, has infinitely many possible outputs}
= {x € N| E, is infinite}

Is it saturated? Yes, it is. We are not making assumptions over the underlying program, we’re only
interested in the property of functions and its sets. We will argue what we just wrote:

- I saturated
I={x|¢. €}
with I = {f | cod(f) infinite}
- I # @ (itis not empty)
if 1 is as previous exercise —» E, = N infinite = e; € |
- I#N
if e, is as before > E,, = {m} > e, € I
= I not recursive, by Rice’s theorem
Example
A = {x | x € W, n E,} (programs halting on their own description)
Is it saturated?
A={x|¢y €A}
A={f|? €edom(f) ncod(f)}

we do not know what to put here; essentially, the function is computing its own code, or the syntax, halting on the given
input in a predictable way. It doesn’t means it isn’t saturated, only there is no such function “able to do it universally”

Hence, we will not use Rice. We show K <,,, A i.e. that there is a total computable function s:N — N s.t.
x €K iff s(x)eEA
g
S(x) € Wyizy oo Ps) 4
and
S(x) € Eg(x) - Ps)(¥) = s(x) for somey

We define, by the smn-theorem, a function of two arguments as follows (we know nothing about the
function discussed before; to be sure, we use a function defined for every natural number and produces
code as an output without knowing the code using also universal function; then the opposite case).

(v, x €K
900 y) = {T, otherwise
=y * 1(dx(x))

Written by Gabriel R.

169

=y * 1(Wy(x,x)) computable
By the smn-theorem, there is s: N — N total computable s.t.

, ifxeK
, otherwise

s =9, y) = {T
s is the reduction function
- x € K then ¢ (¥) = g(x,y) =y Vy
Hence, W) = N, Eg(x) = N and so s(x) € W) N Esx) =N
Thus, s(x) € A.
- x € K then ¢ (y) = g(x,y) 1
Hence, Wsx) = 0, Es(x) = @ and so s(x) & W) N Egyy) = @

Thus, K <,,, A and since K is not recursive, also A4 is not recursive.

Written by Gabriel R.

Computability simple (for real)

vx,y

170 Computability simple (for real)

16 RECURSIVELY ENUMERABLE SETS

We started looking at recursive sets, which have properties completely satisfiable, either “yes” or “no”,
with a set of numbers associated to code satisfying the property (and understanding if a number is inside
the specific set or not). We then move to the larger class, responding “yes” or “does not exist” for all
possible elements.

16.1 DEFINITION

Aset A € N is recursively enumerable (called from now on “r.e.”) if the semi-characteristic function
scy:N - N:

1, x €A

scy(x) = {T, otherwise 'S computable

- Enumerable since there is surjective function total and computable f:N - N s.t. cod(f) = A
- Recursive since the enumeration can be done via a computable function

A property/predicate Q (¥) S N¥ is semi-decidable if

scp:N¥ > N
= tabl
sc(x) {T, otherwise *OPHHADE
Keep in mind that a recursive set is said to be decidable, a r.e. set is said to be semidecidable.
Note
IfQ(x) €N

Q(x) semidecidable if and only if {x € N | Q(x)} r.e.
(we could define also recursive/r.e. sets A S N¥)

Saying that A is r.e. is like saying the predicate Q(x) = "x € A" is semidecidable and we’re also generalizing
to subsets of N¥ and k-ary predicates.

Written by Gabriel R.

171 Computability simple (for real)

In practice:
- there is an algorithm such that the set of input numbers for which the algorithm halts is exactly A

or equivalently:
- there is an algorithm that enumerates the members of A. That means that its output is simply a list
of all the members of A: a4, a,, as If A is infinite, this algorithm will run forever.

A recursively enumerable set is a set where you can write a program that will output each element in the
set: E;, E,, E5... it's okay if this program never stops. People usually talk about this in the context of
languages. A recursively enumerable language is a language where you could write a program that writes
out every valid string in that language. A language is just a set of strings, so "the set of all prime numbers in
base 10" is a valid language.

Also, if a set is recursive, it’s also recursively enumerable.
Observation

Let A € N be a set.

Arecursive © A,Aarer.e.
Proof

(=) Let A € N be recursive, i.e.

X4 = {1’ ifx€A is computable

0, otherwise
We want to show A r.e,, i.e.

{, ifxeA
SCA = .
T, otherwise

Intuitively: A iy_ﬂ SCA (>> .

is computable

»

You have P, for “x € A” ’\"'D N{’ ?Xp, CX) =1 K

\>o reedun 1
e

coap:

(we’re defining the semi-characteristic function to show it is r.e.)
Formally:

sca(x) = 1(uw. [xa(x) — 1))

[} /\.L x&A computable, since it is composition/minimalisation of
A L{)c ﬁ/P- computable functions

9 A weh
A chG\me
(in words: we use minimalisation to give a finite computation if the argument is in its domain, which will be

for the characteristic function minimized and the indicator function, which will express all the possibilities
for the expression to be valid or not)

Written by Gabriel R.

172 Computability simple (for real)

Hence, Ais r.e.

Concerning Z, note that since A recursive, also A recursive. Hence, by the argument above, Aisr.e. (just
simply do the same and substitute for both characteristic/semi-characteristic function y4 and it will work).

(<) Let 4, A be r.e., i.e. the semi-characteristic functions are computable:

(1, ifx€EA
sea(x) = {T, otherwise
o _
. Y ifxeA
~sc5(x) =
. A() {T, otherwise

Here, we combine two machines, in which both are computable, given they are recursive and r.e. This

means they will both terminate and since x € Aorx € A, the process will terminate for sure. Infact, now
we consider the results of both computations, then building the characteristic function.

Letey, e € N s.t.scy = e, and 1 — scz = ¢,
Idea (combining minimalization and encoding in pairs which will terminate):
ll(u(y’ t) S(ell X, Y, t) \% S(eo,x, v, t))ly”

Formally (we apply projection and then use negated sign to represent the binary computation over the
projection on first component, hence obtaining a computable thing):

Xa () = . S(er, 2, (W), (W) V Se0, %, (W), (w)y)
wy =y W), =4,
= (1w 5(max(Xs (ex, x, (w)n, (W)2), x5 (o, (W), (W)2))))
computable. Hence, 4 is recursive.

ZlN

* K not recursive, itis r.e.

_(L ifxeK(p())
sex(x) = {T, otherwise
= 1(¢x(x))
= 1(Wy(x,x))
(W _
* RECORSIVE *Kisnotr.e.
Jonte sets .
P, %, .. Otherwise if K r.e., since K r.e., we would have
K recursive

16.2 EXISTENTIAL QUANTIFICATION

Q(t,¥) € N**1 decidable
P(X) = 3t.Q(t, %) semi-decidable

So, in words: if a decidable predicate is universally quantified existentially, it can become semi-decidable.

Written by Gabriel R.

173 Computability simple (for real)

An example might help on this:

Consider Q(t, X) be the statement "There exists a natural number t such that the sum of t and the first
component of ¥ is equal to the second component of X."

Mathematically, this could be represented as:
Q(t,%) = (t+x1 = x3)

In this example, Q asserts that there is a natural number t such that adding t to the first component of
X results in the second component of X. The solutions to Q(t, ¥) would be tuples (t, x;, x,) where this
condition holds true (in our cases, in general, t is the number of steps).

So, we mean, looking at this one, “3x P(x) is true when P(x) is true for at least one value of x”. Given it is
semidecidable, eventually some value might be found and there would be an algorithm for that. If you
consider this one, you will see quantification it’s basically “minimalisation for predicates”.

16.3 STRUCTURE THEOREM

Structure theorem (Structure of semi-decidable predicates)

there is Q(t, ¥) S N**1 decidable predicate
P(X) semi-decidable & . .
s.t. P(x) =3t.Q(t, x)

(in words: the predicate P is a generalization of a decidable predicate that is computed over multiple
points. In general, existentially quantifying transforms a decidable predicate into a semidecidable one)

Proof
(=) Let P(¥) S N¥ be semi-decidable:

sep (@) = {1, if P(®)

is computable

T, otherwise
i.e.thereise € Ns.t.scp = ¢£k)
Observe: @iff scp(®) = 1
iff scp(¥) 1
iff Pe(¥) L

iffi EIt.H(k)(e,f,tﬂ
If we let Q(t, %) = H® (e, X, t) decidable and P(¥) = 3t.Q(t, %)

(&) We assume P(¥) = 3t. Q(t, X) with Q(¢, X) decidable
1, ifP(%) & 3t.Q(t,X) & At.Xq(t,x) =1
T, otherwise
= 1(ut. | X, (t, %) — 1])
-—
Losd ae® 3 d ok
T ofhluise

sep(®) = |

Written by Gabriel R.

https://en.wikipedia.org/wiki/Existential_quantification
https://www.youtube.com/watch?v=qvgobkzCHmE

174 Computability simple (for real)

16.4 PROJECTION THEOREM

Definition (projection theorem) — closure by existential quantification

» Let P(x,y) S N¥*1 semi-decidable

Then R(y) = 3x. P(x,) is semi-decidable

N =
» Cooo)) p k. P05 37)
ng *
e ny 7
P, %, .. — i :__"?"’ - >d_,>
4 ¢
o2 CC‘J_>)

In essence, the projection theorem tells us that if we have a property that is semi-decidable for pairs of
numbers, then we can define another property about the second part of those pairs, and it will also be
semi-decidable. It establishes a connection between the semi-decidability of properties involving pairs and
the semi-decidability of properties involving only one part of those pairs.

It also shows RE class is shown with respect to existential quantification.
Proof

Let P(x,y) € N¥*1 semi-decidable. Hence, by structure theorem, there is Q(t, x, ¥) S N¥*2 decidable s.t.

P(x,y) = 3t.Q(t, x,y)

Elx. P(x,y) = 3x.3t.Q(¢t, x,y)

= w.Q((w), W)y, ¥y
W“Mﬂ/

Hence R is the existential quantification of a decidable predicate = by structure theorem, it is semi-
decidable.

Now:

Written by Gabriel R.

175 Computability simple (for real)

Theorem (Closure under conjunction/disjunction —and/or)
Let P(X), Q(X¥) S N¥ semi-decidable predicates. Then:

1) P(X) A Q%)

2) P(X) v Q(%)

Proof

semi-decidable

Since P(X), Q(X) are semi-decidable, by structure theorem, there are two decidable predicates such that:
P(xX) =3t.P'(t,X)
Q(xX) =3t.Q'(t, %)
1) P AQ(X) =3t P'(t,X) A3t.Q'(t,X)

= 3w, (P’((w)l,ic’) AQ (W), %)

(here, the projection theorem was used, thanks to structure theorem and minimalisation over decidable
predicates)

with P'(t, x), Q'(t, X) decidable

Hence, by the structure theorem, P(x) A Q(x) is semi-decidable.
2)P(X) v Q) =3t.P'(t,Xx) vat.Q'(t,X)
d il

Hence, by the structure theorem, P(x) V Q(x) is semi-decidable.

* Negation ?

Qx)="x€K"= "¢, (x) 1"
semi-decidable

QM) ="x B K" = "g () 1"

not semi-decidable

Written by Gabriel R.

176 Computability simple (for real)

Theorem (Universal quantification)

R(t,x) = =~H(x, x, t) decidable

"x € K" = Vt.R(t,x) = Vt.=H(x, x,t) non semi-decidable

This means that the set of semi-decidable predicates is closed under v, A, 3 but not under V and =

- Universal quantification is mangy to deal with because even if a decidable predicate it is universally
guantified can become non-semi-decidable. Intuitively this is true because it is indefinite to go and
test a predicate on infinite values.

This is essentially saying that there exists a property R involving universal quantification over terms
t and a variable x s.t. R is decidable but you universally quantity over t in the context of

—H(x, x,t), the resulting property is non-semi-decidable, indicating that determining membership
in the complement of set K is not always computationally possible.

16.5 OTHER EXERCISES FROM LESSONS

Exercise: Define a function total and non-computable f: N = N s.t. f(x) = x on infinitely many x € N

1%tidea

N LPo fx Pr)__ oo X, if xis even

0, if x is odd and ¢x-1(x) 1
2

11—

e
© ‘a

P
%)

- f total
- f(x) = x Vx even (infinite set)

- f not computable (total and # from all total computable functions) (Vx if ¢, istotal, f(2x + 1) =
o, 2x+1)+1+#¢,(2x+ 1))

2" idea

¢ +1, ()L

ORS! X, fu(0) 1

- total

- not computable (Vx if ¢, is total, f(x) = ¢, (x) + 1 # ¢, (x)), hence f is different from all total
computable functions

- f(x)=x,Vx€ K (E is infinite, otherwise it would be recursive and so it will be computable)

Written by Gabriel R.

@ I{ .. R Fo) = quT_l(x) +1, if x is odd and quT_l(x) 2

177 Computability simple (for real)

3" idea

F) = {x +1, if ()1

X, otherwise

- f total
- f(x)=xVx€K

- f not computable (exercise)

My take on the solution

According to the last specification:

- the function is indeed total, because is defined over the natural numbers, hence Vx over x + 1 and
defined whe ¢, is defined, undefined otherwise
- the function computes correctly the identity function, so for each value of f(x), it should halt and

output a value for x. Since we are outside K (x & K), this means ¢, (x) does not halt, however
according to the definition, in this case it should be undefined.
- this contradicts the fact f(x) should halt for all inputs and have it undefined for such x, given in

this case ¢, (x) T should happen, but it doesn’t. Given also K is not r.e. f (x) is not computable
Exercise:

If f is computable, and g coincides with f almost everywhere (except for a finite set of inputs) then g is
computable.

My take on the solution

If f is computable, there exists a function able to compute it, may it be the identity function, say you have:

_(x, x € W,
fl) = {O, otherwise

We define g(x) = f(x) Vx except those elements inside a set S; g(x) can take any value and the set will
remain finite. Say for example:

f(x) = 2x Vx € N, g(x) to be the same for f(x) except for x = 5; forx = 5, let g(5) = 100. In this case,
g(x) coincides for all x # 5 and the overall behavior of g is computable because it’s based on the
computable function f.

Because g(x) coincides with f(x) for almost all x, the algorithm that computes f can also be used to
compute g and by composition it remains computable.

EXERCISE 15.9. Prove that if P(&) is semi-decidable and is not decidable then
—P(Z) is not semi-decidable.

My take on the solution

To prove this, we can use diagonalization. Assume P (X) is semi-decidable but not decidable. This means
there exists a semi-decidable predicate Q (¢, x) s.t. P(X) = 3t.Q(t, X).

Suppose at this point =P (X) is semi-decidable and this means there exists a semi-decidable predicate
R(u,X) s.t. =P(X¥) = 3u.R(u, X).

Written by Gabriel R.

178 Computability simple (for real)

Using diagonalization, we define S(v) = =R(v, v) which says this does not satisfy the property R(v, v).
Now we consider the relationship between S(v) and Q(t, X). If we could semi-decide 3v.S(v), we would
have a semi-decision for =P (X). But this leads to a contradiction.

By the smn-theorem, we define Yw. Q (h(w),w) = S(w) whichmapswtoatermt = h(w) s.t. Q(t,w) =
- R(w,). Whenw = h(w) we have Q(h(w), h(w)) = —|R(h(w), h(w)) = S(h(w)).

This leads to a contradiction because S(h(w)) = —|R(h(w), h(w)) and =P(h(w)) = —|R(h(w), h(w)) =
R(h(w), h(w)). Since those cannot be simultaneously true, we conclude that if =P (X) is not semi-
decidable.

16.6 RECURSIVELY ENUMERABLE SETS AND REDUCIBILITY

We want to adapt the reduction as a tool for recursive enumerability as we did already for recursiveness.
Giventwo sets A,B € Nand 4 <, B:

1)if Bisr.e.thenAisr.e.

2)if Ais notr.e.then B is notr.e.

Proof

Let A <, B thereis f: N — N total computable

vx, x€A iff f(x)€EB

This is what the reduction is doing:

N

i

(1) Let B r.e.
scp(x) = {1: X ; g computable
then
s ={; 1oy = ;B(f(x))
A
hence sc, computable | ﬂﬂ
[‘ Aisr.e. ' MJFJQZ’;

(2) equivalent to (1) W

Written by Gabriel R.

179 Computability simple (for real)

- Why recursively enumerable?

We know what enumerable/countable means: our set has the cardinality of natural numbers (or smaller)

pramira) e [£orhelty, ARANNT

i.e. thereis f: N — A surjective

Lo Lo jo &) ---
= G S
Mw\, &@A

We want to show recursively enumerable sets are enumerable by a computable function.

Proposition (in old italian notes indicated as “Etymology theorem”, because it explains why we say r.e.)
Let A € N be a set.

Aisr.e. iff A= @ orthere exists f: N = N total computable s.t. A = cod(f).

Proof

(=>)LetA S Nber.e,i.e.

(1, ifxeA
sca(x) = {T, otherwise

X, Uxef

s
-\A s P

f(x) = x * scy(x) computable

img(f)={f(x)[xEN}=A

NOT total (which is not, because sc,(x) is not total, given it is only if x € A, which is a limited case)

computable

We can see it graphically as:

Assume A # 0, fix ay € A:

ifxeA
otherwise

&=

is total, given img(f) = A, but it’s not computable given we are distinguishing two cases, it’s only defined
“for some values” (only semi-decidable).

not computable

We proceed as follows: fixe € N s.t. ¢, = scy

Written by Gabriel R.

180 Computability simple (for real)

We provide the input (x), the number of steps (t). Basically, if the steps are enough to terminate on x (the
function is defined), we give x as output (hence, it provides a definite output).

ok
S R e
i Ahanit

Coﬂ% Cx),
L\

)f
h (Z)ll lfH(e' (Z)lr (Z)Z)

f(2) = { ao, otherwise

= (D1 * xule, (2)1,(2)2) + ao * x-n(e, (2)1,(2)2)

We check whether the program P, terminates over x in t steps, otherwise provide as output a,. This is
computable given it is defined by cases, using composition and encoding in pairs over the halting set.

fis:

- computable (composition of computable functions)
- total (composition of total functions)

This last fact is not completely clear, we will prove it in two ways:
2
(S)letx eimg(f) > x €A

4’ thereis z s.t.x = f(z) (this is just what the image is), hence there are two possibilities:
- X = f(Z) = (Z)l Wlth H(e' (Z)lJ (Z)Z)
hence P,((2)1) |, thus sc,(z),) 1 1

thereforex = (2); €A

- x=f(@Z)=ay€A
(2)letx e A _q) x € img(f)
\L scy(x) = 1 1 and thus P,(x) | for a suitable number of steps t
i.e. H(e, x,t) is true
Therefore, if we take z E Ns.t.(z); = x,(2), =t
f(2)=(2),=x (eg.z=2%%3".)

thus x € img(f)

Written by Gabriel R.

181 Computability simple (for real)

(<)

- ifA=0@thenAisr.e. (since @ is finite, hence recursive)
- if A =img(f), where the function f is total computable

X €A iff thereexistsz€Ns.t.f(z) =x

(we search for this input and to do so, we use minimalization) then:

sca(x) = 1(pz.1f (2) — x|)
"/& id <e el f&) zA
computable ¢ E 2

U

Aisr.e. (because sc, is computable)

Observation LetACS N

Aisr.e.iff A= dom(f), f computable

(hence

Wo, Wy, Wy, e wee €numeration of r.e. sets)
Proof

(=) Let A S Nber.e,i.e.

seu(x) = { 1 Z;;:esv:lise computable
hence, A = dom(scy), as desired.
(<=) Let A = dom(f) with f computable
4 Cx)G:N U xeh
scqa(x) = 1(f(x)) computable
hence A r.e.
Exercise LetAS N
Ar.e. iff A=img(f) computable
My take on the solution
(=) Let A € N be r.e. and we consider:
sca(*) = { 1 i)];ficefvzse

We consider for example f(x) = x * sc,(x) which is computable since it involves basic arithmetic
operations on the semicharacteristic function.

Written by Gabriel R.

182 Computability simple (for real)

Foranyx € N, if x € 4, then f(x) = x and if x & A, f(x) is undefined.

(<) Supposing A = img(F), we consider sc4(x) to be as follows:

iffy) =x

scy(x) = { L
A N T, otherwise

This one here respects the definition of being in the image and given the semicharacteristic function is
computable, thisis r.e.

Written by Gabriel R.

183 Computability simple (for real)

17 RICE-SHAPIRO’S THEOREM

The Rice-Shapiro theorem helps in proving that a set is not r.e.; in particular, the theorem says that any
observation made about computable functions can be done by testing the values of the functions at finitely
many arguments.

More precisely, the only properties of the behavior of programs which can be semi-decidable are the
“finitary properties” (properties which depend on the behaviour on a finite number/amount of inputs).

N m\,.ﬂr’) — oJbekd
one [mlle _>| b | —

4
i

Examples
- the program P on input @ outputs value 1 finitary
- program P is defined on at least two inputs finitary
- program P is defined on every input not finitary
- program P produces infinitely many values not finitary
as outputs
- the program P computes the factorial not finitary

To formalize the notion of a finitary property, we can see from the function plot “we care on what the
program is doing only for some inputs” (the blue part), the other parts (the red ones) we don’t care.

a8
A f TraN
| / ol
| ; . '
l’ .
| v\ -—
by 0l V4

We need some more tools, like:
— finite function (function defined only on a finite domain)

A function 6: N — N (this is “theta”) is finite if dom(6) is finite (considering only the finite inputs, the blue
ones, while for the rest it is undefined):

V1, if x =x

Y2, if x =x;
0(x) = 5

Yno if x =xp

T, otherwise

Written by Gabriel R.

184 Computability simple (for real)

— subfunction (part of the original function)
We say that f is a subfunction of g, written f C g,

if Vx if f(x) ! then g(x) ! and f(x) = g(x) (whenever f is defined/undefined, so is g)

L .
MJ
>

17.1 DEFINITION

Theorem (Rice-Shapiro) — consider this wonderful definition to get the idea, learn it well please

Let A € C (where A is a property of functions) be a set of computable functions and let A = {x | ¢, € A}

Then if then 7%\
&_\ Vf(fea‘l(:)EIHQf,@finites.t.@&@

T ararerkysio fodry

(the validity of a property depends only on a finite part of the function)

- We use it to prove only the way is not r.e./recursive (the blue arrow), not the contrary (red arrow
going reverse in way), starting from a finitary property
- So, if a property is r.e. then it is finitary, but the converse does not hold

Note: on Wikipedia it was written wrong the definition, because it was f € A = and not in the way “if and
only if”, which is & as above, was corrected by prof. Baldan there.

(I also did some contributions using terms of the course in Rice/Rice-Shapiro/smn-theorem English
definitions in Wikipedia and also following ones like the recursion theorems, just to clarify the concepts if
possible — of course, feel free to discredit/add your comments on those voices)

Exercise

Let f:N — N be a computable, let g = f almost everywhere (except for a finite set {x | f(x) # g(x)}
finite, then g is computable.

Proof

Assume f computable

and g(x) = f(x) Vx#x5 f(xo) # g(xo)
(1) if g(xp) T hence f(xy) 4 f— ;‘ i bl]{;Q
then g(x) = f(x) + uw.sglx — xo|

computable.

Written by Gabriel R.

https://cs.stackexchange.com/questions/67722/rice-shapiro-theorem-in-computation-theory

185 Computability simple (for real)

2)if g(xo) = yo EN
lete € Nbes.t. f = ¢,
g(x) = uw. (S(e, x, W)1, W)2) A (x # x¢)
((W)1 = yo) A (x = xo))ﬂ
computable.
An inductive reasoning allows to conclude in the general case.
Alternatively:
D={xeN|f(x)#gx)} finite

0(x) = {g(x), x €D

T otherwise finite function — computable

observe

_(fx), x €
g = {G,{x), xX€D
A

computable since it is defined by cases using a decidable predicate and computable function.
Exercise

Define a total non-computable function f: N - N s.t.img(f) = {2" | n € N}

Solution

On this, there are two ideas than can be given by diagonalization; one which is a bit long and the other one
which uses a simple/clever idea. Graphically, we are seeing if the image is the set of powers of 2, which

corresponds to:
N P P @ P
t .

g L -4 | 1 .
! |

S Y . [

2

3 :

We can use diagonalization on this based on the power of 2, which may be represented by:

2@, if ¢ (x) L

f="" e

- f total
- f notcomputable, f # ¢, (x) # f(x) + 1
- img(f) ={2" =n e N}
o (S)Vx, f(x)
" x4+ 12 2¢,(x%)
» x=0,2=1

Written by Gabriel R.

186 Computability simple (for real)

o ()Ixs.t.f(x) =2"xs.t.p,(2) =nVvz
" Pr(x)=nl

We are interested, considering a program on |/0O, for Rice-Shapiro’s theorem on different things:

ouT
—

o

N
Y

- program properties concerning 1/0
- properties of computable functions A € C
o T={fec]|fistotal} ={f € C|dom(f) =N}
o ONE ={1}
o H
- program properties (extensional/saturated = all the problems computing the same function extend
a property, that’s why they are called extensional) as sets of programs A € N
o T={x|¢.€T}
S .PONE:{xl(Px:l}
O :

On this aspect:

- Rice’s theorem explicitly says “no meaningful I/0O program property is decidable — only trivial
extensional properties are decidable” — no property is decidable, but we can relax the hypotheses a
bit with the following one

- Rice-Shapiro tries to figure out “if properties of programs (extensional)semidecidable only if
they are finitary (it talks about the behaviour of the program only on a finite set of inputs)”

o Rice-Shapiro is used to check if something is not semidecidable, not “if it is”

Remember the definition given here. Now we will give the full proof.
For your reference in this section to not go up:

I [A e wel] e
Y5 (-Fg_v_k e ABs 0 Buite mﬁm)

17.2 PROOF

We want to show that (x) = (%)

For this we show — (%) = —(*)

This amounts to:

(note: A corresponds to the “calligraphic A” (subset of computable functions), A is the set)
1) Af s.t.f € Aand 30 € f,0 finite,0 € A = Anotr.e.

2) Af s.t.f e Aand V0 C f,0 finite,6 € A = Anotr.e.

Now for the proofs:

1)3f, f € Aand 30 C f, O finite with 6 € A = Anotr.e.

Let f & A be s.t. where thereis 8 C f, 0 finite, 0 € A.

Written by Gabriel R.

187 Computability simple (for real)

We consider the set not r.e., which is the complement of halting set, specifically:

EZ{JHX&VV}C}SmA

md pe

To do this, we need a reduction function, considering the halting set and its complement compared with
the set itself:

Define as usual a function of two arguments (we do this to parametrize it sooner or later, which will happen
thanks to smn-theorem):

at
Iuy) = {H(y), xek

fQ), x€K
This seems not computable, but actually !'t is. We “explode” the cases this way:
9(37), if x € K and y € dom(0)

T, if x € Kand y ¢ dom(0)
f), ifxek

_ {f(y). if x € K ory€dom(§) _

1, otherwiseT/ olecs l.ﬂreQ/
Q(x,y) = "xEKVy’éW
) - ‘-_‘_-r__l
A L i

_/_V\—/_J
WW

4 0 Qe
L& S () = '{ ? jﬁwumsi)

compotalbee
= f(y) *sco(x,y) computable by composition

By the smn-theorem, there is a total computable function s:N = N s.t.Vx, y:

0(y), x€K
f), x€kK

We show that s is the reduction function for K < A (proving the picture is correct)

¢s(x) =g(xy) = {

- ifxeEK->s(x)€EA N L

let x € K then Vy, b5 ¥) = glx,y) = 0(y) hence g,y =0 EA=
s(x) € A (functions same on every input and the program is in the same set) .

Written by Gabriel R.

188 Computability simple (for real)

- ifxeK-skx)€eA
letx & K i.e. x € K then b5 ¥) =g(x,y) = f(y) hence g5,y = f EA=> s(x) €A
Hence K <,, A and since K not r.e. we conclude A not r.e.
2)ifthereis f € As.t.V0 < f, 0 finite, 6 € A = Anotr.e.
Let f € A and assume V60 C f, 0 finite, 8 & A (all functions have not the property)

The reduction considers the complement of halting set gives the function, then the halting set gives the

finite subfunctions. So, we show K <m A and we will conclude.

The following is the intuition, considering the second argument exists if the index is fixed over the first

argument:
GCoy) =" {f(y), xeK, P, (x) T <« infinite
/T 9((31)’ x€K P, (x)T « finite

We use y as counter, checking if program does not or does terminate in y steps.

B (), if =H(x,x,y)
g(x.y)—{ T, ifHxxy)

(if we are in first case, the computation will always continue and always be in first case, obtaining f,
otherwise if it stops in the defined number of steps, this is undefined — we use a characteristic function for
the halting set property just defined here)

=f) tuz. xulx,x, y)

e} I-E -H f'.tpcp&ﬁ Puh%
4 W ‘r-.‘(fx"x_&j
—_— -
Q W = H[rxg:,\d)
f oframmse

(we use a fake minimalization just to say “it may halt or not according to the underlying predicate”)

Hence, by the smn-theorem, 3s: N — N total computable s.t. Vx, y:

bao) =) = ([0 G

We show that s is the reduction function for K <,, A.

Written by Gabriel R.

189 Computability simple (for real)

- xEK-skx)€EA
if x €K, then ¢, (x) Tie. P(x) 1 ™
ThenVy —H(x, x,y).
Thus Vy, s () = g6, y) = f()
Therefore, ¢5(x) = f € Aand thus s(x) € A

- x€EK-s(x)eA
if x € Kthen ¢,(x)lie P.(x)!
Then 3y, € N s. t. Vy <y, =H(x,x,y) (the computation is still going)
y =y, H(x,x,y) (the computation has stopped)
thus

fO) ify<yo
T, otherwise

bso(¥) = gx,y) = {
Then ()bS(x) c f
dom(¢sex)) € [0,¥0) bse) finite

i.e. Ps(x) is a finite subfunction of f, hence ¢g(y) € Ahences(x) € 4

Thus K <m Aand, since K not r.e., Anotr.e.

Typical use of Rice-Shapiro: Prove that A € N notr.e.

1) Af s.t.f ¢ Aand 3 0 C f,0 finite,6 € A= Anotr.e.

(there exists a function which is not in the set and there is a finite subfunction which is in the set)
2) Af s.t.f €Aand VO € f,0 finite,0 € A = Anotr.e.

(there exists a function which is in the set and, for all finite subfunctions (be precise here, don’t do the
mistake | did) there is a finite subfunction which is not the set)

So, here that | wrote it, you see what’s the point of this; use subfunctions to prove your own thing each
time working always for saturated sets, given we think about extensional/saturated properties.

Rice-Shapiro provides a general framework for proving undecidability based on properties of functions. It
doesn't require constructing intricate functions for specific cases each time.

- The key idea is to leverage the existence of finite subfunctions to show undecidability.

- The theorem captures the essence that for certain properties, whether a function is total or not,
there always exists a finite subfunction over which the property can be defined, or vice versa.

Written by Gabriel R.

190 Computability simple (for real)

17.3 EXAMPLES

Example (Totality)

Consider the following example, for set of total functions:
T ={f|f is total}
T ={x|xe€rt}={x]|¢p,istotal}

We can use Rice-Shapiro (1) and (2) present above; find finite subfunctions over which can be defined even
if set is not totally defined or viceversa.

- Tisnotre.
Consider the identity or any other total function (the identity is always defined)
id €t dom(id) =N
VO cid 0 finite dom(0) finite #N=>0 ¢t
= T is not r.e. (by Rice-Shapiro)
- Tisnotr.e.
idgT and 0 =@ finite @(x)TVx 6<id €T
= T is notr.e.
Example
ONE = {x | ¢ = 1}
= {x | ¢x €{1}}

— ONE isnotr.e.

1€ {1}and VO € 1,0 finite,8 &€ {1} = by Rice-Shapiro, this is enough to say ONE is not r.e.

— ONE isnotr.e.

1¢{1}and @ = @ C 1,0 finite,6 € {1} = by Rice-Shapiro, ONE is not r.e.
Observation: The converse implication of Rice-Shapiro is false
AcC A={x|¢, €A}
VF(fEA ©360Cf 0 finite 6€EA
Ar.e.

Counterexample

ACCCs.t.
a)Vf (f€EA © 36 Cf,0 finite,0 € A)
b)A={x|¢, € A}notr.e.

Written by Gabriel R.

191 Computability simple (for real)

We claim A = {f | dom(f) N K # @} satisfies (a) and (b)
1) let f be a function

- feA=>dom(f)N K+ 0@ i.e. 3xy €dom(f)NK

if we define 6(x) = {f(x% ;Ct:ei?/vise

0 C f,0 finite, dom(8) = {xy}
> dom(@)NK ={x,} # 0
- ifthereis @ C f,0 finite,6 € A
dom(0)NK # @

m

dem[£)
—»dom(f)NK Sdom(®)n K # @
sdom(f)NK+@ —>f€EA
b) A = {x| ¢ € A} = {x | dom(¢,) N K # @} notr.e.
Intuition: Assume that you can semidecides if x € A

in order to check x € K create

R§ © (‘é)
| =X —
d ‘;dd‘-ﬂ[m 0 Qmd duck i & darm (B) n W # ¢ ?
e Goog =

We show K <,, A

0, y=x

. computable
T, otherwise P

define g(x,y) = pz.ly — x| = {

by the smn-theorem, there exists a function s: N — N total computable s.t.
g(x: y) = ¢s(x) (y)

s is the reduction function for K <,, A

x €K @dam(¢s(x))nﬁqt(2)(:>s(x) €A
Vg
4y

since K not r.e. then A is not r.e.

Written by Gabriel R.

192 Computability simple (for real)

18 FIRST RECURSION THEOREM

In programming languages, we have higher-order functions that take other functions as arguments and
produce functional results.

For example consider this functional type, in which a function takes in input a function of same type and
gives as output another function of same type. Our computational model is not able to represent that,
considering the output function are likely to be infinite objects and hence incapable of being given in a
finite time. Consider the following example, written in Go language:

type T = func (int) int
func succ (f:T)T
res = func (x:int) int
return f(x) +1
returnres

These in computability can be defined as operators (as in the book) or functionals (as the professor, prefers,
this is used here). Specifically here, we take an integer, and we map the sum of the same type, as integer,
incrementing by 1 the function as you can see.

This means a functional takes “functions as input” and “produces functions as output”. A key characteristic
is its effectiveness, meaning it can handle infinite inputs and outputs. They calculate in finite time “using
only a finite part of the finite function” (hence, they are called operators because of this — the definition
comes from Cutland, more later)

Consider functionals as higher-order functions that take functions as arguments and returns functions as
results.

®: F(N¥) - F(NM)
in which F is defined as the set of functions this way over k/h tuples:
F(N*) = {f | f:N¥ - N}
Both present above are total.
What is a functional @ recursive (computable)?
Example: successor (from now on, functionals are written in mathematical language)
succ: F(N') - F(N1)
f e succ(f)
where succ(f)(x) = f(x) +1
Example: factorial
fact:N - N

1, ifx=0
x * fact(x — 1), if x>0

fact() = |

Prace: F(NY) - F(ND)

Written by Gabriel R.

193 Computability simple (for real)

f = q)fact(f)

where

_ 1, ifx=0
Ppgee (f) () —{x*f(x_l), ifx>0

vn this ‘wat toe

Fixpount exists
/ OMicue

e
then the factorial fact: N — N is a fixed point/fixpoint of ®¢,; (a function which is not changed from the
transformation and is an element mapped to itself by the function) , i.e. f:N = N s.t. ®¢,c(f) = f.

Looking here, a fixed point x in a set X s.t. x € X is a fixed point with a map to itself such that f(x) = x.

We won’t prove the fixed point yet; assume, in this case, the fixpoint exists and it is unique.

Example
f:N->N
~ 0, ifx=0
f() _{f(x+1), if x>0
f(0)=0
f(2)=?

(thiscangoon, so f(2)is f(3), f(3) is f(4)... so it will be defined for all natural numbers or just
undefined).
functional @:F(N') - F(N?)

_ 0, ifx=0
¢UX@_{ﬂx+D, if x>0

[ﬂ"‘ﬁiswuc

there are (infinitely) many fixed points for @

_ (0, ifx=0
f(n)_{T, if x>0

fre(m) ={2: i;i;g fork €N

Example (Ackermann’s function — just to refresh, it was defined here — definition by cases recursively):
¥:N?2 > N

Y0,y)=y+1
Y(x+1,0) =¥(x,1)
Yrx+1y+1)=¥(x¥x+1y)

(I do remember you by courtesy, W is uppercase psi). We introduce the corresponding functional:
functional: ¥: F(N?) - F(N?)

YHO,y)=y+1
Y(Hx+1,0)=f(x,1)
YAH)x+1Ly+ D) =f(x+1,f(x,y+1))

Written by Gabriel R.

https://www.karlin.mff.cuni.cz/~prazak/vyuka/101/Literatura/vittorino-FP.pdf

194 Computability simple (for real)

I”

W Ackermann’s function is some “special” fixpoint of W.

In simpler terms, the statement is asserting that when you apply the functional transformation ¥ to
Ackermann’s function, the result is Ackermann’s function itself. This makes Ackermann’s function a fixed
point of W, which is special because it behaves as the fixed point of itself.

So, we ask: What is a recursive (computable) functional?

Idea: Given &: F(Nk) — F(N") we ask that V ¥ € N", (all the tuples)
®(f)(X) is computable (so, value of transformed function is computable)
— using a finite amount of information on f
i.e. values of f over a finite number of inputs
— the finite amount of information is processed in an “effective way”, so in a computable way
More precisely, in order to compute ®(f) (%)
— we use a finite subfunction 8 C f
in a computable way i.e. there is ¢ computable (in the old sense)
N = 0.9 gurodimt o| O
z./—_/
= ¢(6,%) JM}

(we refer to a number of points which can be referred to as finite subfunctions in order to compute other
computable functions; here, the problem is that we have functions, not numbers)

Note: finite functions can be encoded as numbers (encoding of finite functions)
0> 6€eN

Y1 if x =x
Y2, if x =x;

0(x) = :
Yn, if X =Xn
T, otherwise
n
5 yi+1l
9 - Pxiil
i=1

(the productory represents uniqueness of the composition of numbers into prime functions)
given the above encoding, we can check if values are or not inside the domain:
x € dom(0) if f (9)x+1 # 0

if x € dom(@) thenf(x) = (5)x+1—' 1

Written by Gabriel R.

195 Computability simple (for real)

18.1 RECURSIVE FUNCTIONALS

Definition (Recursive functional)
A functional @: F(Nk) — F(N") is recursive if there is a total computable function
¢:N"*1 > Ns.t. forall f € F(N¥)
for all ¥ € N?
O()X) =y iffthereexistsf S fs.t.¢p(0,%) =y

In simpler terms, recursive functionals essentially produce outputs of the same type as a finite part of the
input function, acting as both input and output themselves.

All the functionals that we considered above are recursive (given they are finite only on limited number of
points).

- Insimple terms, a recursive functional is a higher-order function that can be effectively computed
by a total computable function.

- You only need the value of the function on a single point and then, given it is defined on a finite
number of points, it is recursive only from specified set of functions to other sets of the same kind

Observation: Let ®: F(N¥) - F(N") be a recursive functional and f € F(N¥).
If f is computable then ®(f) is computable.
Observation: Let ®: F(N') — F(N') be a recursive functional and let f € F(N*) be computable.

If f:N — N is computable, then ®(f): N — N is computable

g S
aelN
AL Xk SR
-‘%' 2'6 l‘N \Pu 0._&
(everything can be computed by programs, from a starting to a target function)
hence @ induces a function over programs
h(D: N -> N
e ho(e) =a s.t. D(¢e) = ppy(e)

(so, from the image of the functional of program computed by program e, what you get is a function
computed by the transformed property)

This is defined as extensional function: Ve, e’ € N s.t. ¢, = ¢, then ¢p o) = Dr)(e"

(from programs which compute the same function, if you apply the functional transformation, the two
programs will compute the same function)

It should be noted that the book defines precisely the functional as continuous and monotone; | add this
because the professor notions given up until this last one precisely state this.

Written by Gabriel R.

196 Computability simple (for real)

18.2 MYHILL-SHEPHERDSON’S THEOREM

Definition

(1) Let &: F(Nk) — F(N%) be a recursive function. Then, there exists a total computable function hg: N —

Ns.t.Ve €N, dD(ék)) = ¢)f(li()¢)(e) and hg is extensional.

(For this first part - intuitively, the behaviour of the recursive functional on computable functions is
captured by a total extensional function on the indices)

(2) Let h: N — N be a total computable function and h extensional.

Then, there is a unique recursive functional ®: F(Nk) — F(NY) s.t. for all e € N (possible programs)

)\ _ @
@(4:°) = it
(For this second part - Computable extensional functions uniquely identify computable functions through
program transformations. In contrast, recursive functionals extend this identification to non-computable
functions, highlighting that all functions, even non-computable ones, can be approximated precisely by
computable functions, like finite subfunctions).

In Wikipedia, | see this can generally extended as “Myhill isomorphism theorem”, which provides a
characterization for two numberings (assignments of natural numbers to sets of similar objects) to induce
the same notion of computability on a set. Basically, there exists a total computable bijection, which maps
elements reducible to each other in both directions, given the functions are extensional.

The Myhill-Shepherdson Theorem, stemming from the Rice-Shapiro Theorem, defines the computable type
2 functionals. These functionals operate on computable partial functions, yielding numbers as results in
cases of termination. Notably, they adhere to a specific effectiveness criterion and exhibit continuity as
functionals. This can be also found here.

Transforming a function means transforming the program in an effective way, basically.

Consider then the extensional program transformation h (which never uses the syntax, only calls the
program over some inputs)

IN — i (P
@ TV e
AP

S (N°)

We can characterize a
topological structure in order
to represent the computable
functions, which are the small
minority, defining functionals

as unique over the naturals.

Written by Gabriel R.

https://www2.mathematik.tu-darmstadt.de/~streicher/LOGIK2/turi.pdf

197 Computability simple (for real)

18.3 DEFINITION

Definition (First Recursion Theorem — Kleene)

Let &: F(Nk) — (N¥) be a recursive functional. Then ® has a least fixed point fg: N¥ — N which is
computable i.e.

() @(fp) = fo

(i) Vg € F(N¥) s.t.d(g) = g itholdsthat fp, € g

(i) fo is computable

This is also called “Kleene’s First Recursion Theorem” or Fixed-point theorem (of recursion theory). The
Cutland Computability book specifies it is used to give “meaning” to programs, computing a recursive
program, ensuring implementing the program will be defined rigorously over its inputs in a correct way.

Example: Ackermann function
¥: F(N?) - F(N?)

YOy =y+1
Y(H)x+1,0)=f(x1) recursive functional

YO x+1L,y+D)=f(x+1,f(x,y+1))

the Ackermann function v is the least fixed point of Y which exists and is computable by the First
Recursion Theorem (fixpoint is unique since it is total and means applying the functional a certain number
of times to get eventually to a base case).
Example
0, ifx=0
fe) = {f(x+ 1), ifx>0
functional ®: F(N') - F(N?)

*N® ={rr 1)

0, ifx=0 .
1, if x>0 ‘/abKQM*IJML

there are many fixed points for @:
e NNV\L' UL'o
\\f(n) -{
M‘E’W ¢] QQK N)

fk(n)={2: i;iig fork eN

Example: minimalisation
f:NF+T 5N

wy. f(%,y):NF > N

can be seen as a least fixed point (because it uses f on a finite number of points). The important thing is
that the recursive functional is defined using only a finite number of times the function it receives as an
argument.

¢:F(Nk+1) N F(Nk+1)

Written by Gabriel R.

198 Computability simple (for real)

y, iffEy)=0
D(g)X,y) =4gF,y + 1), if f(X,y)land #0
T, otherwise

least fixed point is m: N¥*1 - N /EMM
nGi) =2y g A T Rec Theoom

hence

m(¥%,0) = uz. f (%, z)

Written by Gabriel R.

199 Computability simple (for real)

19 SECOND RECURSION THEOREM

Let f: N = N be computable, total and extensional (which takes in input a program and provides in output
a transformed program — if the starting program computes a function, the output program computes again
the same function, as you can see here):

P ¢ < et
SO MY

” Pew\z ‘Pm’)

by Myhill-Shepherdson’s theorem, there exists a (unique) recursive functional ®: F(N) — F(N) which has
the same behavior as f:

Ve € N cD(‘Pe) = ¢f(e)

By the First Recursion Theorem, @ has a least fixed point fo: N = N computable. Therefore, there is a
program ey, € N s. t. -

{ @(fo) = fo
Jeg ENs.t. fo = ¢,

q)eo = fq) = q)(fq)) = (D(¢60) = ¢f(30)
In summary, given f: N — N computable total ex‘t% |, thereis ey € N s.t. o) = Pr(e,)

(we are saying that we take a program, we apply an effectlive transformation in an extensional way [say,
replace instructions such as successor, jump, remove lineg], there will always be a program which is not
changed by the transformation of the function, even before and after)

)\‘_,p\ .
2 WL O/\"
In practice:

- same hypotheses as the first recursion theorem, but without the assumption of extensionality
- first recursion theorem gives meaning to a program over a certain number of inputs which are
confined finitely on some sets/number of points (this is the point of Myhill-Shepherdson)

19.1 DEFINITION AND PROOF IDEA

Definition (2" Recursion Theorem)
Let f: N — N be a total computable function. Then, there exists a program eg € N s.t. e, = Pr(e)

(the key is that is the program is transformed, so not the same before and after the transformation; the
function, instead, remains the same — this theorem states that this holds also when f is not extensional)

It is also called Kleene’s Second Fixed Point Theorem (aka Second Recursion Theorem) and:

- If two programs compute the same thing, that is, with the same input they give the same output,
then both programs compute the same function
- As Cutland writes, it has its name because it justifies very general definitions “by recursion”

Written by Gabriel R.

200

Proof
Let f:N — N be total computable.
Observe x = ¢, (x) computable
I/
l'ru 0‘,75)

x - f(¢p,(x)) computable

Computability simple (for real)

define
glx,y) = ¢>f(¢x(x))(y) convention ¢ =T
= LpU(f(d)x(x))) y)
=Y, (f(Yy(x,x),y) computable

By the smn-theorem, there is s: N — N total and computable s.t. Vx,y
s (V) = 90 Y) = b)) (9

Since s is computable, thereism € N s.t. S = ¢,,.
Substituting in (*)

Do) V) = Pr(pr) V) VXY
In particular, forx = m

Do) (V) = P(pum)) V) VY
Hence

Ppm(m) = Pr(pm(m)
If we let ey = ¢,,(m) 1 and replace in the previous equation, we conclude
bey = Dr(ey)

(note that ¢,, = s total, hence ¢,,,(m) {)

This theorem can therefore be interpreted in the following manner “given any effective procedure to
transform programs, there is always at a program such that, when modified by the procedure, it does
exactly what it did before, or it is impossible to write a program that changes the extensional behaviour of

all programs”.
Idea

(We discuss the idea behind the proof given, according

to the professor, the “mysterious” nature of the (f h:N=N @mputable

statement and the proof itself — a possible
interpretation comes from a diagonalization argument. ?“ e

This theorem is pretty deep and like the other

recursion theorem by Kleene itself, is a really LFhm (Ph[ij

important result)

Written by Gabriel R.

CPhiLJ' cPhIs) et m—m

201 Computability simple (for real)

(you can use this enumeration to transform it to a different enumeration; the second one might not be an
enumeration of computable functions, but only some of them)

you can do the above forh = ¢; i =0,1,2.... (doing it for all the possible computable functions)

LP%M CP«&.rz)

(‘F‘?—ﬂ?—}

— h’(x) = (ﬁ\[ﬂ-)

In the proof we took the diagonal transformed by f:

h(x) = f($x(0) = f(Yu(x,0)) = P (x)

(E&m Cﬁ{z,tz)

Ea _
Ez R
P)
\}//\ P frmiem
B R Ry Thewy e B
fepom fepan Fep,) - N F(GunlmY)

~

(Since everything is computable, also is the enumeration and so the program must be somewhere, defined
as E,, — via the diagonal transformation, we find the right element because the sets are saturated and so
the element is the same)

Let’s consider again Rice’s theorem; what the next part is essentially saying is that using Second Recursion
Theorem, the proof is much shorter, proving it directly in a few lines.

19.2 APPLICATION EXAMPLES

Rice’s Theorem

Let A € N saturated, A # 0,4 # N, then A4 is not recursive
Proof (alternative proof using 2"¢ Recursion Theorem)
LetA € N,A # @, A # N saturated

(it means all programs inside a set are computing the same functions, so if you have a program, in either
sets each one computes the same thing)

Written by Gabriel R.

202 Computability simple (for real)

Axd ot Fen e A

AN ~y Je e A

Assume by contradiction A is recursive and define f: N - N

€, x €A

fx) = {eb e
=ep*xate*xz(x)

IfxX€EA-> xa(x) =1 xz(x) =0 ey*x1+e; x0=¢g
ifxEA->x,(x)=0 xz(x)=1 ey*x0+e;x1=1¢

If A recursive, f computable total but foralle € N, . # (e

- e€A= f(e) =ey & Aandsince A is saturated (they can’t compute the same function, otherwise
they would be both in the same set), so ¢, # @)
- e&A> f(e) =e; €A, thussince A is saturated, ¢, # Pr(e)

This is absurd, given it contradicts the 2"¢ Recursion Theorem — A not recursive
(and this arises by the fact we considered A recursive, but actually it is not).
Proposition: The halting set K = {x € N | ¢, (x) !}

Proof (alternative proof using 2" Recursion Theorem — which again is shorter and easier)

f el <. QPEO[’L}T Va

we have foe KK

i @ eIN o f @el[x) =41 Yo

we owe €€ K

Define f:N - N s.t.

_ (eo, ifxekK
f(x)_{el, ifx¢K
= e * yg(x) + ey * xz(x)

If K were recursive, then yg, xz would be computable and f would be computable.

Since f is total (it also means it has a fixed point), by 2"¢ Recursion Theorem thereis e € N s.t. ¢, = s (e)
(which is impossible this last one, but we assume it is):

—e€K= f(e) = €9, SO ¢e(e) L # ¢f(e)(e) = (peo(e) T
—e¢K=f(e)=e,s0p.(e) T+ ¢f(e)(e) = (pel(e) =11l

Written by Gabriel R.

203

there is a contradiction again because we assume K to be recursive.
Hence, K is not recursive.

* K is not saturated

K ={xeN]|¢,(x) I}

We want to show that there aree,e’ € N s. t.

d)e:‘pé
e€EK, e' ¢ K

* Assume that thereise € N s.t.

_ (0, ifx=e
e (x) = {T, otherwise
then
- e€Ksinceg(e) =01
- thereexistse’ EN, e’ #es.t.¢p, = P,
e' ¢ K ()be’(e,) = ()be(e,) T N
e e
* We need to show that there exists e € N s. t.
_ (0, ifx=e
e (x) = {T, otherwise

Computability simple (for real)

(the notes here try to observe that there is an e s. t. o, = {(€o, €9)}, which | think is clear)

We think of a possible program which checks if the input is the program itself, otherwise loop (this is called
“quine” if you look in Wikipedia —where | also wrote more notes about the two recursion theorems,
basically extending the notion of computable functions and writing the definition of our course).

In words, this theorem essentially proves the existence of such a program, considering it will match any

input as its code with no problems.
iortuiiom
KEeem%p\gr
@ P o(x) ¢ //fﬁﬁmm we au difimng

‘_F € = 73)
B vetwam O

doe fecp

Formally, we define a function parametrized:

ifx=e

gl ={7

=uz.|x —e| computable

Written by Gabriel R.

otherwise

204 Computability simple (for real)

By the smn-theorem, there is s: N — N total computable s.t.

0, ifx=e
bson@) =gx,y) = {T’ otherwise

since s is total computable, by the 2" Recursion Theorem, there is e, € N s. t. Pe, = Ds(e,)- Hence:

(Peo (x) = (.bs(eo) (x) = ‘g(eo'x)) = {(T)‘: i)];;lce:Wel(;e

Observe that ¢, € K and we also know that there are infinitely many indices for the same function. Thus,
lete # ey S.t. e = Pg,- Then ¢e(x) = e, (%) T.

So, ey is the desired program and e & K. Thus, K is not saturated.

Exercise: Random Numbers (from the 1t Lesson)

— n € Nis random if all programs producing n in output are “larger” thann
There were specifically two questions:

— there are infinitely many random numbers

— the property of being random is not decidable

Try again to solve this one:

— size of a program? |P,| = e (combinatorial, many programs computing the same function)
— definen € Nrandom if foralle € Ns.t.¢,(0) =nitholdse >n

(here we need 2" Recursion Theorem)

Solution

It can be found here.

Exercise

Let f:N — N be a function and consider Bf = {e € N | ¢, = f}

Are By, B_f recursive/r.e.?
1) f not computable

B = 0, B_f = N recursive (hencer.e.)

Written by Gabriel R.

205 Computability simple (for real)

2) f computable
By is saturated, By # o, B #N = by Rice, By and B_f not recursive
Can it ber.e.? Yes, sometimes it is.
Suppose we have the always undefined function:
f=0 ()T vx)
Br ={e| ¢, # 0}
={e | 3x. g (x) I}

L———N}
SCB_f(x) = 1(uw.H(x, (W), (W)3)

Complete solution (exercise completion and conclusions)

- More generally, if f = @ finite, take any total g suchthatf C g
g # By, f:0 C g finite 6 € By = by Rice-Shapiro, By is not r.e.

- If fisinfinite
fE€Br={f} VOCSf,0+f,0 finite,0 ¢ Bf = Byisnotr.e,
Also, B_f isnotr.e.

- if f = @ then B_f is r.e. (because of what was said above)

- iff#0Qthenf qt,B_f = {f_},H =Q0Ccf,0¢€ B_f - by Rice-Shapiro,B_fis notr.e.

Written by Gabriel R.

206 Computability simple (for real)

20 ENDING LESSONS — EXERCISES

20.1 Exam oF 19/01/2022

A typial sam ..

Computability
Jan 19 2022

de ’% mikoms
/ puods
sma® Voxiohoms

a. Provide the definition of reducibility, i.e., given sets A, B € N define what it means
that A <,, B.

Exercise 1

b. Show that if A is not recursive and A <,, B then B is not recursive.

c. Show that if A is recursive then A <, {1}.

tomstuuchioms of R /R
diq%nm&soﬁom.
Exercise 2 SO

Is there a non-computable total function f : N — N such that f(x) = f(xr+ 1) on infinitely
many inputs z, i.e., such that the set {r € N | f(z) = f(z + 1)} is infinite? Provide an
example or show that such a function cannot exist.

Hossify sets (mﬁéwe’) , sahwmledmess
Exercise 3 L/

Say that a function/f : N — N is quasi-total if it is undefined on a finite number of inputs,
i.e., dom(f) is finite. Classify the set A = {z € N | ¢, quasi-total} from the point of view
i.e., establish whether A and A are recursive/recursively enumerable.

of recursiver 1e885,

Exercise 4

Classify the set B = {r € N | 3y > 2z. y € E.} from the point of view of recursiveness, i.e.,
establish whether B and B are recursive/recursively enumerable.
On this exam just taken as an example, some comments in general (each exercise weights 8 points):

- this is the structure more or less
- you have to try to be as much precise as possible, taking nothing for granted or saying, “this is
obvious”, says Baldan — try to articulate proofs and exercises

Written by Gabriel R.

207 Computability simple (for real)

In case you are (masechist-and-insane} interested in the oral exam:

ORAL EXAM|[: optiomal , meeded Jor dishmchom (ode)
focuped om ey /puods

mm%a B A

Exercise 1

a. Provide the definifion of reducibility, i.e., given sets A, 5 © M deline what it means
that A =, B.

b. Show that if A is not recursive and A =, 5 then B is not recursive.

¢. Show that if A is recursive then A =, {1}.

(a) We say A <,,, B if there exists a total computable function f:N - Ns.t.Vvx € N,x € Aiff f(x) € B
(b) We prove the counternominal, i.e. if A <,,, B and B recursive, then A is recursive.

Assume B recursive, i.e.

xg(x) = {é’ X €B is computable

, otherwise
observe that (*\

x€EA \2{1, f(x)eB

1,
x5 (x) = {O, otherwise ~ |0, otherwise

= xp(f(x))

since y4 is the composition of computable functions, it is computable = A is recursive
(c) Ais recursive = A <,,, {1}
If A is recursive, then

xa:N->N

(x) = {1, XEA
Xalx) =1, otherwise

= xp(x)
is computable and total
x €AIff xa(x) = 1iff xa(x) € {1}
hence y, is the reduction function for A <,,, {1}
Extra question: Does the converse hold?
A <, {1} then A is recursive
Yes, since {1} is finite, hence it is recursive.

Alternatively: let f:N = N be the reduction function for A <,,, {1}.

Written by Gabriel R.

208 Computability simple (for real)

Then, Vx
x €EAIff f(x) ={1}iff fx) =1
thus

xa(x) =35g(f(x) — 1)) = {(1) if fo) =1 _ {1, X €A

otherwise 0, otherwise

Exercise 2

Is there a non-computable total function f : M — N such that f(z) — f(x+1) on infinitely
many inputs x, i.e., such that the set {x € N | f(x) — f(z + 1)} i8 infinite? Provide an
example or show that such a function cannot exist.

Idea (bruteforce one (1 = diagonalization) — more elegant one (2))

* i T

0 - .

. | |

\lag.u — [2 ' |
NG . l

3 - —— = |

¢y(x)+1, if x =3y for someyand ¢, (x) |
g(x) = ' 0, if (x =3y forsomeyand $,(x) 1) orx+3y Vy
13
Note that g is:
- total

— not computable since Vy, ¢,,(3y) # g(3y)

- if¢,(By) L then g(By) = ¢,(3y) +1
- if¢$,(3y) Ttheng(By) =0

— there are infinitely many x s.t. g(x) = g(x + 1)
Vy ifx=3y+1
neither x nor x + 1 are multiples of 3, hence g(x) = g(x + 1) = 0 by construction.

(Trying the same argument with multiples of 2 can work — but actually, it’s easier to define the function but
more difficult to prove it correct, since it would require showing the function differs each time from an
even number of arguments — arguably more difficult to prove)

Written by Gabriel R.

209 Computability simple (for real)

2) alternative solution

Can | use yk? (characteristic function of the halting set)

o A A 2] o .- ..

I_ | - —

o/‘\}E"l

Observation:

Let f: N — N be a function s.t. cod(f) = {0,1} and thereisd € Ns.t. Vx > d, f(x) # f(x + 1)

Qo 'ﬁl ’Gz {ﬁdlo 4 (o] 4 -
i ' 1 -' f t T
0 1 2 d dta dtr diy
-
Then, f is computable. 0 1 2 % .-

In fact, let:
fx)=v, x<d andvy=0
(assuming it stops until a point and then it will start alternating)

and define g: N — N by primitive recursion:

g(0)=0 rabl
gy +1) =5g(g(y)) CTPHEE
then
d—1
o = [590x - i+ vi+ 9=
i=0
computable.

(trick we used for all the finite functions is to use the productory; the sign function tells us “I want to find
exactly x” and then, one multiplies by the right value, subtracting the upper bound)

Hence, the desired function in the exercise can be f = yg

- xg total
- Xx hon-computable
- Vd,3x =ds.t.yg(x) = yx(x + 1) (otherwise, it would be computable)

Again, a diagonalization argument — there are infinitely many inputs and there will always be fixed points
such that you can’t possibly compute them all, so the condition x < d will totally hold, but not effectively)

= {x e N| yx(x) = yx(x + 1)} isinfinite

Written by Gabriel R.

210 Computability simple (for real)

Exercise 3

Say that a function f : N — N is gquasi-total if it is undefined on a finite number of inputs,
e, dom(f) is finite. Classify the set 4 — {x € N | ¢, quasi-total} from the point of view
of recursiveness, i.e., establish whether A and A are recursive /recursively enumerable.

Conjecture:

Being quasi-total means it has to be defined on an infinite number of inputs (because it is undefined on a
finite number of inputs); because of this, it is not r.e. since you can’t write the semicharacteristic function —
the complement will be undefined on an infinite number of inputs; on the complement, again for same
conclusion on normal set, it is not r.e.

Anotr.e. Anotr.e.
Ais saturated:
A={xeN|¢p, € A}
A = {f | f is quasi total} = {f | dom(f) finite}
- Aisnotr.e.

Observe that id € A since dom(id) = N and so dom(id) = N = @ is finite and for all 8 € id, 0 finite, 0 &

A (so, we're saying this is not quasi-total), since dom(8) is finite = W infinite.
Hence, A is not r.e., by Rice-Shapiro.

*Aisnotr.e. (A = {f | f not quasi — total} = {f | dom(f) infinite}

note that id € A and @ = @ C id finite and 6 € 4 since dom(8) = @ = N infinite.
Hence, by Rice-Shapiro, Aisnotr.e.

(Professor suggests to not proceed by reduction, given you would have to prove Rice-Shapiro again,
definitely making the proof longer)

Exercise 4
Classify the set B — {r e M| dy = 2z. y € E,} from the point of view of recursiveness, i.e.,
establish whether B and B are recursive /recursively enumerable,

Conjecture: B is r.e., not recursive = B not r.e. (otherwise, B recursive) and thus B not recursive.
- Bisr.e.

&527‘*1-’\ rd

In fact
scp(x) = 1(u(z,y,). (S(x,2,y,t) Ay > 2x)))
=1(u(z,d,t).(S(x,z,2x +1+d,t))
= 1(uw. S(x, (W)1, 2 + 1+ (W), (W)3))
= 1(uw. | Xs(x, W)1, 2x + 1+ (W), (W)3) — 1))

computable, hence B is r.e.

Written by Gabriel R.

211 Computability simple (for real)

- Bs notrecursive

We should that K <,,, B we need a total computable function f:N - Ns.t.x € Kiff S(x) € B

g%ﬁP 500(3:3.? }(«70‘)

define
Z, x €K
9 (.f' z) = {T, otherwise
=z * scg(x)

hence, g is computable.
By the smn-theorem, there is s: N — N total and computable s.t. Vx, z

_ _ (2, ifx €K
b5 (2) = g(x,2) = {T, otherwise

We claim that s is the reduction function for K <,,, B.
- ifx € K thens(x) € B.
Let x € K. Then, ¢ (2) =z Vz
hence ¢g()(2s(x) +1) = 25(x) + 1 > 2s(x)
thus s(x) € B
- ifxé& Kthens(x) ¢ B
Let x & K. Hence ¢5(y(2) T Vz
Thus we have Eg(,) = @, hence thereisnoy € Eg(y) s.t.y > 25(x) hence S(x) ¢ B
Consequently, B is not recursive.

Since B is r.e. and not recursive, then B not r.e. (otherwise, if B, B r.e. we would have B recursive). In turn,

this implies that B not recursive.
* Extra question (not part of the exam)
If B={x € N |3y > 2x.y € E,} saturated?
Apparently, it is not since it “refers to x in the property”. Let’s prove it by showing that there are
e€EB e ¢B with¢, = ¢,
We show that thereise € N s.t.
Pe(x) =2e+1
Define:
gn,x)=2n+1
computable, hence by smn-theorem about there is s: N — N total and computable s.t. Vn, x:

¢s(n)(x) = g(n. x)=2n+1

Written by Gabriel R.

212 Computability simple (for real)

Since s is total and computable, thereis e € N s. t.
Pse) = Pe
Thus
Pe(x) = Pge)(x) =2e+ 1
Hence

e€B since2e+1€E,
vV

2o

Now, there are infinitely many indexes for ¢,, thus we can take e’ € N,e’' > e s.t. ¢, = ¢,.
Note that E, = E, = {2¢ + 1} and 2e + 1 < 2¢'thuse’ ¢ B.

Summingup, e,e’ € N,e € B,e' € B, ¢, = ¢, = B is not saturated

20.2 VARIOUS EXERCISES SOLVED (1/2)

Exercise

Given f:N — N a fixed function and define Bf = {e € N | ¢ = f}. Classify this set from the point of view
of recursiveness

Solution
The set By is saturated, because By = {e € N | ¢, € B}, By = {f}
We have two cases:
1) f is not computable, so By = (Z),B_f = N recursive
2) f is computable
We are using Rice-Shapiro in this case:
- Brisnotr.e.

2.a) if f is finite, f = 6. Let g be a total function s.t. f € g.

defined in the same points the other one is defined, only on a subset of points, ;

like you see in figure. JX:

Then,we have g € Brand f =6 S gand f € By

We are assuming it is a finite function and then we take another function /Eg/

(so, we define a finite subfunction which is in the set, the function is not in there — this holds when the
function is finite, otherwise we use the other part of Rice-Shapiro).

hence by Rice-Shapiro, Bf not r.e. (hence not recursive)

2.b) if f is not finite, not that f € Br and V6 < f, 6 finite, 0 & By then B not r.e. by Rice-Shapiro (hence,
Bs not recursive)

Written by Gabriel R.

213 Computability simple (for real)

- B_f isnotr.e.
Again we have two cases
)f=0(f(x)Tvx)
B_f isr.e.sincee € B_f iff there is some input ¢, (x) | hence scB—f(e) = 1(y(x, t).H(e, x, t)) =
1(uw.H(e, (W)1, (W)2)

(hence, we look for a single point on which the program terminates in t steps, then characterizing it with
the encoding in tuples).

This is computable, hence B_f isr.e.
2)f+0

B_f is not r.e by Rice-Shapiro, f € B_f and0 =@ C f,0 & Bf hence 8 € B_f hence by Rice-Shapiro, B_f is not
r.e.

Exercise
Show that gcd: N? — N, defined as:
gcd(x,y) = greatest common divisor of x and y
is computable (primitive recursive)
Solution
Define:
gcd(x,y) = maxz.z divisor of x and z divisor of y
This can be expressed as rm(x, z) = 0 for "z divisor of x" and rm(z,y) = 0 for "z divisor of y".
= maxz < min(x,y).(rm(x,z) + rm(z,y) =0
(we know that this is bounded, given there exists a minimum in order to find the largest value)

What we would want is to find a minimum value subtracted to the bound to find the right value:

(\/‘_/*___—.,P

i (=Y

S

z = ﬁ““‘n(%g) -w
Y &

J?o)tgp,:i Least

= min(x,y) — (yw < min(x,y).(z = min(x,y) —wArm(z,x) + rm(z,y) = 0))

= min(x,y) — (uw < min(x,y). (rm(min(x, y) —w,x) + rm(min(x,y) —w, y)) =0

P
N ﬂP\K/

Q

Written by Gabriel R. F @

214 Computability simple (for real)

hence gcd is primitive recursive.
Exercise

Show there are m,n € N such that

1) ¢n = bn41

2) dm # Pmaa

Solution

(We just need to apply the Second Recursion Theorem, observing that at least in one case, the program
behavior won’t change, and this happens for the successor).

1) Observe that s(n) = n + 1 is total and computable, hence by the second recursion theorem, there isn €
N, ¢, = ¢s(n) = Pns1

2) (one can just try to negate here)

if it were that Vm, ¢,,, = ¢,,41 then inductively g = ¢p; = ¢, = p3 = -+

i.e. all computable unary functions would be the same and this is not the case (e.g. 1 # succ)
Exercise

Define the class of PR and using only the definition show that

max,: N = N,max,(x) = max(2,x) is PR

Two ways:

1) Rebuild max

Define the sum by primitive recursion:

sum (x +y)

x+0=x
{x+(y+1)=(x+y)+1

Then, define the predecessor by primitive recursion:
predecessor y—1
{ 0—1=0
y+1l—1=y
Then, define the difference by primitive recursion:

dif ference x—y

{ x—0=x
x—@+1D=x-—y-1

max max(x,y) =x+ (y— x)

max,(x) = max(2,x) = max (((0 +1) + 1),x)

Written by Gabriel R.

215 Computability simple (for real)

2) Define what you really need
max,(0) = 2

2, ify=0

y+1, ify>0-Y+T1+50)

max,(y+1) = {
sum as above

sg(y)

sg(0)=1
{@(y +1)=0

3) An even faster way: if you consider 2 as 2 = 1 + 1 you can write:

max,(0) = 2
{maxz (y+1) =max;(y) +1

max; = max(1,y)

{ max;(0) =1
max,(y+1)=y+1

Exercise

1) A= {x | ¢x(x) = x%}

2) B = {x | ¢, (y) = y? for infinitely many y's}
Questions:

1) Classify A, B according to recursiveness

2) Are A, B saturated?

(1) Conjecture A r.e. and not recursive > 4 not r.e. (hence not recursive)

- Ar.e.
sca(x) = 1(uz. |y (x) — x%) = L(uz. ¥y (x, x) — x?|)
L o F Pol(x) = x?

L——b) othuwnise
1

_
01— fta==t
1 ofnenise

computable > Ar.e.

Written by Gabriel R.

216 Computability simple (for real)

- Ais not recursive

Define a function over itself: when it terminates, it will always work and then use the reduction from the
halting problem.

Juem X def 5?(‘3)5

2) M/\);’T s

etunm 'az

/
dos 1§ Px ()4

e othlwne

define

90, y) = 1(e () *y2 = 1(Wy(x, %)) *x y? = {3’2' if dx(x) 4

T, otherwise

computable, hence by the smn-theorem, there is s: N = N total and computable s.t.

b5 () = g(x,y) = {yz, br(2) |

T, otherwise

and s is the reduction function for K <, A.
- ifx € K then ¢sx) = ¥* Vy, hence in particular ¢S(x)(s(x)) = (s(x))2 >s(x)€eA
- ifx € K then ¢pg,)(¥) T Vy, hence ¢5(x)(s(x)) * (s(x))2 >s(x) g A

hence K <,,, A and since K not recursive, A4 is not recursive

2)

2.a)Is A = {x | ¢, (x) = x?} saturated?

2 ifx=e

No, it’s not. Lete € N s.t. ¢ (x) = {eT otherwise

In fact define

2 .
z°, ifx=1z 2
Z,X) = o =zcuw.|x —z
9(z %) {T, otherwise pw | |
-~
Q (u]:' x=|2

i otherw e

computable. By the smn-theorem, there exists s: N — N total computable function s.t.

z?, ifx=z
= Z,X) = .
ZORICEY { 1, otherwise
By the 2" recursion theorem, thereise € N s.t. ¢, = Ds(e)

ifx=e
otherwise

eZ
Be() = b () = glex) = {°

Written by Gabriel R.

217 Computability simple (for real)

Given this:

- e € A(since ¢ (e) = e?)

- lete' #es.t.¢p, = ¢,

ACHETACH NN !

So, A is not saturated.
2.b)Is B = {x |, (y) = y? for infinitely many y's} saturated?
B is saturated, infact
B={x|¢y€B}
with B = {f | f(y) = y? for infinitely many y's}
conjecture: B,B notr.e. (hence not recursive)

- Bisnotr.e.
Let f:N = N, f(y) = y% then f € B (since {y | f(y) = y?} = N infinite)
forall @ € f, 6 finite,{y | 0(y) = y?} = dom(0) finite > 6 ¢ B
hence, by Rice-Shapiro, B not r.e.

- Bisnotr.e.

Note that f as defined above f € Band@ =@ S f,0 € B

hence, by Rice-Shapiro, B is not r.e.

20.3 VARIOUS EXERCISES SOLVED (2/2)

Exercise
Classify from the point of view of recursiveness set A = {x € N | W, € E,}
Solution
- Ais saturated
A={x|¢. €A} A=(f|dom(f) C cod(f)}
- Aisnotr.e.

Observe 1 ¢ A, dom(1) € cod(1)

n !

N e
but6 =< 1andb € A

hence A is not r.e. by Rice-Shapiro.

Written by Gabriel R.

218

- Aisnotr.e.
Take pred(x) =x — 1
dom(pred) = cod(pred) = N
hence pred € A — pred ¢ A

but if you take 6 S pred

0, x<1
T, otherwise

0(x) = {
dom(0) = {0,1} cod(0) = {0}

henced ¢ A> 60 €A

Therefore, by Rice-Shapiro, A not r.e. (hence 4 not recursive)

Exercise

Call f:N — Ninjective if Vx,y € dom(f) f(x) = f(y) thenx =y

A=teldcisimective) Ry (1gueh' ndinges
Conjecture: A r.(\e'., not?ecursive - A not r.e. (hence not recursive)

- Aisre.
scz(x) = look fory,zs.t. ¢, (y) = ¢, (2)

=1(u(,2,t,v).5(x,y,v,t) AS(x,2,,t))
| \

-
(W) [m)l\[u}); (W) ‘é#a

Computability simple (for real)

= 1(uw.S(x, (W)1, W)g, W)3) AS(x, W)z, W)g, (W)3) A (W) # (W)3)
= 1(.UW-5(X; W), W)g, W)3) AS(x, W) + 14+ (W), (W), (W)3))

computable > 4 r.e.

- Anot recursive
(1% possibility)
Reduction K <, 4

define
y) = {?v__o_t__injg_ctive in y\ 1, x€K
g%y = /injecﬂtzv\eT, xe&K
— -

= scg(x) computable
By the smn-theorem, there is s: N = N total computable such that Vx

B (1, if x€eK
P50 () = 9g(xy) = {T, otherwise

Written by Gabriel R.

219 Computability simple (for real)

Now s is the reduction function for K <,, A

- if x € Kthen¢sy(y) =1 Vy hence gy = 1€ Aandthuss(x) € A
- if x € K then sn(¥) =1 Vy hence ¢gy =@ & Aand thus s(x) & A

Since K < A and K not recursive then A not recursive.
(2" possibility)
Observe that A4 is saturated and not trivial:
- ifegiss.t. ¢, = 1thene; EA+0Q
- ifeyiss.t. ¢, = @ then e gA+N
by Rice’s theorem A not recursive.
Exercise
Say f: N - N is monotone if f is total and Vx,y € Nif x < y then f(x) < f(y)
Question
Is there a monotone non-computable function?

Consider

Fy = (PO L 90

0, otherwise

we know that it is total and not computable.

We can plot the function considering points where function exists and others where it doesn’t. So, anyway,
it will stop when defined having only a finite number of points where the sum is finite again.

Define g(x) = Xy<x f(¥)

- total
- not computable Vx g(x) # ¢,(x)
P> o)L gl =Ly SO Z () = () + 1 - g(x) > Py (%)

> o@T g)TE ()

- g is monotone,Vx,y x<y

9O =Y fD D fD+) f@ =) f@) =g

Z<Xx Z<x x<z<y zZ<y

Written by Gabriel R.

220

- Alternative solution
g:N—-N

g(x)z{x+1'

- g total

- g not computable Vx ¢, (x) # g(x)

o it |

o if ¢x(x) T then g(x) ! # ¢r(x)

- gismonotoneVx,y x <y
gx) <x+1<y<g()
Even simpler

x+1,
X,

glx) = {
- total and monotone

- not computable

xx(x) =gx)—x = {

Computability simple (for real)

if pr(x)land p,(x) #x+1
X, otherwise (if ¢, (x) =x+1or ¢, (x) 1)

() #Fx+1then g(x) =x+1 # P (x)
¢x(x) =x+1then g(x) = x # ¢(x)

s==EEEmN

|

if px(x) L

otherwise

if px(x) 1

otherwise

If g were computable then yg, composition of computable function would be computable = g not

computable.

Exercise

Is there a total computable function f: N — N s.t. g(x) = ¥, <x f (x) is computable?

Solution

No: f(x) = g(x + 1) — g(x) = Xy<xr1 f ()= Ly<x f V)
(f(O) + (D) + ---f(x)) — (f(O) + 4+ fx— 1)) = f(x) € this is what the sum is doing

hence, if g were computable, also f would be computable, by composition.

What about the case in which f is not total?

T, ifx=0

f(x)={ if x>0

Xk (%),

Written by Gabriel R.

not computable (exercise)

221 Computability simple (for real)

g(x)=2f(x):{$: ifx=0

otherwise
y<x

= uz.x computable
Exercise
Show that thereisx E Ns.t.¢,(y) =x—y
Solution
State precisely the Second Recursion Theorem and define g(x,y) = x — y computable

By the smn-theorem, g(x,y) = ¢5x)(¥) for s: N — N total computable and using the 2" recursion
theorem there is xg S.t. ¢y = Ps(x,)

Gxy V) = Py V) = g(x0,¥) = x0—y

20.4 SOLUTION OF THE EXERCISE ON RANDOM NUMBERS

There is a video explaining that on Moodle of this year; for convenience, I'll put this year, commented if
possible.

The informal way if having a number n € N which is random if for every program which outputs n, P is
larger than n show that

- there are infinitely many random numbers
- the property of being random is undecidable

Formal view

- programsize |P,| = e

- n € Nisrandom if for all programs e € Ns.t. ¢.(0) =nitholdse >n

1) there are infinitely many random numbers

Recall that each computable function is computed by infinitely many programs. Hence, for each k € N
thereise; < e, <--eps.t.gpe; =0 i=1,..k

{p;(0) |i<exn ¢p;(0) I} | <er—k

hence there are at least k numbers n < e, which can’t be generated by programs e < n > these numbers
are random. Since this holds for every k, there are infinitely many random numbers.

2) R = {n | nis random} is not recursive

Assume R to be recursive, i.e.

_ (1, ifn€R
xr(n) = {0, otherwise

Define:
gn,x) = least randomnumber >n=puz.z€ Randz>n=n+uz.(n+1+z €R)

computable.

Written by Gabriel R.

222 Computability simple (for real)

By the smn-theorem, there is s: N — N total and computable s.t. g(n, x) = ¢gen)(x)

I

foost Zomdormy MU bl > M

By the 2" recursion theorem there isny € N s.t. Dy = Ps(ny)
P, (0) = Py(n)(0) = g(ng, 0) = (least random number > ny)
hence ngy generates a random number > n,, contradiction!

= R not recursive

Note R is r.e.

n
scg(n) = 1(ut. \/S(e, 0,n,t)) computable
e=0

-

— Risnotr.e.
L {check “F Sofme

Plram 2 <M DUPP\ﬂb m om O

Written by Gabriel R.

223 Computability simple (for real)

21 TUTORING LESSONS 2023-2024

This year tutoring lessons were recorded and can all be found here.

21.1 TUTORING 1: PRIMITIVE RECURSION EXERCISES

isqrt(x) = [Vx]
x=25 |V25| =5/ =5
Note: This is based on this one exam (2" appeal of 2022-2023 present on MEGA)

Exercise 2
Give the definition of the class PR of primitive recursive functions. Show that the following
functions are in PR

1. isqrt : N — N such that isqri(x) = |/z|;

2. Ip: M — N such that [p(x) is the largest prime divisor of x (Conventionally, Ip(0) =
Ip(1) 1.}

You can assume primitive recursiveness of the basic arithmetic functions seen in the course,

1)
1. isqrt : N — N such that isqrt(z) = |\/z;

This is based for primitive recursive functions (recursion, but kinda limited).
Z(x)=0
Sx)=x+1
X1,X9,Xp > N

This is the partial recursion (defined for zero and successor; every value depends on the previous one,
because it’s defined by induction):

F(Z0) = -
fEy+1) =

We want to write [\/EJ with primitive recursive functions. The square root function mathematically can be

defined as: y = vx , y? = x. We want to find the y value eventually and do to that we use minimalisation
(in this case it’s not unbounded, so there is no finite number of steps).

Is there a way to bound values of y?
letssayx =24,y =0,y2 =0,y =1,y =1...y =4,y =16 < 24,y =5,y = 25> 24

We know vx < x because we’re working with positive values. We search every value until we find x. We
think for example, x = 25,y = 5.

We observe that when x changes, y does too.

x=23,y=4

Written by Gabriel R.

https://drive.google.com/drive/folders/1lnkdXCCFG7fcyisEGwraoEGFpDGZaLhs

224 Computability simple (for real)

x=24,y=4
x=25y=5
x=26,y=5

To bound the search for y, consider the relationship between y and x. As x changes, y changes as well.
When x increases, y also increases, and vice versa. We want to see what happens after the current y. For
example, (y + 1)? = 25 (the same for 4 for 25 and 5 for 36). So, because it’s recursive, the square root it’s
between y? and (y + 1)2.

Essentially, we need to cover a case y? < x < (y + 1)2. In this case, you can see that (y + 1)? changes
when y changes. So, the square root is between y? and (y + 1)2. This means we need to find a y where y?
is less than or equal to x, but (y + 1)? is greater than x.

So, we want to prove:
y+1)?2>x
(y+1)=x-{0 (y+1)? < x,x, otherwise}

To formally define the isqrt function, we can use minimalization. The minimalization process finds the
smallest y such that (y + 1)? is greater than x. This can be expressed as:

isqrt(x) =py <x+ 1.((y + 1)? > x)
Another step is introducing the negated sign function, so sg which allows us to turn this condition into a

binary value (1 for true and O for false).

So, by using the negated sign function within the minimalization operator, you are effectively searching for
the smallest y for which the condition (y + 1)? > x becomes true, and this condition ensures that you find
the largest y such that y? is less than or equal to x, which is the definition of the isqrt function. To
combine everything properly:

isqrt(x) = puy <x+ 1.5g((y + 1)?> > x)
One can use division and we can assume they’re defined to use “You can define primitive recursiveness...”,
for example:

(y + 1)? > x (so, not the square root of x)

X
(y+1)?

< 1 (so, the result of square root exists and is less than 1)

div(x, (y + 1)?) (we use this to check if result is less than 1)

We don’t need to use directly primitive recursion, but bounded minimalisation implies there is always a
finite number which implies “everything is defined = than the bound”.

Written by Gabriel R.

225 Computability simple (for real)

So, we write:
flx,y) = f(x,0) =x

f,y+ D) ={f(xy) if fx,y) #x, y if(y+1)?>x, xotherwise}

(so, base case simply means x, the second case is “we didn’t find the square root yet”, the third one is just
x with no root found).

To define with bounded minimalisation, we write:
isqrt(x) = f(x,x)

(You're essentially saying, "Let y be x in the function f." This is equivalent to saying you're looking for the
value of f when y is x)

To assure to handle all cases for composition and make sure everything is computable, we use:

fG,y) =sg(x— flx,y) +5g(x — f(x,) * (v *sg((y + 1)* —x) + x x5g((y + 1)? — x))

(so, the sign function is just there to mean “binary variable” on the difference if it holds or not, while the
negated sign does the same with opposite values. The middle product ensures that the function returns the
value of y, while the last part does the opposite, so just checks if we have found the right root yet).

2)

2. Ip : N — N such that lp(x) is the largest prime divisor of z (Conventionally, {p(0)
Ip(1) =1.)

L, biggest prime divisor, P, x —thprime

The problem is that we’re using minimalisation. We need to find, given P, < x,anumberys.t.y < P, <
x. So, we note that minimizing to maintain the property of primes, such that x is always bigger than x, so:

ui < x.(...)
With
y=x-—1I
P, divide x

This approach explicitly checks the prime divisors of x starting from p,., then p,_4, and so on, stopping at
the first prime divisor found.

We use the remainder function to obtain the prime number to check if x is divisible by the prime number
Py. When the remainder is zero, it means Py divides x.

rem(x, Py) =0

This is the case for minimalisation needed and it happens. Thanks to this, as soon as we find the number, it
simply stops. So, we’re looking for:

x =pi <x.rem(x,Py_q)

(note P,_; = P(x — 1) so this is a function call). Everything is defined for P by recursion (this is crucial for
the approach because you need a way to generate prime numbers and ensure that they are available for
the minimalization process):

P(x — i < x.rem(x,Py_1))

Written by Gabriel R.

226 Computability simple (for real)

Again, we use the sign to flip and obtain 1/0 for the edge cases, so:
Ip(x) = P(x —ui < x.rem(x, Px—1)) —sg(x—1)
Actually, the program P is defined for the recursive case, so x — i is the subscript; a proper form is:
Ip(x) = Py (x — pi < x.rem(x, Py_y)) —sg(x — 1)

The official solution counts the prime divisors, restricting the search for all the prime numbers (defines a
function for counting these). Then, simply consider the cases where the count is zero and when the length
is not, so using a negated sign function. This is as follows:

2. Observe that, for & > 1, Ip(z) is surely smaller or equal to p,. Hence one can count
the prime divisors of x, restricting the search to py, ..., p.:

count(x) = X*_ div(p;, x)

and then ip(;x:) = Peount(z). The function needs to be adjusted for x = 0 and = = 1,
where count(x) = 0 and thus peouns(zy = 0 while lp(x) = 1. This is easily done as

follows:
Ip(x) = Peountiz) + 359(z = 1).

Since we use only known primitive recursive functions, bounded sum and composition
we conclude that Ip is primitive recursive.

Alternatively, a similar idea to the one we used is checking explicitly by recursion the prime divisors of x:

Alternatively, the idea can be to check explicitly the prime divisors of z, starting
from p,, then p,_; and so on, stopping at the first. In detail, look for the smaller y,

call it ¢(z), such that p,_, is a divisor of z.

This way, we define the smaller i(x) as an existing value (hence, minimalisation) of the possibility (binary
combination) of finding a prime number respecting this property by recursion dividing each time (hence,
the division as said, but also the negated sign).

i(z) = py < 2.5g(div(ps—y, T))

Then, whenever x > 1, Ip(2) ps—i) and the cases z < 1 must be treated separately

as before:

Ip(x) = Paeite) - s9(x = 1) +57(z = 1),

Exercise 2.1(p). Give the definition of the set PR of recursive primitive functions and, using
only the definition, prove that the function pow2 : N — N, defined by pow2(y) = 2%, is primitive

recursive.

Give the definition of 2™: N — N, proving that this is primitive recursive. This exercise is based on the one
above. So, define (thanks to zero and successor function):

double(0) =0

double(n+1) =s (s(double(n))) (doubling the value of 2™, correctly stating this is equivalent of
multiplying by 2)
20 =5(20)
2"+ = double(2™)

We need to decompose the function in natural terms. Specifically, 2° = 1, 2"*1 = 2 x 27

Written by Gabriel R.

227 Computability simple (for real)

The basic building blocks for primitive recursive functions include:
1. Zero function (Z(x)): Z(x) = 0 for all x.
2. Successor function (S(x)): S(x) = x + 1 forall x.
3. Projection functions (Proj(x,i)): Proj(x,i) = x[i] for all x and for each natural number i

The right solution is simply multiplying continuously by 2 recursively.

Solution: We define pow2 : N — N:
pow2(0) =1
pow2(y + 1) = double(pow2(y))
where double(x) can be defined by primitive recursion as

double(0) = 0
double(y + 1) = double(y) + 2 = (double(y) + 1) + 1

Exercise 2.4(p). Give the definition of the set PR of primitive recursive functions and, using only
the definition, prove the function half : N — N, defined by half (z) = /2, is primitive recursive.

We define the basic functions:

=0

0

2

n+1 0+1 n+i+1 n

- — — 0 —_ - 1
{ 2 ! 2 2 +1}

ZI\\V

Again: given the basic operations, we know we’re dividing, so it can be a good idea to use the remainder
function for the division by 2 and then probably the negated sign one to check if the division correctly holds
and gives a result.

First we define the function 5g : N — N such that sg(z) = 1 if z = 0 and 5g(z) = 0 otherwise:

{@@ =1

5g(z +1) 0

Then the function rmsg : N — N which returns the remainder of the division of = by 2:

rm2(0) =0
rmg(x +1) = 5g(rma(z))
Finally the function half : N — N can be defined as:
half (0) =0
half(x +1) = half (z) + rma(x)

Exercise 2.2(p). Give the definition of the set PR of primitive recursive functions and, using
only the definition, prove that the the characteristic function y 4 of the set A = {2" —1:n e N} is
primitive recursive. You can assume, without proving it, that sum, product, sg and sg are in PR.

A={2"—1|n €N}
X,(x) ={1if x € A,0 otherwise}

Written by Gabriel R.

228 Computability simple (for real)

We first define a primitive recursive function for A, something like:
f0)=1
f2¥Y)=1fory>0

More generally, given this is defined over n values, we observe a(n) € N, so the function is defined as
follows:

a(0)=0,an+1)=2+an)+1
given for the last part this is formalizing 2™ = 2 * a(n) and adding one to form the recursive case.

One can possibly define a function which simply checks if we find exactly the nt"* value needed to prove this
property (sign/negated sign, here we use this one to immediately discard if we don’t find the right value)
and simply check if the recursive value is different from the one before, this way proving the recursion to
be consistent.

Now define chk : N2 — N, in a way that chk(z,m) = 1 if there exists n < m such that = = a(n)
and 0 otherwise. It can be defined by primitive recursion as follows:

chk(z,0) = 5g(z)
chk(x,m+1) = chk(z,m)+ eq(z,a(m + 1))

Hence we can deduce that chk € PR by the fact that y—1 and z—y are in PR, and observing
that eq(x,y) = 5g(z—y + y—=z), hence also such function is in PR. We conclude by noting that
xa(z) = chk(z,x). O

Written by Gabriel R.

229 Computability simple (for real)

21.2 TUTORING 2: EXERCISES ON DIAGONALIZATION AND PARTIAL RECURSIVE FUNCTIONS

We have the set of partial recursive functions R which has composition/primitive recursion and
zero/successor/transfer function.

Also the set R, has all of this but also in unbounded inn. So, Ry €2 ? R N Tot
It would be nice to have minimalisation in two ways, so:

C =R, R - C - R. We start with something total, and we end with something total, which is the
minimalisation.

o (J'c’ ut,j{}(fc’, t)) € R, (we need to recall this one, which allows us to define a vector of values which can
be minimized and be bounded definitely)
The general idea is to use step by step with f~1(y) = ux. f(x) = y.

So the idea is creating a function in C and showing via inverse this is alsoin C.

The idea for diagonalization is creating something that is total but shown as not computable. We want to:
f(x) = f(x + 1) - find a function which has the property of an infinite amount not computable, but total

What we’re saying is: there exists a number ¢,, which is different from the other inputs, and it’s taken to
show not computability.

Take something like: 0 = 0 # ¢,(2) 00
0, if rem(x,3) + 2

Fx) = 0, if ¢x;_3 1 and rem(x,3) =0

px-3+2, otherwise
2
¢Px-3(x) =10 and y,fory +1
2

fBn)=f@Bn+1)=0
We're simply saying: “we want to make the input different over a specific value”.
e The function is designed so that when x is a multiple of 3 (3n), f(x) is set to 0, making it distinct.
e This distinct value (0) for input x = 3n is used to demonstrate non-computability.

The general concept is to create a function with certain inputs (in this case, multiples of 3) that are
distinctly different from the rest. These distinct inputs are chosen in such a way that their behavior
showcases non-computability.

It's a clever use of diagonalization to introduce distinctness into the function, making it appear non-
computable while ensuring its total definition.

Written by Gabriel R.

230 Computability simple (for real)

Exercise

f total non computable, img(f) = {2" | n € N} & (1) non computable, (2) total (easy), (3) f(x) needs to
be a power of 2.

2 (any value power of 2 anyway), Jif o) T
fG) = 2, ifge(x) =2
4, ifx(x) I=2

- img(f) € {2"In € N}
- img(f) = {2"In € N}
2" # ¢p(x), px(x) =1

2" =n
. . . 12 4 e
The values in the image grow faster and are different from each other: 0’1y etc. This distinctness and the
non-computable nature of f make it challenging to list or generate the entire image of f.

The exercise defines f(x) based on the behavior of ¢, (x), which is the computation of a function indexed
by x on input x. If ¢, (x) does not halt, f(x) is set to 2. If ¢, (x) halts but doesn't equal 2, f(x) is set to 2”n,
where n is the value of ¢, (x). If d_x(x) equals 2, f(x) is set to 4.

Exercise
f not computable, total, g(x) = [],<x f(x) computable.
(E.g. £(0), f(1), f(2) ...not computable, f(0) = f(1), f(0) * f(1) * f(2) computable)

L9 _
Say for example: TG-D f(x)
0, ifx <0
fO=0-f)=1 0, ifpra()T
¢r_1(x) + 1, otherwise

The key element related to diagonalization is the use of the expression ¢,_1 (x) in the definition of f(x).
This expression represents the computation or evaluation of a function indexed by x — 1 on input x.
Specifically, it represents the behavior of some program ¢ indexed by x — 1 when given the input x.

The use of diagonalization is a critical part of the definition. It ensures that f(x) is different from any
computable function. This is achieved by defining f(x) in a way that depends on whether the program
¢,_1(x) halts or not. The fact that it includes a condition for when the program halts (adding 1 to the
result) and when it doesn't (remaining 0) is what makes f(x) non-computable.

Written by Gabriel R.

231 Computability simple (for real)

21.3 TUTORING 3; SMN-THEOREM EXERCISES

The smn-theorem allows us to partially apply arguments to function.
The formal definition is:
vmn=>1, Is: N™*1 5> Ns.t.Vvee N,x e N,y € N"
You get a function s total and computable
[Wso| = 2x

|Es@o| = x
Usually, we can think a function with two arguments, something like

_ (qt(2,y), y < 2x
fGxy) { T otherwise

Remember to be able to handle edge cases (e.g. when y holds a value, being careful it is < 2x). Let’s try to
limit ourselves to the first x values. Let’s try to define “something for all x”, which in this case might be the
guotient function. This should work as follows:

Zz—x = x for the y part inside f (x, y) and the function becomes % =x-1

The smn-theorem will give us, by construction:
S =fxy)

By construction we have:

(Wi | = 1y If G, y) Bl= Hy |y < 2x}| = 2x

|Escol = 1{at@y) ly <2x}={z |z < x}| = x
Exercise S function total and computable, with

Wiy ={z 1 x %z =y}

There is no condition the co-domain.

We can define a function on three arguments in which we can bound all values here.

_ (0, ifxxz=y
f(x,y,z)—{ T, otherwise

In this case, one can also try to take the definition by cases with partial recursion. It also uses unbounded
minimalisation. We're not defining a specific w value, but just to get to our condition.

pw.(x *z —y) + (y — x * 2)
Let’s give another example to define unbounded minimalisation:

2x, if xmod3=1

glx) = { 1 otherwise = 2x + uw.rm(3, x)

Written by Gabriel R.

232 Computability simple (for real)

Now for a slightly different function:

X, if xmod2=0
g(x) =12x, if xmod3 =1
T, otherwise
= x x5g(rm(2,x)) + 2x(rm(2,x) x eq(...) + uw (rm(2,x) *5g(eq ...)

\

xif mod2=0 2x ifx mod 2 #

0 otherwise Oandxmod 3 =1

Exercise
Ws(x) = P (even numbers; in other words {2n | n € N}

|E5(x)| = 2x

fx) = rm(2x, %), ifrm(2,y)=0

T, otherwise

We want to consider y can be an even number and we want to consider all cases in which is defined for y
and < 2x. What we want to achieve:

y 2n
yeven = y =2nVn, §=7=n\7’n

We use the remainder to actually limit (thinking of a function plot) “all the possibilities to have it under 2x).

Wsiy =y Irm(2,y) = 0and x # 0} = {y | y even} = P
|E5(x)| = {|m,n (%,Zx — 1)|y} = |{m,n(m,2x — 1)|n} = [{m| m < 2x — 1}| = 2x

We use m, n just because we want to reach values over the codomain.

21.4 TUTORING 4: R.E. SETS

We want to show the following is r.e.
A={xeN|[W] =2}
We define the set 4, which is the set of functions in which the domainis > 2:

A={f|ldom(f)| = 2}

We're saying that is A is saturated, then it is r.e., which means A = {x | ¢, € A}. Given it’s a finite property,

the setisr.e., so Aisnotr.e.

We prove the program halts in t steps in two inputs (x, ¥), so we give a program H halting in those steps
and the computation over an hypothetical z, which we minimize S(x, y, z, t). We're minimizing all the
values at the same time, searching for the minimum after t steps on the w tuple.

sca(x) = uw. @(H(x, W)y, W)3) * H(x, (W)3, (W)4))

We minimize for 0, that’s why we use the negated sign function, so we get:

Written by Gabriel R.

233 Computability simple (for real)

= uw.5g(H(x, W)y, W)2) * H(x, W)z, (W),))
We want to show the following is r.e.
A={xeN|W, <E}={x|d €A}
A = {f| dom(f) S cod(f)} saturated = not recursive

In words: decide if a set is recursive or not depends on the nature of domain/codomain and possible
reductions over the characteristic function of the halting problem K, which is not recursive.

K<A x€Ko f(x) EA= Anotre.

A< K-> Aisr.e.

x€EK (p,(x) D) e glx)€EA Wyio) < Egx)

We are looking for an index, so this is the smn-theorem, which is h(x,y) = ¢4 (¥)

—-H(x,x,y)

_ Y
h(x,y) = {y +1, otherwise

The point is that it differs “on at least one index”:

$x(x)[012 n]
Wy =N
Egixy = N\ {m}
and eventually we get an index n which was computed by the original program.
bx () T = Wyin) € Ega
- ¢ (x) T= H(x, x,y) always finite
= h(x,y) = pg () =y
Wyy =N SN = Egx)
- () = Wy € Eg)
AmvVm =n,H(x,x,m)
Whix) =N
Egqy={0<j<n+1}u{z+1|z=n}
n €Wy n € Eg
We want to know if the following is recursive or not (spoiler: it’s not)
A={x €N|W,NnE, = @}
In a less fancy way, we can write:
A ={f | dom(f) ncod(f) = @} A={x€eN|¢, €A}
If we can provei.e. Aisr.e., A won'tber.e (and viceversa holds).
scz(x) = 1(uw.H(x,y,t) AS(x,2,y,t))
also written, using the encoding in tuples,

Written by Gabriel R.

234 Computability simple (for real)

scz(x) = 1(uw. H(x, W)1, W)2) A S(x, (W)3, (W), 1))
if 3y s.t.theny € W, ands.t.y € E,,
s>yeW,NE,>W,NE, #0

= Aisr.e. and so A is not recursive and is not r.e.

21.5 TUTORING 5: R.E. SETS AND REDUCTION

We want to know if the set is recursive/r.e. (this exercise is from the exam of last year):
B non empty set, finite, A = {x | E, N B # 0}
The set is not recursive, because the codomain intersected with x is not defined.
A={f|cod(f)nB +# 0}
A={x|¢, €A}
Using Rice’s theorem, the set is not recursive.
We can also use anindex b € B having g(x) = b = ¢,(x),e € A, A+ 0
We give the empty function, which always diverges h(x) T. ¢, = h,e; € A,A # N.
Now: the set A is not recursive. We want to understand if it is r.e, for example checking if x is in the set.
Proving it is r.e., we show the semi-characteristic function, searching for a specific value:
sca(x) = pz(...)

There’s gotta be an element in the intersection: y € E, and y € B. We use the function if another one
halts in a number of steps H and S, computed on the same value (which has as a first argument the
function computed, specifically the index, on which input

Oy (W) =y
S, w,y,t)

Use the problem conditions: given the set is finite, we use the conditions in our search to find eventually
some elements (for example (y = b;) V (y = b,) V ...(y = b,,). We use w as a tuple of three elements

(h=(z,y1t)
sca(x) = 1(uw.S(x, (w)1y, (W)3) A (y € B))

This will terminate “if there is such y”. We put the 1 because the semicharacteristic function has to return
1. Given there is semicharacteristic function, A is r.e.

We need to think still about A. This is not recursive. Also it is not r.e., then 4 would be recursive, but it is
not. Starting from finite and total, we have everything done.

Written by Gabriel R.

235 Computability simple (for real)

Other exercise:
f total computable, A = {x | x € f(W,) UE,
(where f(W,) can mean that, havingaset B, f(B) = {f(y) | y € B})
We cannot apply Rice theorem, given there are not only domain and codomain, but also x.
Let’s start from the definition: x € f(W,) V x € E, and so it is computable as a search.
We rewrite the condition simplifying bit by bit:
x€{f) |y eW,}
x=fy) Ay € Wy
So, the function would be computable step by step.
Consider something that gives x in output, so x € E,, with ¢, (z) = x
We want the function x to stop with input z with t steps, so S(x, z, x, t).

The function will stop eventually, so y € W,, given x is total, so ¢, (y) 1, so H(x, y, t). Again, w represents
a tuple. We check the y (so, the third element in tuple, given w = (z, t, y), halting effectively in t steps over
the search of y.

sca(x) = 1(uw. S(x, W)y, x, W) V ((x = f(W)3)) A H(x, (W3, (W)5))

The set is r.e.; we don’t know if it is recursive or not. We ask then about the complement of 4, so 4. If is it
not r.e., we use a reduction or use Rice-Shapiro.

We assume the function is computable x = f(y), and we use an index e such that f = ¢,, in this way

¢e(y) = X.
We know 4 not r.e., so C not r.e. know € < A. Thisway x € C & s(x) € A.

There is a function which returns the index of another function, which is in this case ¢ (), which uses
the smn-theorem. So, there is a function of two arguments which exists, call it s, 3s total computable
S.t. s (¥) = g(x,y). To represent it, we use the negation of K, so negation of the halting set, which is

K.If x € K it means that ¢, (x) T= s(x) € A © 5(x) & Eg(y) As(x) & f(Wse).
Theideais Eg(y) = W) = 0.Sox & K (so x € K), we have ¢, (x) | = s(x) € A

This says s(x) € f(WS(x)) U Es(x). The idea is Eg,y = N, so it does not compute when undefined,
otherwise there is a function which is defined for all natural numbers (so, identity function).

_(L T _(y, if gp(x) I =scr(x)
g(xy) = { L P L {T, otherwise)

The other condition s(x) € A = ¢, (x) Tis not so easy to treat and does not make us conclude anything
special. Given the function is defined and it is 1 as a value, we will get y * scg (x).

®s(x) can converge and ¢, (x) | x € K = y otherwise diverges and ¢, (x) T,x € K =T, proving this is the
actual reduction function.

Written by Gabriel R.

236 Computability simple (for real)

If the function is in the complement set, it is not in the other and we want to understand if it is in the union
ornot.So,x EA,x ¢ A, ~(x € f(W)UE),x & f(W,) Ax & E,

The search “will never end”: uy. ¢, (y) = x,Vy, ¢, (y) Tor ¢, (y) # x
Other exercise:
A = {x | ¢, total}. Is this recursive/r.e. and also the complement.

We get the set of computable functions A = {f | f total} and we have A = {x | ¢, € A}. Because of Rice,
this is not recursive. To show it is total, we would need to do it on every possible input.

Again, we use reduction.
K <, A
xEKoes(kx)eEA

_ _ 0, _|H(xl xl y)
bse) = 9(x,y) = {T, otherwise

=uw.H(x,x,y)
by smn-theorem
x €K, ¢, (x) T= s(x) €4, ¢s(x) total
x¢€K((x€eEK)=s(x)¢eA, ¢s(x) not total and T after some point

The deduction from the first of the two hypotheses is that the function does not halt and when it does,
there is an element only after some point t,, so ~H(x,x,y) and H(x, x, t,) and so g(x,y) T.

(This is only the first direction: A is not r.e.)

For the complement, we want to understand if the set does or does not halt form some input and the idea
is to leverage then A not r.e, because the search requires V steps —H(...).

Again, we use as a reduction K <, 4, so:

- x €K, (x) Ts(x) €4, ¢s(x) T always undefined
- xEK,py(x) L,5(x) € A, gy | total

And so g(x,y) = scg(x).

Consider also, then if Aisr.e., also A is r.e., then both are recursive. In all other combinations, they will not
be recursive.

Written by Gabriel R.

237 Computability simple (for real)

21.6 TUTORING 6: R.E./RICE-SHAPIRO EXERCISES

We start from this exercise asked by the audience:
Exercise 8.5. Study the recursiveness of theset A = {reN:3Jy,zeN. 2 >1 A z =y}, Le,
establish if A and A are recursive/recursively enumerable.

If we use bounded minimalization, there will always be an answer (correct bound) for the set:

uw < x%2.z>1Ax =y?

Considering: y < x,z < x and we see z = rem(x,w) and y = %

Substituting x = y#*2 to have only mathematical operations, we have:
= uw < x?

e (W)rem(x,w)+2

. (W)rem(x,w)+2

The important part is that we are trying to find an encoding such that there is only one value which can be
found.

Given we are looking for it, we define:

59 <x2 B (g)rem(x,w)+2>

This approach above it is linear logic, this following one is mathematic:
flx,z) =x—puz < x.=(x = y?)
gx)=x—puz < x.@(f(x,z + 2))

Exercise 7.11. Let 7 : N? — N be the function encoding pairs of natural numbers into the natural

numbers. Prove that a function f : N — N is computable if and only if the set Ay = {7 (x, f(z)) x €
N} is recursively enumerable.

We define, given f is computable, we say Af is r.e.

We write the semicharacteristic function as follows:

sea(y) = {1, if Elx.¢(x,f(x)) -y

T, otherwise

=1(ux.n(x, f(x) =y)

Trying the proof on the other side:

Ag isr.e. = f computable \oy\' ('X)
f) =y enlxy) €A

- search y - compute s¢,(m(x, y)) > if it halts, returny

Written by Gabriel R.

238 Computability simple (for real)

The search can actually be phrased like (index of function, input of the function, how many steps and take
the first component

fx) = iw. H(éxf(x. W)1), W)2)4
(y,0
sc, computable and there exists e s.t. ¢, = scy
Exercise 8.71. Classify the following set from the point of view of recursiveness
A={z | W, u E, =N},
i.e., establish if A and A are recursive/recursive enumerable.
The set is saturated, hence this is not recursive. Specifically:
A={f|dom(f)Ucod(f) = N}withA={x € N| ¢, € A}
A saturated = not recursive
Idea: This is not r.e. and we need to look at the complement
A={xeN|W,UE,#N}
-3AyeW, UE, =>yeEW, Ay &E,
Aisre.=>Vf (feEA e 30 C f,0 finite, 6 € A)
1)3f € ANO C f,0 finite,0 € A
2)3f € A,VO C f,0 finite,0 € A
Case 1 does notwork: f € A, 6 € f —» 3y € dom(f) Ay & cod(f)
Let’s try with the second case:
f€ABCf,dom(f)VUcod(f) = N,wheredom(f) is infinite, while dom(0) is finite
Let f = id,dom(f) =N = dom(f)Ucod(f) =N=>f €A
Consider 8 € f, 0 finite = dom(0) finite,cod(0) finite = dom(0) U cod(0) finite # N =6 ¢ A
Let’s prove it for all conditions for the second part.
feA(feA 6CF,0finite§EA
f=ideA

We use the empty function, 8 = @ (a function which “as much undefined as possible”), 8 € A and so by
Rice-Shapiro, this is not r.e.

Written by Gabriel R.

239 Computability simple (for real)

Exercise 8.55. Classify the following set from the point of view of recursiveness
B={r (001 v 0.(0) =0},

i.e., establish if B and Bare recursive/recursively enumerable.

We argue this is not r.e. and we will use Rice-Shapiro. A re,0=0

21.7 TUTORING 7: R.E. AND REDUCTIONS

Consider:

¢x(x) +1, ¢y(3’) \ Vy<x
0, otherwise

fe ={
To be complete, this can be written as uw. (sg(x, x, (W), (W),) * sg(1 — x)) (not necessary)
So, the reasoning would be:
x=0 ¢o(0)!
x=1 ¢o(0) L A ¢:(1)
x=2 ¢o(0) L A $1(1) A $2(2)
Letis.t.¢;(i) | Vj <iand ¢;(i) Tandyou can write:

Fx) = {¢x(x) +1, if x<i

0, otherwise
Consider the reduction K <,,, B
x€K e f(x) €EB
This can be used say with B = {x | ¢, inc} which means y < z in dom(¢,) and ¢, (y) < ¢,(2)

f(x) — {y' lf _'H(x' X,y)

0, otherwise

Is there a total computable function f such that D = {x € N | f(x) # ¢, (x)} is finite?

We can see it as:

a, if x=xq
2, if x=x,

flx) = -
an, if x=x,

¢, (x), otherwise
With a; # ¢, (x) because it’s built to be different from every value.
We have two functions f, g total and computable and find
fx) #¢d,(x)Vx €K
gx) # () Vx ¢ K

Consider f = ¢, and f(e) # ¢.(e) and so f cannot be computable. When f(e) T it means f € K and so
f (e) diverges, because f is total.

Forg(e) l # ¢p.(e) Te ¢ K g(x) !l Vx € K = g any total function

Written by Gabriel R.

240 Computability simple (for real)

f almost total f(x) T
f(x) Tonlyif x € D finite
A = {x | ¢, almost total}
A saturated so you have A = {x | ¢, almost total} = {x | ¢, € A}
By Rice-Shapiro:
- Aisnotr.e.becauseid € Abutd =0 ¢ A.
A = {x | ¢, not almost total} = {x | p,(¥) 1 for infinite y}
- Aisnotr.e.

id € A, 0 finite C id — infinitey,0(y) 1= 60 €A

21.8 TUTORING 8: ALL KINDS OF EXERCISES

Let’s try to define the following function by primitive recursion:
And(x,y)

And(0,0) = 0,And(0,1) = 0,4And(1,0) = 0,And(1,1) =1
We can define:

{ And(x,0) =0
And(x,y+1) =x

Underlying, there would be two functions, as follows:

{f(0)=0 nd{g(0)=0
f(x+1)=0 gx+1) =1

We can take for example the least power of two, then representing it as a set:
[sPow2(x) = x4 = Wy
A={2Y|y€eN}
It depends on the value you are trying to bound upon, consider:
x =2Y < 2%
1 209<2t 2 21 <22 422<28
Consider [2Y —x|is0if 2Y = x, 1 # 0if 2Y # x.
We can also have uy < x |2¥ — x| whichcanbeseenasyif 2¥Y =x - 1,xif noy - 0

So, to consider all cases, we also subtract the value we are looking for, which is x and it becomes, using the
sign function.

Xa = sgl(uy <x) *[2¥ —x|) —x oralsosg(x — puy < x * [2¥ — x])

Written by Gabriel R.

241 Computability simple (for real)

Is the function:

o) = {qu(x +1D 41, ifpex+1)L

0, otherwise
computable?

Nope, because it’s a basic diagonalization argument; consider for instance function h(x) = f and by usual
diagonalization h(x + 1) = f(x) # ¢,(x + 1) and also f(x + 1) # ¢4 (%)

Define a total non-computable function f s.t. f(x) # ¢,(x) on a single x.

f(X) — {(,bx(X), lfx * Xo

Yo, X = Xo

Considering yo = ¢, (¥p)-. Also define:

¢x(x): if ¢x(x) ‘l’ ANx #+ Xo
f(x) =1{yo0 if px(x) L Ax =x
g, i P07

(so, a diagonalization argument)

Written by Gabriel R.

242 Computability simple (for real)

22 MANY SOLVED EXERCISES WITH FULL COMMENTARY

Premise

The exercises solved here are carefully revised, often with professor solution, other times from old tutors,
other times solved by me and revised as precisely as possible, both in notation and writing. Here, many
more exercises were added looking at past exams, so this can serve as a complement to the good
“exercises.pdf” given by the professor.

Here, many exercises were either solved thanks to old tutorings or translated from Italian solutions (mostly
complete). Some exercises solved by the old tutor until 21/22 are present (just enter with @unipd mail)
here (with full tutoring lessons and solved exercises). Tutorings of 23/24 are instead present here.

All sections and subsections are named following the same names in the Moodle PDF subsections. Given
the overall quality of this file and a single person behind of it, | think you would not complain anyway.

22.1 URM MACHINES

Note: this one is for partial exams. Useful to understand how to use induction, not for much else.

Exercise 1.1(p). Consider a variant, denoted URM™, of the URM machine obtained replacing
the successor instruction S(n) with a predecessor instruction P(n). Executing P(n) replaces the
content r,, of register n with rn—1. Determine the relation between the set C~ of the functions
computable by a URM™ machine and the set C of functions computable by a standard URM
machine. Is one contained in the other? Is the inclusion strict? Justify your answer.

Solution: It holds that C— < C because predecessor is URM-computable. Inclusion is strict
because it is possible to prove, inductively on the number of steps, that the maximum of the values
contained in the registers at any time is bounded by the maximum value in the initial configuration.
As a consequence the successor function is not URM ™ computable. O

It holds that C" C ' because predecessor is URM-computable. Inclusion is
strict because it is possible to prove, inductively on the number of steps, that
the maximum of the values contained in the registers at any time is bounded
by the maximum value in the initial configuration. As a consequence, the
successor function is not URM ™ computable.

Let us denote by URM ™ the modified machine. We observe that the
UBRM ™ machine mstructions can be encoded as programs of the standard
URM machine.

The instruction I; : S(p,n) in a standard URM machine can be replaced
with a jump to the following routine:

SUB : J(p,q,mn)
S(p,n)
S(g,9)
J(1,1,SUB)
Similarly, for an instruction I; : P(p,n) in URM’, we can replace it with:
SUB : J(p,q,n)
P(p,n)

S(q,q)
J(1,1,SUB)

Written by Gabriel R.

https://drive.google.com/drive/folders/1xQT4McVttAPNP_PXoeQivZOaeu9yz6WF?usp=sharing
https://drive.google.com/drive/folders/1lnkdXCCFG7fcyisEGwraoEGFpDGZaLhs

243 Computability simple (for real)

The proof proceeds by induction on the number b of S and P instructions
in the program.

Base Case (h = 0): A program P with 0 instructions of S and P is
already a URM program. Trivially, the base case holds.

Inductive Step (h > 1): Suppose the result holds for k; we aim to prove
it for b+ 1. Assume the program P contains at least one S or P instruction,
and let 7 be the index of an instruction:

1: I]
j:S(p,n) or P(p,mn)

£ 1y

We construct a program P using an unused register g (¢ = max(p(pP), k)+

1):
1: I]

j:J(1,1,SUB)

{:J:If

SUB : J(p,gq,n)
S(p,n) or P(p,n)

S(q,q)
J(1,1,SUB)

The program P, containing b instructions of type S or P, satisfies
f(pr)P: = f(pi)P. By the inductive hypothesis, there exists a URM program
Py such that f(pg)Py = f(pi)Ps, completing the inductive step.

The inclusion is strict (C'C). For example, the successor function is not
URM " computable. Starting from a configuration with all registers at (), any
URM " program, after any number of steps, will produce a configuration with
all registers still at 0. This is formally proven by induction on the number of
steps.

Written by Gabriel R.

244 Computability simple (for real)

Exercise 1.2(p). Consider a variant of the URM machine where the jump and successor in-
structions are replaced by the instruction JI(m,n,t) which compare the content r,, and r, of of
registers R, and R,, and then:

e if r,, = 1y, increment register R, and jump to the address ¢ (it is intended that if ¢ is outside
the program, the execution of the program halts).

e otherwise, continue with the next instruction.

Describe the relation between the set C’ of the functions computable by the new machine and
the set C of the functions that can be computed by a standard URM machine. Is one included in
the other? Is the inclusion strict? Justify your answers.

Reading the text carefully, it seems the only difference present is a jump only when a certain condition
happens: this is intended, as jump and successor are replaced with a new instruction which increments a
register only if something happens. This can also be encoded as a jump to a subroutine which actually
combines the full jump/successor instruction all in one.

Let’s check this one by one:

- C C (': trivial, as every single instruction of C can be easily encoded in the other, simply not using
JI(m,n, t). This can be alternatively encoded as a jump to a subroutine which combines, as said,
both jump and successor

i1:S(m)
i1 +1:J(m,n,t)

- (' € C: asthey both contain the same instruction length, given they’re both close under
composition and primitive recursion, the jump will make us intuitively “stay under the C class”,
simply by replacing the next instruction with another jump. Because the successor function is
defined, this can be easily encoded with the new jump instruction, so instead of having I;: S(n),
you can have I;:JI(n,n,j + 1).

Written by Gabriel R.

245 Computability simple (for real)

Exercise 1.3(p). Consider a variant URM?® of URM machine obtained by removing the successor
S(n) and jump J(m,n,t) instructions, and inserting the instruction J.S(m,n,t), which compares
the contents of register m and n, and if they coincide, it jumps to instruction ¢, otherwise it
increments the m-th register and executes the next instruction. Determine the relation between
the set C* of functions computable by a URM?® machine and the set C of functions computable by a
standard URM machine. Is one included in the other? Is the inclusion strict? Justify your answers.

Any URM* machine can be simulated by a standard URM machine. To do this, we simply replace each
JS(m,n, t) instruction with the following sequence of instructions:

J(m,n, 1)
S(m)
J(,t,t)
Or even simply:
J(m,n,t)
S(m)

This sequence of instructions will compare the contents of registers m and n, and if they coincide, it will
jump to instruction t. Otherwise, it will increment the mt" register and continue with the next instruction.

Therefore, any function that can be computed by a URM* machine can also be computed by a standard
URM machine.

The inclusion is not strict, because while you can somehow make the jump, you cannot make the successor,
because you will have to both modify the content of register and then moving to next instruction; we can
make the first one, but not the second one. So, URM* cannot properly encode URM.

Exercise 1.4(p). Consider the subclass of URM programs where, if the i-th instruction is a
jump instruction J(m,n,t), then ¢ > i. Prove that the functions computable by programs in such
subclass are all total.

Solution: Given a program P prove, by induction on ¢, that the instruction to execute at the
t + 1-th step has an index greater than ¢. This implies that the program will end in at most I(P)
steps.]

Written by Gabriel R.

246 Computability simple (for real)

Proof:

Consider a modified machine denoted by URM’. We assert that URM’
machine instructions can be encoded as programs of the standard URM
machine.

Let I; : A(p,n) be an instruction in URM’. We can replace it with a jump
to the following routine, where g represents the index of the first register not
used by the program (initially containing 0):

SUB: J(p.q.j+1)
S(p.q)

S(q,q)

J(1,1,SUB)

Similarly, for an instruction I; : C'(p, n), we can replace it with a jump to
the subroutine:

SUB : J(p,q, ZERQ)
Z(p.q)
S(p,n)
ZERO J(1,1,7+ 1)
In a more formal manner, we prove that ¢’ C (7, demonstrating that
for any number of arguments k& and any program P using both sets of
instructions, we can obtain a URM program P; such that f(pg)Py = f(pe) P.

The proof proceeds by induction on the mumber h of A and ' instructions
in the program:

Base Case (h = 0): A program P with 0 instructions of A and C is
already a URM program, trivially satisfying the base case.

Inductive Step (h > 1): Suppose the result holds for h; we aim to prove
it for h+ 1. Assume the program P contains at least one A or €7 instruction,
and let j be the index of a C' mstruction:

J.:Il

j:A(p,m)
{1

We construct a program P using an unused register ¢ (¢ = max(p(pP). k)+

1):
1: I]

j:J(1,1,SUB)

{1
J(1,1,END)
SUB : J(p,q, ZERO)
Z(p.q)
S(p,n)
ZERO J(1,1,j + 1)
END :

Written by Gabriel R.

247 Computability simple (for real)

The program P, containing h instructions of type A or ', satishies
f(pr)Ps = f(pi) P. By the inductive hypothesis, there exists a URM program
Py such that f(pe)P = f(pr) P2, completing the inductive step.

The inclusion is strict (€' C C"). For instance, the successor function is
not URM’ computable. Starting from a configuration with all registers at (),
any URM’ program, after any number of steps, will produce a configuration
with all registers still at 0. This is formally proven by induction on the
number of steps.

Exercise 1.5. Consider a variant of the URM machine, which includes the jump and transfer
instructions and two new instructions

e A(m, n) which adds to register m the content of register n, i.e., ry, « Ty + n;

e ((n) which replaces the value in register n by its sign, i.e., r, <« sg(rn).

Determine the relation between the set C’ of the functions computable with the new machine
and the set C of the functions that can be computed with the URM machine. Is one included in
the other? Is the inclusion strict? Justify your answers.

Let’s make this exercise discussing the usual two-way implication.

- Let’s start considering C' < C, which tries to encode the new URM machine, call it URM, inside
the normal URM. The addition can be easily replaced by a jump to the next instruction in which we
are trying to reach the successor of m and for the first value possible after the sum.

We consider replacing A(m, n) with jump to the following subroutine, where x is the following index yet to
be reached by computation:

SUB: J(n,x,i+1)
S(m)
S(q@)
J(1,1,SUB)
- For the sign instruction, this can be encoded to a jump to the following subroutine
SUB: J(n,x,j+1)
Z(n)
S(m)
J(1,1,j+1)

Formally, we are trying to prove that the program P’computes the same function of C' s.t. fp'(k) = p'(k)

and it holds for induction.

- The base case h = 0 is trivial, given h = h + 1 and it is trivial to conclude
- Theinductive case is such that the length of the program is able to contain inductively all of the
instructions, such as:

START: I,
J(1,1,SUB)
l(P) Il(P)

END

Written by Gabriel R.

248 Computability simple (for real)

This holds for each subroutine is encoded inside of it and the program P" is s.t. fp"(k) = fp" and contains
the analogous instructions as the first one.

Now, for the remaining implication, C & C’, because there’s potentially the risk, thanks to the sign
instruction, that all instructions could become 0, and so every single register.

Basically the same of this one from 2018-11-12:

Exercise 1.5. Consider a variant of the URM machine, which includes the jump and transfer
instructions and two new instructions

e A(m, n) which adds to register m the content of register n, i.e., ry, < T + Tn;
e (C(n) which replaces the value in register n by its sign, i.e., 7, « sg(ry,).

Determine the relation between the set C’ of the functions computable with the new machine
and the set C of the functions that can be computed with the URM machine. Is one included in
the other? Is the inclusion strict? Justify your answers.

Solution: Let us denote by URM® the modified machine. We observe that the URM* machine
instructions can be encoded as programs of standard URM machine.

The instruction I; : A(m,n) can be replaced with a jump to the following routine (where we
denote by ¢ the index of the first register not used by the program, hence such register initially
contains 0)

SUB : J(n,q,j+1)
S(m)
S(q)
J(1,1,SUB)

Similarly, by indicating again with g the index of an unused register, an instruction I; : C'(m) can
be replaced by a jump to the subroutine

SUB : J(n.,q,ZERO)
Z(n)
S(n)

ZERO J(1,1,j+1)

More formally, we can prove that C* < C showing that, for each number of arguments k and for
each program P using both sets of instructions we can obtain a URM program P’ which computes
the same function, i.e., such that fgf) = f},’“).

The proof proceeds by induction on the number h of A and C instructions in the program.
The base case h = 0 is trivial, since a program P with 0 instructions A and C' is already a URM
program. Suppose that the result holds for h, let us prove it for h + 1. The program P certainly
contains at least one A or ' instruction. Assume it is a C' instruction and call j its index.

1 B Il
i A(m,n)
(pP) Iy py

We build a program P”, using a register not referenced in P, say ¢ = max{p(P),k} +1

1 Iy
j J(1,1,SUB)
E(P) . J.rg(p)

J(1,1, END)
SUB : J(n.q,ZERO)

Z(n)

: S(n)

ZERO J(1,1,5+1)
END

Written by Gabriel R.

249 Computability simple (for real)

The program P” is such that g‘,) f and it contains h mstru(‘tlons of type A or C. By inductive
hypothesis, there exists a URM program P’ such that f . = fp,,._ which is the desired program.

If the instruction [; is of type A, we proceed in a completely analogous way, replacing the
instruction with its encoding and using the inductive hypothesis.

For the converse implication C S C* observe, analogously, Z(n) and S(n) can be encoded inside the
modified machine. More precisely, given a program P and g4, g, index of registers not used by the program
(so initially at 0) consider:

C(q1) // fa in modo che ¢; contenga 1
P.‘

(the text says “to make g, contain 1) where P’ is obtained by P substituting Z8 M) with T'(q,, m) and each
S(m) with A(m, q1)

Exercise 1.6(p). Consider a variant URM™ of the URM machine obtained by removing the
successor instruction S(n) and adding the instruction M (n), which stores in the nth register the
value 1 4+ min{r; | i < n}, i.e., the successor of the least value contained in registers with index
less than or equal to n. Determine the relation between the set C™ of functions computable by the
URM™ machine and the set C of the functions computable by the ordinary URM machine. Is one
included in the other? Is the inclusion strict? Justify your answers.

Solution: Observe that the instruction M (n) can be simulated in the URM machine as follows:
store in an “unused” register k, an increasing number, which starts from zero. Such a number is

compared with all registers R;, ..., R, until it coincides with one of them. Then the value in
register k& will be the minimum of registers Ry, ..., R,,. Its successor is the value to be stored in
R,
Z(k)
LOOP: J(,k,END)
J(2,k, END)

J(n,k, END)

S(k)

J(1,1, LOOP)
END: S(k)

T(k,n)

Conversely, the instruction S(n) can be simulated in the URM™ machine as follows. Assume again
that k is the number of a register not used by the program. Then the encoding can be the following:

T(1,k)
(n 1)
M(1)

T(1,n)
T(k,1)

Written by Gabriel R.

250

Computability simple (for real)

Exercise 1.7(p). Define the operation of primitive recursion and prove that the set C of URM-
computable functions is closed with respect to this operation.

ProoF. Let f: NF — N and g: N¥*2 — N be computable functions. We want
to prove that h : N¥+1 — N defined through primitive recursion

{h(f, 0) = (@)

is computable.

h(Z,y + 1) = g(Z,y, MZ,y))

Let F,G programs in standard form for f,g. We want a program H for h. We
proceed as suggested by the definition.

Westartfrom|:c1 | |:1‘;L|y|0||

we save the parameters and we start to compute h(Z,0) using F.

If y = 0 we are done, otherwise we save h(Z,0) and compute h(Z, 1) = g(Z,0, h(Z,0))
with G. We do the same for h(Z,7) until we arrive at i = y.

As usual we need registers not used by F' and G, m = maz{p(F'), p(G), k + 2} and
we build the program for h as follows:

1

m+1

m+k

m+k+1

m+k+3

z

1

16R)

Y

LOOP :

END:

T(1,m+1)

T(k,m + k)

Tk+1,m+k+3)
Flm+1,....m+k—>m+k+2]

Jm+k+1m+k+3 END,)
Gm+1,....m+k+2->m+k+2]
S(m+k+1)

J(1,1, LOOP)
T(m+k+2,1)

Written by Gabriel R.

// compute h(Z,0)

// i=y?

// 1= i+l

251 Computability simple (for real)

Another exercise of the same kind (2015-09-03)

Define unbounded minimalization and define C is closed with respect to this operation

DEFINITION 6.31. Let f : N¥*! — N be a function. Then the function h : N¥ — N
defined through unbounded minimalisation is:

f(&,2)=0
flz,z) | f(Z,2)+0 forz<2

1 otherwise, if such a z does not exist

B ., least z s.t.
hZ) = py.f(Z,y) = {

THEOREM 6.32 (Closure under minimalisation). Let f : N¥*1 — N a computable
function (not necessarily total). Then h : N¥ — N defined by h(Z) = py.f(Z.y) is
computable.

Proor. Let F be a program in standard form for f.

Idea: for z =0,1,2,... we compute f(Z,z) until we find zero.

We need to save the argument 7 in a register R,, (m = max{p(F),k + 1}) such
that it is not used by the program F'.

So the program for h is obtained as follows:

1 ... k& ... m+1 ... m+k m+k+1
7 1] & R
T(1,m+1)
'-I'.'(.k,m—%k)
LOOP: Flm+1,....m+k+1—-1] [/ f(Z,z)— R O
J(,m+k +2,END) /] f(#,2) = 07
Sim+k+1) [/ z=z+1
J(1,1, LOOP)
END: Tm+k+1,1)

Written by Gabriel R.

252 Computability simple (for real)

Exercise (2019-11-18-solved)

Consider a variant of the URM machine, in which the zero instruction is replaced by the P(n) instruction
whose effect is to replace the contents of the register n with its predecessor, sor;, « 1, —1.

Show what relationship there is between C’ the set of computable functions of the new machine and the
set C of computable function with the URM machine. Are one contained inside the other? Is the inclusion
strict? Motivate your answers.

Solution

We have that C’' = C given the instructions of a machine can be encoded inside the other and to prove
C' € C we show there is a URM program P’ and an index k € N for which there is a URM program P which

#) _ (k)
— JP

computes the same function, s.t. f, as follows.

Observe P(n) is each instruction, with j its ordering number and m = max{p(P"), k} + 1 the first register
not used by P’ which can be encoded by a jump to subroutine:

SUB: J(n,m,j+1)
S(m)

LOOP: J(n,m,END)
S(m)
S(m+1)

END T(m+1,n)
J(1,1,j+1)

More formally, we show that for each P’ of URM’ machine, we obtain a program P s.t. fp(k) = fp'(k) which
does not use P(n) instructions. Proof goes on by induction:

- h = 0 which is trivial, because P’ is already good

- h —> h+1,inwhich case P’ has for sure at least a P(n) instruction and consider as before j the
index of said instruction. P’ will have shape:

1 : IJ_
i P(n)

(P © Typn

We build a program P"’ using an index m = max{p(P'), k} + 1:

1 . Il
j J(1,1,SUB)
U)o gy
J(1,1,END)
SUB : J(n,m,j+1)
S(m)
LOOP : J(n,m,RES)
S(m)
S(m+1)
J(1,1,L00P)
RES : T(m+1,n)
J(1,1,j+1)
END
7 n&) _ (k) s .
P" by hypotheses contains h instructions of type P(n) andiss.t. fp'~~ = fp = which is the desired

program.

Written by Gabriel R.

253 Computability simple (for real)

For the opposite inclusion, we proceed similarly, noting that the instruction Z(n) could be encoded in the
URM' machine as follows, where m is, as above, the index of a register beyond the area used by the
program (and thus to 0).

SUB: J(n,m,j+1)
P(n)
J(1,1,SUB)

Similar to this one we have (2020-11-23)

Consider a URMP variant of the URM machine in which the zero instruction Z(n) is replaced by the
predecessor instruction P(n) that decrements the contents of register n, like r;, « 1, — 1. Stating C? the
set of functions computable by the URMP machine, establish the relationship between C? and C

Are they one contained in the other? Is the inclusion tight? Motivate the answers.
Solution

Given P(n) can be encoded inside the URM machine, clearly C? S C. More precisely, I;: P(n) can be
replaced by a jump to the following subroutine, using q as the index of first register not used by the
program (initially at 0):

SUB : J(n,q,RIS)
LOOP : J(n,q+1,RIS)
1)

RI&S‘ N T
The routine checks if n contains 0. When it does, there is nothing to do. Otherwise, with R, starting from 0

and R4 from 1, it continues to increment the two registers. When R, 1 is equal to R, we have R,
contains the predecessor.

More formally, G, < C so for a number of arguments k, we have a program P’ which computes the same

function, so fP'(k) = P(k).

The proof goes on by induction . When h = 0 is trivial, and when h = h + 1 for sure the program will have
at least a P instruction and for an index j instruction:

1 N
j P(n)
F(P) . f{_-(p)

We build a program P"’ using a register not used by p, so ¢ = max{p(P), k} + 1.

Written by Gabriel R.

254 Computability simple (for real)

1 . lr]_
j J(1,1, SUB)
((P) Iyp
J(1,1, END)
SUB J(n,q, RIS)
S(g+1)
LOOP J(n,q + 1, RIS)
S(q)
S(g+1)
J(1,1, LOOP)
RIS . T(g,n)
J(1,1,7+1)
END
The program P'"is a URMP program s.t. fp"(k) = P(k) and contains h instructions of P. So, P? is the desired

program.

The opposite inclusion and thus equality also applies. In fact, the instruction Z(n) can simply be replaced by
an instruction T (g, n), where q is any register not used by the program and thus 0. More precisely, given a
URM program P and a fixed number of arguments k € N, called ¢ = max{p(P), k} + 1 the index of the
first unused register and thus initially 0, replacing in P each instruction Z(n) by instruction T(q,n), is a
URMP program that computes exactly the same function.

Written by Gabriel R.

255 Computability simple (for real)

22.2 PRIMITIVE RECURSIVE FUNCTIONS

Note: | suggest doing only practice here; useful link to see some primitive recursive functions here. Then
proceed by primitive recursion (base case — recursive step) or by bounded minimalization (so, consider both
cases in which the variable exists and also it doesn’t)

Exercise 2.1(p). Give the definition of the set PR of recursive primitive functions and, using
only the definition, prove that the function pow2 : N — N, defined by pow2(y) = 2¥, is primitive
recursive.

Solution: The set PR of primitive recursive functions is the smallest set of functions that contains
the basic functions:

1. 0: N — Ndefined by 0(z) = 0 for each x € N;
2. s: N — Ndefined by s(z) = x + 1 for each x € N;
3. Uk . N* — Ndefined by U¥(z1,... ;) = x; for each (z1,..., xi) € N¥.

and which is closed with respect to generalized composition and primitive recursion, defined as
follows. Given the functions fi,..., f, : N¥ — Nand g : N* — N their generalized composition is
the function h : N¥ — N defined by:

W(E) = g(f1(E), .. ful@))

Given the functions f : N¥ — N and g : N¥¥2 — N the function defined by primitive recursion is
h: NEFL N

{ hZ,0) = f(Z)
h(Z,y +1) = g(Z,y, h(Z,y))

We can define the primitive recursion “manually”, by crafting for pow2: N — N the following:

{ pow2(0) =1
pow2(y + 1) =2 % 2Y =2 x pow2(y) = double(pow2(y))

where double(x) is a function defined by PR itself, such that double: N — N:
{ double(0) =0
double(y + 1) = 2 + double(y) = 2 + (double(y) + 1) = (1 + double(y)) + 1

Exercise 2.2(p). Give the definition of the set PR of primitive recursive functions and, using
only the definition, prove that the the characteristic function x 4 of the set A = {2 —1:ne N} is
primitive recursive. You can assume, without proving it, that sum, product, sg and sg are in PR.

Solution: The set PR of primitive recursive functions is the smallest set of functions that contains
the basic functions:

1. 0: N — Ndefined by 0(z) = 0 for each z € IN;
2. s: N — Ndefined by s(x) = 2 + 1 for each z € N;
3. Uj‘ : N* — Ndefined by U;-‘(rl,xx) = xj for each (z1,...,2) € Nk,

and which is closed with respect to generalized composition and primitive recursion, defined as
follows. Given the functions fi,..., f, : N¥ — Nand g : N* — N their generalized composition is
the function h : N¥ — N defined by:

Given the functions f : N¥ — N and g : N¥¥2 — N the function defined by primitive recursion is
h:NFHL S N:

{ hZ,0) = f(Z)
h(Z,y + 1) = g(Z,y, h(Z,y))

Written by Gabriel R.

https://proofwiki.org/wiki/Category:Primitive_Recursive_Functions

256 Computability simple (for real)

To prove the characteristic function y, is primitive recursive, we define it € PR, considering a as an
element inside recursion s.t. a(n):n € N:

a(0)=0
{a(n+1)=2"+1+1:2*a(n)+1

This is the general case for a(n), so we want to handle all cases in which x = a(n) (and for which the
power of n — 1 is defined).

This can be defined by primitive recursion as a new function called val: N?> - N s. t.:

{ val(x,0) = sg(x)
val(x,n+ 1) = val(x,n) +sg(x,x — 1)

(where the negated sign makes you obtain 0, while the other considers the recursive definition of the
function and basically defines the actual value x with the previous one (x — 1), making it defined for all
cases).

Definitely more correctly (I tried here a different solution, given the one by the teacher comes out of
nowhere for this second part at least):

Now define chk : N> — N, in a way that chk(xz,m) = 1 if there exists n < m such that x = a(n)
and 0 otherwise. It can be defined by primitive recursion as follows:

{ chk(x,0)
chk(z,m + 1)

5g(x)
chk(z,m) + eq(z,a(m + 1))

Hence we can deduce that chk € PR by the fact that y—1 and z—y are in PR, and observing
that eq(z,y) = 3g(z—y + y—x), hence also such function is in PR. We conclude by noting that
xalz) = chk(z,z). (]

Exercise 2.4(p). Give the definition of the set PR of primitive recursive functions and, using only
the definition, prove the function half : N — N, defined by half (z) = x/2, is primitive recursive.

Solution: The set PR of primitive recursive functions is the smallest set of functions that contains
the basic functions:

1. 0: N — Ndefined by 0(z) = 0 for each x € N;
2. s: N — Ndefined by s(x) = 2 + 1 for each z € N;
3. Uff : NF — Ndefined by Uéf(:m, .. xp) = xj for each (z1,...,2zk) € Nk,

and which is closed with respect to generalized composition and primitive recursion, defined as
follows. Given the functions fi,..., f, : N¥ — Nand g : N® — N their generalized composition is
the function h : N* — N defined by:

W(E) = g(f1(E), -, fal@).

Given the functions f: N¥ — N and g : N¥¥2 — N the function defined by primitive recursion is

h:NFt1 5 N:

{ h(Z,0) = f(&)
h(Z,y +1) = g(Z,y,h(Z,y))

Written by Gabriel R.

257 Computability simple (for real)

We need to prove that the function half can be obtained from the basic functions (1), (2) and
(3), using primitive recursion and generalized composition. One can proceed as follows.
First we define the function 5g : N — N such that 5g(z) = 1 if z = 0 and 5g(z) = 0 otherwise:

54(0) =1
sgr+1) = 0
Then the function rms : N — N which returns the remainder of the division of x by 2:
rma(0) = 0
rma(z+1) = 3Fg(rma(x))
Finally the function half : N — N can be defined as:
half(0) = 0
half(x +1) = half(x) + rma(x)

Exercise 2.5(p). Give the definition of the set PR of primitive recursive functions and, using
only the definition, prove that py : N — N defined by pa(y) = |y — 2| is primitive recursive.

Solution: The set PR of primitive recursive functions is the smallest set of functions that contains
the basic functions:

1. 0: N — Ndefined by 0(z) = 0 for each z € N;
2. s: N — Ndefined by s(z) = 2 + 1 for each x € N;
3. Uj‘ : N* — Ndefined by Uff(.rl, ...,xx) = xj for each (z1,...,11) € Nk,

and which is closed with respect to generalized composition and primitive recursion, defined as
follows. Given the functions fi,..., f, : N¥ — Nand g : N — N their generalized composition is
the function h : N¥* — N defined by:

W) = g(f1(@), ., fal@)

Given the functions f : N¥ — N and g : N¥¥2 — N the function defined by primitive recursion is
h:NFHL S N:

W#,0) = /(@)

h(Z,y + 1) = g(Z,y, h(Z,y))

To define the function recursively:

{ p1(0) =1
py+2)=@+2-D=(y+1+0-D)=lyl=y

Therefore p; can be defined as:

{ p2(0) =2

P+ =@+1-2)=|y—-1=p,(y)
Given all basic operations are defined, this is in PR.

Exercise 2

Define the class of primitive recursive functions. Using only the definition show that the
function f: N — N defined below is primitive recursive

1 if x is cven
f@) = { 0 if 2 is odd

Written by Gabriel R.

258 Computability simple (for real)

Solution

Solution: The set PR of primitive recursive functions is the smallest set of functions that contains
the basic functions:

1. 0: N — Ndefined by 0(z) = 0 for each x € N;
2. s: N — Ndefined by s(z) = x + 1 for each x € N;
3. Uk : N¥ — Ndefined by U¥(z1,... 1) = ; for each (z1,..., x1) € NE,

and which is closed with respect to generalized composition and primitive recursion, defined as
follows. Given the functions fi,..., f, : N¥ — Nand g : N* — N their generalized composition is
the function h : N¥ — N defined by:

W(E) = 9(F1(@)..... ful@):

Given the functions f : N¥ — N and g : N¥*2 — N the function defined by primitive recursion is
h:NFFL N

{ h(&,0) = f(Z)
h(Z,y + 1) = g(Z,y, h(Z,y))

To show it’s primitive recursive

{ f(0)=1
fOO+1) =59)

Which can also be defined as:

{ 59(0) =1
sgy+1) =0

Exuxcise

Defme QR . LF £ NN Joxy) = 2%

Shew -S: e GR b\d Uy cm@d W d.(l;vmlllon\ 0'5: (\39‘

‘E-‘(xlqj = 20-1 = 2c

Tl=gte) = 248" 2 <= 2 28=x

= 2 {f'l,é? = +‘”'CE{'F{I'BD

+{,UI.C€.(0) = 0

—

twe (41) = o (y) + 2

= suec (mueC f‘f‘(_U\LL K‘-{ﬂ))

Written by Gabriel R.

259 Computability simple (for real)

Example of use of bounded minimalisation to write functions primitive-recursive:
EXERCISE : dhopn hhet gea. NZ =N
%Cd. (’1,}5} = KLBQ':E‘J ormiMmom divedt QAY x aod ‘d

15 mp&ob& fgunmhua teumawe)

ged. [q’?ﬂj = (wex 2 . Z dusn of = omd 2 dwiser of Y

il

WfIFEjlo Eﬂh(fik&}:q

= MOx Z £ (Min (';:.a] .(Zrmf%ﬂ) + "trm(z.«é} =0)

Z
| 7 T ﬁ
£ = fmim(x,4) -
) A
ﬂakgez.‘l Dot
= ﬁ‘n'\mlﬂxlﬂ‘} - (/p,u) £ t‘fmm[srpa}) (2= tmim(oy) - A

R (2) ¢ 2 (&) = O))

Exercise (2019-02-08)

Give the definition of PR set of primitive recursive function and, using only the definition, show that for
every k > 2 is primitive recursive the function sum;: N¥ — N defined by sumy (x; ...x) = Z{-‘zlxi

Solution

Solution: The set PR of primitive recursive functions is the smallest set of functions that contains
the basic functions:

1. 0: N — Ndefined by 0(z) = 0 for each x € N;
2. s: N — Ndefined by s(z) = 2 + 1 for each x € N;
3. Uj‘ : N* — Ndefined by Uj‘(xl, .., xp) = xj for each (z1,...,11) € Nk,

and which is closed with respect to generalized composition and primitive recursion, defined as
follows. Given the functions fi,..., f, : N¥ — Nand g : N* — N their generalized composition is
the function h : N¥ — N defined by:

W(E) = g(f1(E), .., ful@))

Given the functions f : N¥ — N and g : N¥¥2 — N the function defined by primitive recursion is
ho: NFFL N

{ hZ,0) = f(Z)
h(Z,y +1) = g(Z,y, h(Z,y))

Written by Gabriel R.

260 Computability simple (for real)

We then define the function by cases as follows:

{Sum(x,O) =x+x,=0+0=0
sum(x, k + 1) = sum(x) + x4

Exercise (2015-04-20)

Give the definition of PR class of primitive recursive functions and show that the function cpr: N2 — N is
primitive recursive defined as:

cpr(x,y) = {p | x < p <y Ap prime}|

so, cpr(x,y) is the number of primes in the interval [x, y) (it can be assumed that sum and

difference’ between natural numbers as well as the characteristic function of the set of prime numbers yp,
are recursive primitives, without proving it.) [Hint: It may be convenient to initially consider the function
cpr'(x, k) ={p|x <p <x+k Apprime}|]

Solution

Solution: The set PR of primitive recursive functions is the smallest set of functions that contains
the basic functions:

1. 0: N — Ndefined by 0(z) = 0 for each z € N;
2. s: N — Ndefined by s(z) = 2 + 1 for each x € N;
3. Uj‘,-' : N* — Ndefined by Uf(zl, ... o) = xj for each (x1,...,3p) € Nk,

and which is closed with respect to generalized composition and primitive recursion, defined as
follows. Given the functions fi,..., f, : N¥ — Nand g : N* — N their generalized composition is
the function h : N¥ — N defined by:

Given the functions f: N¥ — N and g : N¥¥2 — N the function defined by primitive recursion is
ho: NEFL N

{ (i, 0) = f(F)
h(Z,y +1) = g(Z,y, h(Z,y))

We define the function for primitive recursion as:

cpr(x,0) =0
cpr(z, k+ 1) = epr(z, k) + xpe(z + k)

observing cpr(x,y) = cpr'(x, y—x), composition of primitive recursive functions, so it is primitive
recursive.

Exercise (2022-06-17-solved)

Define the class of primitive recursive functions. Using only the definition show that the
function f: N — N defined below is primitive recursive

) 1 if x is even
@ -1 g

if =15 odd

Written by Gabriel R.

261 Computability simple (for real)

Solution

Solution: The set PR of primitive recursive functions is the smallest set of functions that contains
the basic functions:

1. 0: N — Ndefined by 0(z) = 0 for each x € N;
2. s5: N — Ndefined by s(z) = x + 1 for each z € N;
3. U%: N* — Ndefined by U¥(z1,...,2x) = x; for each (z1,..., xi) € N¥.

and which is closed with respect to generalized composition and primitive recursion, defined as
follows. Given the functions fi,..., f, : N¥ — Nand g : N* — N their generalized composition is
the function h : N¥ — N defined by:

W(E) = g(f1(E), .., ful@))

Given the functions f : N¥ — N and g : N¥¥2 — N the function defined by primitive recursion is

h:NFEtL L N:

{ hZ,0) = f(Z)
h(Z,y +1) = g(Z,y, h(Z,y))

We can then define the function f as follows by primitive recursion. The base case is covered, 0 is an even
number, no doubt. For the recursive case, consider it can either be 1 or 0, according to the specific
underlying number. In this case, one could simply use the negated sign function:

{ f0)=1

fy+1)=59(y)

The negated sign can be defined itself by primitive recursion as follows:
{ 59(0) =1
sgy+1)=0

Exercise (2023-02-01)

Give the definition of the class PR of primitive recursive functions. Show that the following
functions are in PR

1. isgrt : N — N such that isgrt(z) = [vz];

2. lp : N — N such that Ip(z) is the largest prime divisor of z (Conventionally, Ip(0) =
(1) = 1)

You can assume primitive recursiveness of the basic arithmetic functions seen in the course.

Solution

1. The basic observation is that isqri(z) is largest i such that ? < 2 and in turn this
is the smallest y such that y? > z. In addition, it is immediate to realise that such a
1y is bounded by z, hence we get

isgrt(z) =py <z + 1. (y+1)?>z)=py <z +1.59(((y + 1)? ~ 7))

Written by Gabriel R.

262 Computability simple (for real)

2. Observe that, for x > 1, Ip(x) is surely smaller or equal to p,. Hence one can count
the prime divisors of x, restricting the search to pq, ..., ps:

count(z) = BI_ div(p;,)

and then Ip(x) = peount(z)- The function needs to be adjusted for = 0 and = = 1,
where count(r) = 0 and thus peouns(zy = 0 while Ip(z) = 1. This is easily done as
follows:

lp(I) = Pcount(z) + ?_g(l’ = 1)

Since we use only known primitive recursive functions, bounded sum and composition
we conclude that [p is primitive recursive.

Alternatively, the idea can be to check explicitly the prime divisors of x, starting
from p,, then p,_; and so on, stopping at the first. In detail, look for the smaller y,
call it i(x), such that p,_, is a divisor of x.

i(x) = py < £.59(div(ps—y,)

Then, whenever = > 1, Ip(z) pu—i(2) and the cases x < 1 must be treated separately
as before:

Ip(z) = pr—i@) - 89(x ~ 1) +3g(x = 1).

Written by Gabriel R.

263 Computability simple (for real)

22.3 SMN-THEOREM

Note: this section requires knowing the definition then the exercises consider that you get exactly what
domain and codomain are. Basically, domain is the “if” on which the input is conditioned, and the
codomain is the output you get. E.g. f(x) = y if y < 2x,0 otherwise. 2x is the domain and y the
codomain. Then, apply the theorem to prove exactly you fixed x in order to get to that.

Exercise 3.1(p). State the smn theorem and prove it (it is sufficient to provide the informal
argument using encode/decode functions).

The basic idea of the smn-theorem is creating a computable function s, ,, such that for any computable
function ¢, of arity m, there is a computable function ¢, (e) that behaves similarly to ¢, for the first m
arguments.

Recalling the whole proof given here:
Givenm,n > 1 there is a total computable function s, ,,: N™*+1 - N such that VX € N™,Vy € N*,Ve € N
+ > o —
VED) = b D)
Proof

Intuitively, givene € N,X¥ € N

- We get the program P, = y~1(e) in standard form that computes (;bémm), so starting from the first
drawing (this below), in which we compute the ™™ over all inputs (%,) (so ™™ (2, 7))
M1 e
A =
= Sk O....
6
Ve 1

A e
P, ()

<

You want, for each ¥ € N™ fixed, a program P’ < depending on e, X (mapping back its inputs effectively
and composing function parametrizing its values, this you can see below).
A m
_ =, -
[~ @ [

m—

Written by Gabriel R.

Computability%20simple%20(for%20real).docx#SMN Theorem

264 Computability simple (for real)

P’ has to

- Moveytom+1,..m+ n(so, move forward computation of m registers)
- Write X in 1 ...m (loading the value in the free m registers)
- Execute P, (so, execute the computation)

The program P’ can be;

T(m,m+n) //movey,toR,in

T(L,m+1) //movey;toR,q

Z(1) // write x; to Ry
S(1)

S(1)

Z(m) // write x,, to R,,

o >< ™ A‘M\r\%

S(m)

Concatenation will update all the jump instructions, hence moving and writing values for all function
parametrized inside, mapping back effectively with P, = y~1(e).

Once the program P has been built, we have S(e, X) = y(P"). Given each function is effective, existence,
totality and computability of s are informally proven.

In the context of the smn-theorem, ¢¥ is the et partial computable function of k variables. The theorem
establishes that there exists a total computable function, denoted as S(m,n) which can effectively

"translate" or encode the computation of ¢ém+n) (x,) into the computation of ¢S”(m) (e, x)n(y).

Exercise 3.2(p). State the theorem s-m-n and use it to prove that it exists a total computable
function s : N — N such that [W(,)| = 2z and |E,)| = .

This one is also present inside 2019-09-17 exam.

Given m,n > 1 there is a total computable function s, ,,: N™*+1 - N such that VX € N™, vy € N*,Ve € N
A CAD B NN C)

Given the domain should be 2x, we find a function in which we can parametrize a value < 2x; given the
range is x, it’s simply a function which allows us to be defined computably over x. Let’s give

_(qtCx,y), y<2x
9(xy) = { T, otherwise

Written by Gabriel R.

265 Computability simple (for real)

g(x,y) is computable and sg(y) * qt(x,y) + uz.(y + 1— 2x) is computable itself, hence giving as range
X.

By the smn-theorem, there is a computable function g: N — N s.t. ¢sy(y) = g(x,y) Vx,y € N.
Therefore, for each function:

- We={l@enit={ly <2x}
- Exmy = {9y x € Wy} ={qt(2,y) |y <2x}={y+1—2x |y +1<2x}=[0,2x)

as desired.

Exercise 3.3. State the smn theorem and use it to prove that there exists a total computable
function s : N> — N such that Wy, ,y = {z: 2% 2 = y}

Given m,n > 1 there is a total computable function s,, ,: N™*1 — N such that V¥ € N™, vy € N",Ve € N

T ED) =6 0O

m,

We start by defining a computable function of two arguments f(n, x) which meets the conditions when
viewed as a function of x, with n taken as a parameter, e.g.

x . .
f(n,x) = ET’ lfi/l multiple of x _ qt(x, z) + pz.rm(x, z)
, otherwise

By the smn-theorem, there is a computable total function k: N — N such that ¢y (x) = f(n,x) Vn,x €
N. Therefore:

Wagey) = (elf () 3 = {y:2} = (zx v 2 = 3}
as desired.

Exercise 3.4(p). Prove that there is a total computable function &k : N — N such that for each
n € N it holds that Wy(,,) =P = {r e N|z even} and Ey(,) = {zr e N |z = n}.
We start by a computable function f(n, x) which meets the conditions over the parameter, which uses two
functions in order to accomplish the thing. Such function can be, considering the even (division of 2
different from zero, which will happen if x > z, we can characterize):
x

f(n,x) =142

T xiseven qt(2,x) + n+ puz.rm(2,z)
T, otherwise

By the smn-theorem, there is a computable function g: N = N s.t. ¢y (x) = f(n,x) Vn,x € N.
Therefore, for each function:

- Wiy ={x 1 (f(n,x) 1} = {x | xeven} = {x | x is even}
- Ek(n)={f(n,x)|x€N}={’2—C+n|xeven}={x+n2O}={y|y2N}

as desired.

Written by Gabriel R.

266 Computability simple (for real)

Exercise 3.5. State the smn theorem. Use it to prove it exists a total computable function k :
N — N such that Wy,) = {x e N |z > n} e Ep) = {y € N |y even} for all n e N.

Given m,n > 1 there is a total computable function s,, ,: N™*1 — N such that V¥ € N™, vy € N",Ve € N
¢ EI) = b 00 D)

Solution: We start by defining a computable function of two arguments f(n,z) which enjoys the
property when viewed as a function of x, with n seen as a parameter, e.g.

) = {

2% (x=n) ifz>=n

1 otherwise 2x (v = n) + pz(n = 2)

By the smn theorem, there is a computable total function k : N — N such that ¢y, (x) = f(n,)
for each n, x € N. Therefore, as desired

° Wk(n):{$|f(n’/x) l}:{$|z>n},
o Exy={f(n,z)|zeN}={2(z=n)|z=>n}={20n+2-n)|2>0} ={22]|zeN}.

Exercise (2023-02-20)

State the smn-theorem. Show that there exists a total computable function s : N — N
such that for all 2 € N, 2 > 0 we have W,y = P and |Ey | = 2.

Solution

The smn-theorem states that, given m,n = 1 there is a computable total function s, N+l 5 N
s.t.ve € N,Xx € N™,y e N"

PIET) = B (00
We define a computable function g able to compute 2x effectively:

_(qt(y,2x) + 2, x€EP,x>0,y<2x
9(x.y) = { 1 otherwise

The function is computable, given:

g, y) = qt(2x,y) + 2 + uz. (qt(2x,y)—2x)
By the smn-theorem, there exists a function h: N — N such that Vx,y € N, ¢ (v) = g(x,y)

Hence, we can conclude:
Wiy = 1gle)l={yly<2x}={xePly<2xeP}=P

|Es(x)| ={glx,y)|x€ Ws(x)} ={yly <2x}| = {qtQx,y)—2x |y < 2x} ={y |y = 2x}

as desired.

Written by Gabriel R.

267 Computability simple (for real)

Exercise

State the smn-theorem and use it to show there exists a total computable function s: N? - N s.t. Vx,y €N
it holds |Ws(x,y)| =Xxx*y

Solution

The smn-theorem states that, given m,n > 1 there is a computable total function s,, ,: N™*1 - N
s.t.Vve e N,X € N™,y € N"

ST ET) = B (o0
We define a function g: N — N able to get as range x * y, so able to minimize it.

0, Z<Xx*Yy
T

9y, 2) = { , otherwise

The function g is computable and given the minimum w:

9(x,y,2) = pw.z + 1—(x * y)

and we can show by the smn-theorem, there is a total computable function s: N = Ns.t. g(x,y,z) =
¢s(x,y) (Z) So

- WseoyDI={y1gxy) I} =|z|z <x=*y|andsox 7y as desired.
Exercise (2019-11-18-solved)

State the smn-theorem and use it to show there exists a total computable function k: N - N s.t.Vn € N,
k) is total and E () is the set of integer divisors of n.

Solution

The smn-theorem states that, given m,n = 1 there is a computable total function s,, ,: N+l 5 N
s.t.vee N, x e N,y € N"

PIET) = B (00

m,
We define a function g: N = N in which we can define:

(n,x) = {x * 1M, x is a divisor of n
g\ 1, otherwise

This is computable, given:
gn,x) = (x*n)* @(rm(x, n)) + sg(rm(x, n))
For the smn-theorem, there exists a function k: N = N s.t. ¢y) (x) = f(n,x) Vn, x € N. So, as desired:

- Wim) = N (total)
- Exm) = {x | rm(x,n) = 0} U {1}, set of divisors and 1 which is always a divisor for n

Written by Gabriel R.

268 Computability simple (for real)

Exercise 2

State the s-m-n theorem and use it to prove that there exists a total computable function
R n ¥] -
s : N — N such that (W n Egzy| = 2.

The smn-theorem states that, given m,n = 1 there is a computable total function s;, ,: N7+l 5 N
s.t.ve € N,x € N™,y e N"

PIE) = ¢ 5

We’re basically using a function which we use as index for the domain and codomain. Define a function of
two arguments like:

Z, there existsa zs.t.y = 2x

T, otherwise = nz |y - 2x))

gl y) = {
For the smn-theorem, there exists a function k: N — N s.t. ¢g) () = g(x,y) Vx,y € N. So, as desired:

- Wimy = {x 1 g(x,y) 1} = {2x}
- Exm) ={g(x,)| x €N} ={z|zs.t.y =2x}={z|z € N}

Exercise (2015-04-20.partial)

State the smn-theorem and use it to show there exists a total computable function s: N - Ns.t. Vx € N,
Ws(x) = {(k + 2)2 | k € N}

Solution

The smn-theorem states that, given m,n = 1 there is a computable total function s, N+l 5 N
s.t.ve e N,x e N,y € N"

ST ET) = B (0P
To prove it, we define a function of two arguments such that:

_ (k, if there exists some ks.t.y = (x + k)?
9tay) = {T, otherwise

so we set a minimalization to look for that value, like g(x,v) = pk.|(x + k)? — y|. Such function is total
and computable, and for the smn-theorem, there exists a function k: N - Ns.t. ¢y (¥) = g(x,y) Vx,y €
N. So, as desired:

- Wi ={xlgl,y) y={3keN|y=(x+k)?}={x|(x+k)* €N}
Exercise (2018-11-20-parziale)

State the smn-theorem. Use it for proving there exists k: N — N total and computable s.t. Vn € N we have
Wi = {z" | z € N} and Ey () is the set of odd numbers

Solution

The smn-theorem states that, given m,n = 1 there is a computable total function s,, ,: N™+1 & N
s.t.ve e N,x e N jy € N"

PIE) = ¢ 5

Written by Gabriel R.

269 Computability simple (for real)

Define a two-arguments total-computable function f(n, x) respecting the conditions:

2z+1, if x=2z" for some z

_ _ _.n
flx) = { T, otherwise =2 (pz.lx—z"D) +1

By the smn-theorem, there exists a total and computable function k: N — N s.t.) (x) = f(n,x) Vn,x €
N. So, as desired:

- Wiy ={xlf(nx) 1} ={x|3z€ N.x =2z"} = {z" | z € N}
- Ek(n):{f(n,x)lxeWk(n)}z{ZTVZ_”+1|ZEN}={22+1|ZEN}

Exercise (2017-11-20)

State the smn-theorem. Use it for proving there exists k: N — N total and computable s.t. Vn € N we have
Wiy ={x EN|x =n}and Ex,) = {y EN|yeven}foralln € N.

Solution

The smn-theorem states that, given m,n = 1 there is a computable total function s,, ,: N+l 5 N
s.t.ve e N,x e N,y € N"

ST ET) = B (00
Define:

2#(z+-n) sex=n

) altrimenti 2x(z=n)+pz(n=2)

fn.z) = {

By the smn-theorem, there exists a total and computable function k: N — N s.t. ¢y, (x) = f(n,x) Vn,x €
N. So, as desired:

¢ Wiy =1 | f(n,z) [} = {z |z = n};
o Epy ={f(naz)|zeN}={2x=n)|z2n}={2n+2)=n)|z20}={22|ze N}

Exercise (2020-11-23)

State the smn-theorem. Use it for proving there exists k: N — N total and computable s.t. Vn € N we have
[We| = 2% and |E,| = x + 1.

Solution

The smn-theorem states that, given m,n = 1 there is a computable total function s,, ,: N™+1 5 N
s.t.ve e N,x e N,y e N"

;n+n(5f, }_}) = ¢5(‘:3n(3r’?)(}_;)
Define: llogaly + 1)] sey <2
g(x,y) = : :
1 altrimenti

which is computable.
Infact, g(x, y) when defined, is the greatest z s.t. 2* < y + 1 and the minimum s.t. 22*1 > y + 1, so:

9, y) = pz. 552 = (y + 1)) + pw.(y + 1 = 27)

Written by Gabriel R.

270 Computability simple (for real)
So, by the smn-theorem, there exists a function s: N = N s.t. Vx,y € N we have g(x,y) = ¢x)(¥) and so
s is the desired function. Infact:

o W, ={y|glz,y) |} =[0,2° —1] e quindi |W,| = |[0,2* — 1]| = 2*

o By = {glz.y) | 0 <y <27 = {[logy(y +1) | 0 <y <27} = [0,z] e quindi
|Ex| = ([0, 2] = =

Written by Gabriel R.

271 Computability simple (for real)

22.4 DECIDABILITY AND SEMIDECIDABILITY

Note: this section requires knowing or remembering at least structure/projection theorem and the
definition of semidecidable/decidable/knowing the implications of quantification.

Exercise 4.1. Prove the “structure theorem” of semidecidable predicates, i.e., show that a pred-
icate P(¥) is semidecidable if and only if there exists a decidable predicate Q(Z,y) such that

P(¥) =3y. Q(Z,y).
(=) Let P(¥) S N¥ be semi-decidable

1, if P(X)

. is computable
T, otherwise P

sep(®) = |

i.e.thereise € Ns.t.scp = é")

Observe P(%) if f scp(X) = 1
iff scp()
iff Pe(X) 4
iff 3t.H® (e, 2, 1)
If we let Q(t, %) = H® (e, X, t) decidable and P(¥) = 3t. Q(t, %)
(<) We assume P(xX) = 3t. Q(t, x) with Q(¢, X) decidable

1, ifP(%) © 3t.Q(t,X) & At.Xq(t,x) =1
T, otherwise

= 1(ut.|Xo(t, %) — 1])

—
A nx Qe 2oy

T ohbenire

scp(X) = {

Exercise 4.2. Prove the “projection theorem”, i.e., show that if the predicate P(z,#) is semide-
cidable then also 3z. P(x,%) is semi-decidable. Does the converse implication hold? Ts it the case
that if P(x,%) is decidable then also 3z. P(xz, %) is decidable? Give a proof or a counterexample.

Proof (Exercise present inside 2017-01-24 exam)

Let P(x,y) © N¥*1 semi-decidable. Hence, by structure theorem, there is Q(t, x,y) S N¥*2 decidable s.t.

P(x,y) = 3t.Q(t, x,¥)

\ R(y) gax.P(x,f/) = 3x.3t.Q(t, x,¥)

= 3Iw. Q((w)y, W)y,)

oo odedte

Now

Written by Gabriel R.

272 Computability simple (for real)

Hence R is the existential quantification of a decidable predicate = by structure theorem, it is semi-
decidable.

Solution: No, the converse is false. Consider, for instance, P(x,y) = (y = 2x) A (y ¢ W) (or,
simply, P(z,y) = = ¢ W,), which is not semi-decidable. The existentially quantified version is
constant, hence decidable.

Also the second claim is false. Take for instance P(x,y) = H(y,y,z) which is decidable, while
dz. P(z,y) = y € K is only semi-decidable, but not decidable. O

Exercise (2015-07-16-solved)

Show that a predicate P(x,ﬁ is semidecidable, then 3x. P(x, y) is semidecidable. Does the converse hold?
Show it or write a counterexample.

Solution

The first one refers to the projection theorem, defined also here. Observe instead that the converse
implication is false. Consider, for example, the predicate P(x,y) = x € W,, which is not semi-decidable.

The predicate obtained through existential quantification Q(y) = 3x. P(x, y) is consistently true or false

(although not relevant to the proof, note that since K is nonempty, the predicate Q(y) is consistently true),
thus decidable.

As a less "degenerate" example, one may consider P(x,y) = (y > x) A (y € W,) and the quantification
Q) = 3Ax.(y > x) A (y & W,). In this case, note that with e, € N, an index for the always indefinite
function, we have Q(y) is true for every y > e,, thanks to which Q(y) is decidable.

Exercise (2022-06-17)

c¢. Show that if predicate Q(, y) € N¥*! is semi-decidable then also P(7) = Jy.Q(7, y) is
semi-decidable (do not assume structure and projection theorems). Does the converse
hold, i.e., is it the case that if P(¥) = Jy.Q(Z,y) is semi-decidable then Q(7,y) is
semi-decidable? Provide a proof or a counterexample.

Solution

3. Let Q(%,y) € N*'! be semi-decidable. Then the semi-characteristic function scg :
NFtL > N is computable. Let e € N be such that scg = e,
Then Q(Z,y) holds iff o&(#, y) = 1iff ¥ (2, y) | iff I HED (e, (F,y),1).
Therefore Q(,y) = 3. H*+Y (e, (F,y),t) and thus

P(¥) = Jy. Q(#,y) = Iy.3t. HE D (e, (£,y),t) = Jw. HE (e, (F, (w),), (w)2)

Therefore scp(r) = 1(pw. |x e (e, (2, (w))), (w)2) — 1]) is computable, and thus
P(7) is semi-decidable.

The converse implication does not hold. For instance, consider the predicate
Qlx,y) = “¢y(x) 17, Then P(x) = Jy.Q(z.y) = Jy.¢y(x) T is always true, hence
decidable. In fact, if ey is an index for the always undefined function, for y = eq
clearly Q(z,y) for every x € N. Instead Q(x,y) = ¢,(x) 1 is not semi-decidable (it is
negation of the halting predicate, which is semi-decidable but not decidable).

Written by Gabriel R.

273 Computability simple (for real)

Exercise (30-06-2020)
Given two functions f, g: N — N with f total, define predicate Qr, (x) ="f(x) = g(x)". Show that if f and
g are computable, then Qfg is semidecidable. Does the converse hold, so if Qfg is semidecidable, can we

deduce f and g are computable?
Solution
Let f, g be computable functions. Let e;,e; € Ns.t. f = ¢, and g = ¢, .

Then sce, = 1(uw. |f (x) — g(x)| is computable, hence Qy is semidecidable.

If Qfg is semidecidable and let e be an index of semicharacteristic function of Q, namely ¢, = SCqy,

We have f(x) = (uw.H(e,x, (w)1,(w),) V H(e,y, (W)1, (W)3) which shows f and g should be
computable by composition; given the halting problem is not decidable, it means we could easily use by
composition the semi-characteristic function of K (scx) and make it work — so the converse does not hold.

Exercise (2023-02-01)

c. Show that if predicate Q(F,y) = N**! is semi-decidable then also P(F) = 3y.Q(%,vy) is
semi-decidable (do not assume structure and projection theorems). Does the converse
hold, i.e., is it the case that if P(Z) = Jy.Q(T,y) is semi-decidable then Q(F,y) is
semi-decidable? Provide a proof or a counterexample.

Solution

Let Q(7,y) © N*! be semi-decidable. Then the semi-characteristic function scg :
Nf*! — N is computable. Let e € N be such that scg = 992"“).

Then Q(Z,y) holds iff p*V(Z,y) = 1 iff ¥ V(z,y) | ift It.HEV (e, (Z,y). 1)
Therefore Q(z,y) = 3t. H*¥+Y(e, (Z,%),1) and thus

P(%) = 3. Q(F,y) = Iy 3t. HE (e, (7, y),t) = Jw. HE (e, (£, (w)y), (w)2)

—

Therefore scp(Z) = 1(pw. |xgesn (e, (T, (w)1)), (w)2) — 1|) is computable, and thus
P(Z) is semi-decidable.

The converse implication does not hold. For instance, consider the predicate
Q(z,y) = “¢y(x) 1 7. Then P(z) = Jy.Q(z,y) = Jy.¢y(z) 1 is always true, hence
decidable. In fact, if ey is an index for the always undefined function, for y = eq
clearly Q(z,y) for every x € N. Instead Q(z,y) = ¢,(x) 1 is not semi-decidable (it is
negation of the halting predicate, which is semi-decidable but not decidable).

Written by Gabriel R.

274 Computability simple (for real)

22.5 NUMERABILITY AND DIAGONALIZATION

Note: | understood overtime this category refers to “Is this set countable?” — Basically, a category we never
once considered. Here for legacy reasons. See for yourself and you will prove me right.

Exercise 5.1(p). Consider the set Fy of functions f : N — N, possibly partial, such that cod(f) <
{0}. Is the set Fy countable? Justify your answer.

Note cod stays for codomain there. The intuitive answer would be no, we can’t possibly have a mapping
one-to-one to each element, given the set over N itself is uncountable.

Let’s suppose the set is countable for the sake of contradiction and make an argument about it.

- Suppose the set of all functions from N — N is countable. There sure would exist a bijection f
between the set N and all functions from N - N

- We can construct a function g(n) which maps over the image of F,, a subset only mapping over
the number of 0. We define such function to be the output over the nt* computation of the image,
which is over the set of natural numbers

Even restricting the values to this section, we can’t possibly count them all and the set F, itself is
uncountable.

Exercise 5.2(p). A function f : N — N is called total increasing when it is total and for each
z,y € N, if z < y then f(x) < f(y). Prove that the set of total increasing functions is not countable.

Suppose by contradiction the set of total increasing functions is not countable. We first would have to
define something total, and this can be an enumeration of such programs, such that:

fO =1+ fi
n=0

This here is an enumeration which is total by definition, given they are already inside the natural numbers.
This also increases respecting the said order, given f(y + 1) = f(x) + fre1(x + D +1 > f(y) = f(x) =
0 (it increases naturally. It also differs f(y) = 1+ XF_o fu(¥) = 1+ f,(x + 1) > f,.(x).

No enumeration can be defined countable over the natural numbers, given we can’t possibly count and
enumerate how such recursion will work in the long run, and so it can’t possibly contain all total increasing
functions.

Exercise 5.3(p). A function f : N — N is called total increasing when it is total and for each
z,y €N, if x < y then f(z) < f(y). It is called binary if cod(f) < {0,1}. Is the set of binary total
increasing functions countable? Justify your answer.
The key here would be defining a function which is bounded, hence showing the enumeration works for all
codomain values, or something like that, intuitively. Since N is countably infinite, the possible combination
of choices for N (in 0,1), can be 2N° which itself is uncountably infinite. We define as S the set of
increasing total functions.

Let’s define instead a total increasing binary function, in which we can assert the < property, which will be
defined over all values (mapping each binary sequence to a unique natural number). We define a function
in which if f(x) = 1, it means that f(1) = f(2), hence obtaining 0 when this ordering property is defined,
1 otherwise (when they are equal, it would be). So, we define:

oy — {0 fi(x;) < fig1(x),whenx < i
fita) = {1. otherwise

Written by Gabriel R.

275 Computability simple (for real)

This represents the enumeration of total binary increasing functions, which represents a countable subset.
Given the injection maps a binary sequence effectively respecting the property, it remains countable.

Exercise (2019-01-24)

Show thatset F = {6 | 8: N — N A dom(8) finite} of unary functions with finite domain is countable.
Solution

Given any enumeration of the finite subfunctions inside of F, let’s define a function g(x) = []i%, 6;
Such a function is:

- total by definition
- computable, given it is the composition of computable functions

0;(x)+1, xeW,

Define 6;(x) = { 0, otherwise

Since 8;(x) has a finite domain, g is finite and a unary function. g itself is in the enumeration, considering
g(x) = 0(x) + 1, hence F is countable.

An alternative solution (Italian one):

Exercise (2019-02-08)

Given a function f: N — N define Z(f) = {g:N - N | Vx € N. g(x) = f(x) V g(x) = 0}. Show that set
Z(id) is not countable. It is true that for all f, we have Z(f) is not countable?

Solution

Define

fo=fo UHml

, otherwise

The function is:

- total by definition
- Vx €N, (x) # f,since p(x +1) # f(x + 1) # f(x) # g(x)

Hence, this is not countable.

Written by Gabriel R.

276 Computability simple (for real)

22.6 FUNCTIONS AND COMPUTABILITY

Note: this requires proving functions are not-computable most of the time. Use diagonalization or some
functions which is written as computable but actually uses xx which is not computable by definition.

Exercise 6.1(p). Define a function f : N — N total and not computable such that f(z) = = for
infinite arguments 2 € N or prove that such a function cannot exist.

In essence, there should be a case in which we compute until the x*"* computation and then will not be
defined, something like the halting problem. Given the function is not computable, we have a function not
defined for all inputs, hence not decidable for all input where f(x) = x.

Let’s define a function g: N - N s.t.

(o) +1, x €Wy and f(x) total
gx) = .
X, otherwise

This will ensure when Vx € N,g(n + 1) = f(n) + 1 = n + 1 # f(n) since this is not computable and it
will hold as x infinite many times, giving each time a different output over the single input. Hence,
everything is satisfied.

Official one:

Solution: We can define

) pe(z)+1 if e W,
f(x){as if v ¢ W,

Clearly, for all z € N we have p,(x) # f(x), hence f is not computable. Moreover x ¢ W, holds
true infinitely many times since the empty function has infinitely many indices. Therefore also the
last condition is satisfied. O]

Exercise 6.2(p). Say that a ffunction : N — N is increasing if it is total and for each z,y € N,
if x < y then f(z) < f(y). Is there an increasing function which is not computable? Justify your
answer.

Use a basic diagonalization argument; consider an increasing function like f(x) = Y, <x g(¥) and then put:

2) pulr)+1 fxeW,
T) =
90 0 otherwise

Exercise 6.3(p). Are there two functions f,¢g : N — N with g not computable such that the
composition f o g (defined by (f o g)(x) = f(g(x))) is computable? And requiring that f is also
not computable, can the composition f o ¢ be computable? Justify your answer, giving examples
or proving non-existence.

Solution: Yes, in both cases. In fact, let ¢ = &, not computable, and f defined by

) = 0 ifx<1
| xx(z) otherwise
not computable too, otherwise xyx would be computable. It is easy to see that fog is the constant
0, which is computable. O

Written by Gabriel R.

277 Computability simple (for real)

Exercise 6.4(p). Is there a function f : N — N with finite range, total and increasing (i.e.
f(z) < f(y) for x < y) and not computable? Justify your answer with an example or a proof of
non-existence. What if we relax the requirement of totality?

Solution: With the totality requirement, function f cannot exist. Indeed, we can prove that
each function f : N — N with all the required properties is computable. The proof proceeds for
induction on M = max{f(z) | z € N}.

(M = 0) Observe that in this case f(x) =0 for all z € N, i.e. f is the constant 0 and therefore
it is computable.

(M > 0) In this case, let zp = min{z | f(z) = M}. If 5 = 0, the function f is the constant M,
and therefore it is computable.

If, on the other hand, zy > 0, let M’ = f(zy — 1), i.e., the value assumed by f before M. We
can then write f(x) as the sum of two functions

flz) = f'(z) + g(z)
where f': N — N is:
Fla) = { flx) ifz <z

M' otherwise

and g : N — N is:

. _]0 ifz<xy _ 0 o) B
9(@) = { M — M’ otherwise (M = M') sgz +1 = z0)

The function f’ is total, with range included in that of f, whence finite; moreover it is increasing
and max{f’(z) | x € N} = M’ < M. Hence it is computable by inductive hypothesis. Also ¢ is
computable as it can be expressed as a composition of computable functions. Thus f is also
computable.

If we relax totality, the good idea is to use diagonalization, defining:

(o) +1, x#FW,
fo) = { T, otherwise

Given @, # f(x) is not computable, by diagonalization, this will be different from all computable functions.

In any case, one could adapt the following proof reversing the signs for this one.

Exercise 6.5(p). Say that a function f : N — N is decreasing if it is total and for each =,y € N,
if x < y then f(x) = f(y). Is there a decreasing function which is not computable? Justify your
answer.

Let’s start defining a decreasing function, in which we take k = min{f (x) | x € N} and let x, €
N's.t. f(xy) = k. Therefore, given f is decreasing, f(x) = k,Vx = x,. Define then

H(X) — {f(x)r ifx < Xo

T, otherwise
then write f as

_(6(x), if x <x
fo) = { k, otherwise0

Given 8 is finite, it is computable and if we use the smn-theorem, we can write f(x) as follows (combining
both possibilities of the function for whichever case it is decreasing):

FG0) = Gaw. ((x < x AS(e,x, W1, (W)2) V (x = %0 A (W) = K))).

Written by Gabriel R.

278 Computability simple (for real)

The alternative proof uses induction on x, = min{x | f(x) = M}, then defining:

- M =0, the decreasing function f(x) = 0 is primitive recursive for all x

- M>0,given xg
o if xo = 0, then f is a constant function which is primitive recursive
o if xy > 0, decompose f into:

M, x < X

fl(x) = {f(x), x> x,
The function f; is total and inductive hypothesis and primitive recursion, we can define:

0, x<x
9(x) = {M e, x>x

To avoid the function to assume the same value as before, we define f(x) = f;(x) + g(x). Given this is
defined by primitive recursion and it is total, it's computable.

Exercise 6.6(p). Say if there can be a non-computable function f : N — N such that for any
other non-computable function g : N — N the function f + g defined by (f + g)(z) = f(z) + g(x)
is computable. Justify your answer (providing an example of such f, if it exists, or proving that
cannot exist).

We are essentially saying that for every single non-computable function the quantification f + g is not
computable and it can’t be. However, we know that the sum of two non-computable functions is not
necessarily computable. This is because the composition and combination of non-computable functions can
still result in a non-computable function.

If we have a case in which g(x) = f(x), the sum itself would be essentially f(x) + g(x) = f(x) + f(x) =
2 * f(x). However, this does not imply that f(x) is computable; rather, it suggests that the sum in this
specific case is proportional to f(x). The key point remains that the sum of two non-computable functions
is not guaranteed to be computable, and the example f(x) + g(x) being proportional to f(x) doesn't
change this general conclusion.

Exercise 6.7. Say if there can be a non-computable function f : N — N such that there exists a
non-computable function g : N — N for which the function f+g¢ (defined by (f+g¢)(z) = f(x)+g(x))
is computable. Justify your answer (providing an example of such f, if it exists, or proving that
cannot exist).

We know the sum of non-computable functions is not expected to be computable if the two underlying
functions are themselves not computable. We can have the mixed chance: one is computable, the other is
not and again the sum would not be computable. There can exist a case in which we consider a codomain
K = {0,1} in which we sum the two functions yx + x% = 1, where this is computable.

Exercise 6.8(p). Say if there can be a non-computable function f : N — N such that dom(f) n
img(f) is finite. Justify your answer (providing an example of such f, if it exists, or proving that
cannot exist).

All elements of image are also the domain. Because we like to understand things, the following is an
example of function with these qualities:

fx) = x?
dom(f) =R

img(f) = R (all real non negative numbers)

Written by Gabriel R.

279 Computability simple (for real)

Literally, we give a function “already undefined” since it does not stop on all values — the characteristic
function of the halting set, which we know it’s not computable. Define yj as all values which are not inside

f(x) and:
x<1

T,
fx) = {)(K(x), x>1

Exercise 6.9. Is there non-computable function f: N — N such that dom(f) n img(f) is empty?
Justify your answer (providing an example of such f, if it exists, or proving that cannot exist).

Here, we mean the same thing as before, but know we have a domain of values which are in the image but
themselves are not computable; for example, if we define again a predicate yx which contains the set of
values which are not present for f(x) and we define a function like:

X
F0) = XK([E* ZJ), if xodd
T, otherwise

The domain dom(f) is the set of odd numbers, while the codomain cod(f) = {0,2,4 ... } is the combination
of even numbers, so the intersection is empty. Given we defined yg, the xTH * 2 would be computable, but

given it’s not, it’s not even recursive.

Exercise 6.10. Is there a total non-computable function f: N — N, such that its image cod(f) =
{y | 3z e N. f(z) = y} is finite? Provide an example or show that such a function does not exists.

Here we can use diagonalization to prove it is not computable by construction, since it’s different from all
values. We can give a function f as follows:

(sg(de(0)), xEW,
f@)—{ A,

The function is total by construction, cod(f) < {0,1}, not computable since f(x) # ¢, (x) given when

By (x) Lthen f(x) = sg(dx(x)) = P (x) and when ¢, (x) T then f(x) = 0 # ¢, (%)

Exercise 6.11(p). Prove that the function f: N — N, defined as

(@) _{ or(z) ifxeW,

T otherwise

is not computable.

In this case, we have the diagonalization function, and we observe we can simply define:

5.5, x<0
gx) = x
x=0

2’ =

This is not computable, given g(x) # ¢x(§) and if f were computable, g would have been so.

Written by Gabriel R.

280 Computability simple (for real)

Exercise 6.12(p). Say if there is a total non-computable function f : N — N such that, for infinite
x € N it holds

F() = ula)

If the answer is negative, provide a proof, if the answer is positive, provide an example of such a
function.

We can define a function as follows:

(), xEW,
f(x)—{ 0o ew

By diagonalization, we get instead a function which is recursively defined, and computable, but different
from previous input, like h: N — N:

hG) = @) +1= {0 PR

In this case, f(x) + 1 # ¢@,,Vx € N.

Exercise 6.13. Say if there is a total non-computable function f : N — N such that

flx) # ¢u(z)
only on a single argument x € N. If the answer is negative provide a proof, if the answer is positive

give an example of such a function.

We define a function total, which can be

(o (x), xe&W,
£ = {0 e

In this case, the functions remains total in both cases, while also being uncomputable given f(x) # @, (x)
for the single argument x € N.

Exercise 6.14. [s there non-computable function f : N — N such that

f(z) # oo ()

only on a single z € N? If the answer is negative provide a proof of non-existence, otherwise give
an example of such a function.

Define by diagonalization:

_(ox(®), x €W
fe) = { k, otherwise
- total by construction
- non-computable, because @, (x) # f(x)
o if @e(x) I then ¢, (x) # f(x)
o ifgy(x) Tthen ¢,(x) #k = f(x)
- it differs from a single argument k € W, k € N, as desired

Written by Gabriel R.

281 Computability simple (for real)

Exercise
Define a total non-computable f: N = N s.t. dom(F) < {0,1}. Can the function sg o f be computable?
Solution

We use diagonalization in order to prove this. We will get a non-computable function anyway, given if a
function is computable, the other would be too.

_[(59(px(x)), x €W,
f&) { X, x=0
By definition, we find f(x) # ¢,(x) Vx € N. But again, given we used diagonalization, the function cannot

be computable.

Exercise 6.15. Is there a total non-computable function f : N — N such that cod(f) is the set
P of even numbers? Justify your answer response (providing an example of such f, if it exists, or
proving that it does not exist).

We can define a function respecting the asked requirements as follows:
X

) = 2<px(2)+2, x €W,

0, x & W,
This allows us to get access to all even numbers, since this covers all cases for which the codomain (outputs

of function) are even and thanks to diagonalization ¢, G) * f(x), effectively making it non-computable.
Exercise 6.16. Say if there is a non-computable function f : N — N such that the set D = {z €
N | f(z) # ¢.(z)} is finite. Justify your answer.

This exists and to prove it we define a function as follows:

0, x € W,

f) = {(px(x) +1, otherwise

Set D must be finite in order to accompany this proof and we show it is: it’s total by construction, not
computable since if @, (x) 1, f(x) = 0 # @, (x), when @, (x) T, f(x) # @, (x) + 1.

Exercise 6.17. Say if there are total computable functions f, g : N — N such that f(z) # ¢.(x)
for each x € K and g(x) # @.(x) for each = ¢ K. Justify your answer by providing a example or
by proving non-existence.

We're essentially arguing if there are total computable functions which are both total and computable
different from ¢,.. But this means this is different from all computable functions, actually, because

f(x) # @,(x),Vx € K. For g we can take a constant function, which reveals computable Vn, say g(x) = k,
where k = 1. This exists and makes us conclude g(x) =1 # @, (x) =1

Exercise 6.18. Consider the function f: N — N defined by

{ 20+ 1 if gg(x)]

2z —1 otherwise

flx) =
Is it computable? Justify your answer.

It was solved by Baldan in an old 2016 exam.

Written by Gabriel R.

Computability simple (for real)

282
It can be written as yx = sg(f(x) — 2x) which would be computable if and only if y is, but we know K is

not recursive, so yx is not computable.

Exercise 6.19(p). Consider the function f : N — N defined by

r sgVy <z @ytotal
=] wse

0 otherwise
Is it computable? Justify your answer.

This is computable, intuitively, because it is bounded. We need to define the function with a lower bound
considering for example y, = min{y | ¢,, is not total}. Then, we consider

_(x, ifx<y, _ _
f@) = {0 otherwise s9o = x)

which is computable since it is defined by cases.

Exercise 6.20. Consider the function f: N — N defined by
x+2 if p(z)]
flz) = {

x—1 otherwise

Is it computable? Justify your answer.
Solved by the old tutor, this basically involves using the characteristic function of the halting problem, so

the idea behind yg.

24 ﬁ(x)\{/ k ‘,_{X GN{ 10((:()\'/3
o

Z ()=
M& \/ Xéw,(
\\/ NOT RECURSWE
NOT coMPUT ABLE LT R.E,
CBeY
7{&): % (/Cx)) o Aourire
NOTJi g COMRTABLE
CoMP

gml Y ()4 /

3w M A
o;1 L

:5—5((((,() = (><+2,) D T i](x;J)“(x-ﬂQ)J Aoy
MESo
Zk(y): X%O
LA TR

Exercise 6.21. Consider the function f : N — N defined by

wr(z+1)+1 ifpp(z+1)]
flz) = .
1 otherwise

Is it computable? Justify your answer.

Written by Gabriel R.

283 Computability simple (for real)

Suppose f(x) is computable, we define by contradiction yx = sg(|f(x) — ¢, (x + 1) + 1|) which would
be computable, but y is not.

Exercise 6.22. Consider the function f: N — N defined by

pr(z)+1 if p,(y) | foreachy <
flx) =1 p
0 otherwise

Is it computable? Justify your answer.

The function is not computable. Given ¢, (¥) Vy < x, define a function y, = min{y | ¢, (¥) {}. We then
define a function

x <Yy _ B
otherwise sg(Vo — (px(x) + 1))

X,
fo =
Given the function depends on the behavior of ¢,, given f(x) # ¢, (x) + 1, we argue the function is not
computable — as always by diagonalization.
Exercise 6.23. Consider the function f : N — N defined by
N if o, (x) |
f(z) = { x+ 1 otherwise

Is it computable? Justify your answer.

The function is not computable, given ¢, (x) # f(x) + 1 # x + 1 Vx € N. We can consider a function
glx) = sg(f(x) —(x+ 1)), we get a function in the halting set g(x) = Xg(x), given it is different from
x? the x + 1 part thanks to the partial recursion.

Exercise 6.24. A function f : N — N is called almost total if it is undefined on a finite set of
points. Is there an almost total and ecomputable function f : N — N such that f € v g7 Justify
your answer by giving an example of such a function in case it exists or a proof of non-existence,
otherwise.

Consider the function f, almost total and € yg. Given this representation, it definitely has to be undefined,
given the function yx would be computable itself in that case.

Consider simply:

(x) = {1, x €K
AkX) =10, otherwise

Since f is computable, it should also be total for every possible input, anyway this does not happen for a
finite set of points and therefore it cannot exist. This can equivalently be shown like the “official” solution,
using a restriction (the pipe | sign for xx|5):

Solution: Let f be almost total and assume that f < yx. Note that, if we let D = dom(f), one
has that D is finite and therefore recursive. Thus also D is recursive. Define § = Xk |55, which is a
finite function, therefore computable.

Now, we observe that

(@) _{ f(x) zeD

6(z) otherwise

and conclude that f cannot be computable, otherwise also xx would be computable. O

Written by Gabriel R.

284 Computability simple (for real)

Exercise 6.25. Say that a function f : N — N is almost constant if there is a value k£ € N such
that the set {z | f(z) # k} is finite. Is there an almost constant function which is not computable?
Adequately motivate your answer.

We will prove there is a function with this requirements but computable, constructing a finite subfunction:

o) =[O UG =k

, otherwise

Therefore, we write f(x) as follows:

_(0C), ifflx)#k
fo) = { k, otherwise

Since the subfunction is finite, it is computable and let 8 = ¢, (so, the finite index of program).

Thanks to this, we can describe the function as:
fx) = pw. (f(x) € K AS(e,x, W)y, WD)V (f(x) &€ K A(w)y = k),

This way, we are considering all cases for x and also proving the function is computable, since it is defined
by cases.

Exercise 6.26. Is there a total non-computable function f : N — N with the property that
f(x) = 22 for all x € N such that ¢, (x) |? Justify your answer by providing an example of such
function, if it exists, or by proving that it does not exist, otherwise.

Yes, we can define such a function, which would essentially compute x?2 if ¢, (x) |, for example like:

X%, if ge(0) L

x%+1, otherwise

fe ={
This holds since f(x) # ¢,(x) + 1,s0x? + 1 # x? and it is not computable since yx(x) = 5g(f(x) — x?)

Exercise 6.27(p). Is there a non-computable function f : N — N such that for any non-
computable function g : N — N the function fxg (defined as (f*g)(z) = f(z)-g(z)) is computable?
Justify your answer (providing an example of such f, if it exists, or proving that it does not exist).

Not necessarily the product of non-computable functions leads to something computable or not
computable, it depends on the case. Assume that this function exists; we are not arguing about the nature
of the functions themselves but consider f = g and f * f is computable, so we have (f * f)(x) = f(x) *

fO) = fx?).

In this case, consider f(x) = uy. |f(x?) — y?| which is computable, leading to a contradiction, considering
the function was non-computable before.

Written by Gabriel R.

285 Computability simple (for real)

Exercise 6.28(p). Define a function f: N — N total and not computable such that f(z) = z/2
for each even 2 € N or prove that such a function does not exist.

1% idea

LP" F S X, if x is even
@ 1{ \01’ ?- o Flx) = (d’x%l(x) +1, if x is odd and ¢xT_1(x))
' 0, if x is odd and ¢x-1(x) 1
2

11=-

@
@ i

B,
ol - . - . e

- f total
- f(x) = x Vx even (infinite set)

- f not computable (total and # from all total computable functions) (Vx if ¢, is total, f(2x + 1) =
P 2x+1)+1+#¢p,2x+ 1))

Exercise 6.29. Is there a total non-computable function f : N — N such that the function
g : N — N defined, for each x € N, by g(z) = f(z) ~z is computable? Provide an example or prove

that such a function does not exist.
Essentially, the problem considers a non-computable function which when subtracted always gives a
valuable result, hence “stopping/halting” for each input. So, solution found, the indicator function of the
halting problem, which is yx (x). This way, f(x) — x will give a constant value as 0, otherwise, something
that always keeps being inside x € N, being therefore computable.

Exercise 6.30(p). Is there may be a non-computable function f : N — N such that for each
non-computable function ¢ : N — N the function f + g (defined by (f + g)(z) = f(z) + g(z))
is computable? Justify your answer (providing an example of such f, if it exists, or proving that
cannot exist).

If the sum is not computable, there is not a non-computable function which can make the sum computable.
Let’s argue it more formally; consider the case where g is the function that is always equal to f, i.e.
gr(x) = f(x) Vx € N. Since f is non-computable, g also is not.

The sum would essentially result in 2f which is again not computable; if it was, then f must be computable
as well, which is not the case.

Exercise 6.31. Is there a computable function f : N — N such that dom(f) = K and cod(f) = N?
Justify your answer.

To have a function which has the domain inside the halting set, such function should always halt for all

inputs, or at least, be recursively defined and having a constant value in the codomain, which is the case of
the constant function over the halting set.

Written by Gabriel R.

286 Computability simple (for real)

So, we define f(x) = ¢, (x) and dom(f) = K; we will consider an index of the constant function
ks.t.f(e) = p.(e) = k and the codomain cod(f) = N

Alternatively, one can use the minimalization over the t steps of the halting function, simply saying that
“the function will halt on input x, with output x in t steps being sure to stop, hence the —1 and the
program will be computable for sure, using y which is the encoding.

flx) = (pt.-H(z,z,t)) — 1

Clearlydom(f) = K since f(z) | if there exists some ¢ such that H(z,z,1), i.e., if x € K. Further-
more, for each z € N just take the program Z; which consists of Z(1) repeated = times. For the
corresponding index y = v(Z;) we will have f(y) = k — 1, which shows that cod(f) = N. O

Exercise 6.32. Let A be a recursive set and let f1, fo : N — N be computable functions. Prove
that the function f: N — N defined below is computable:

filz) ifzeA
f(:n)—{ falz) if:c;A

Does the result hold if we weaken the hypotheses and assume A only r.e.? Explain how the proof
can be adapted, if the answer is positive, or provide a counterexample, otherwise.

Solution: Let e;, ez € N be indexes for f1, f2, respectively, namely ¢., = f1 and ¢., = f2. Observe
that we can define f as

f(x) = (pw.((S(er, z, (w)y, (w)2) A xal) =1) v (S(ez,z, (W), (w)2) A xalx) =0))h

showing that f is computable. Relaxing the hypotheses to recursive enumerability of A, the result
is no longer true. Consider for instance fi(z) = 1, fo(z) = 0 and A = K, which is r.e. Then f
defined as above would be the characteristic function of K which is not computable. OJ

Exercise 6.33(p). Is there a total, non-computable function such that img(f) = {f(z) | x € N}
is the set Pr of Prime numbers? Justify your answer.

Yes, there is. Consider a function which allows us to obtain a prime number while also being different from
all computed values, for instance, f(x) # @, (x). Consider the set of prime number is not computable, so
we would need a diagonalization argument. We can either consider a function in which we give a max or a
min of all values, considering “we would never reach that”, so:

_(p x € Wy
fG) = {0, otherwise

In which p = max {p' € Pr|p’ < ¢, (x).
The functions:

- istotal, given it’s defined for all natural numbers in any case of definition

- it’s not computable, since we have Vx € N, f(x) # ¢,(x), we would get a prime number smaller
than the recursion (which never happens, given the prime set is not computable), otherwise we get
0

- the image is included, because given a definite prime number, using the constant function, we
might get back the original value, considering is total and for each valuable index n, the ordering
property of natural numbers holds.

o thisis like saying f(n) = max {p’ € Pr|p’' > ¢,(n)} > max{p' € Pr|p’ > ¢,(n)}, thus
having p’ € img(F) andso p

Written by Gabriel R.

287 Computability simple (for real)

Exercise (2022-01-19)

Is there a non-computable total function f: N — N such that f(2) = f(z+ 1) on infinitcly
many inputs z, i.c., such that the sct { € N | f(z) = f(x + 1)} is infinite? Provide an
example or show that such a function cannot exist.

Solution
Such a function can exist, for instance let’s define a function f: N - N s.¢.

0, x & W, or x is not a multiple of 2
fG) = {qbg(x), x € W, or x is a multiple of 2
2

Such function:

- is total by construction (defined by cases)

- f(x) =f(x+1) =0whenxand x + 1 are defined, given they are not multiples of 2

- itis not computable, considering Vx € N, f # ¢,, specifically ¢px(x) # ¢px(x + 1) when ¢x(x) !.
2 2 2

When ¢x(x) T, then f(2x) = 0 # ¢x(2x)

An intricate yet interesting approach from prof. Baldan:

A more clegant, but less immediate solution is to take [= yg, the characteristic
function of the halting set K, which is total and not computable. It is truc but not
obvious that yi(z) = yx(z + 1) for infinitely many 2. Assume by contradiction that,
instead, D = {z | xx(x) = xx(z + 1)} is finitc and let d = max D. This means that for
all & > d it holds that ye(x) # xx(x + 1) and since vy can assume only values 0 and 1,
Yz +1) =35g(xi ().

Now, let v, = xx(x) for x € {0,...,d}. Morcover, consider the function g : N — N
defined by primitive recursion

Then we have that

Uy tr<d .) . ;
) = { o 41)) oo = a5 i) 1 50 = @ (@ 41)

Exercise (latest lessons 2021-2022)
Is there a total computable function f: N — N s.t. g(x) = [I,<x f(¥) is computable?

Solution

@

fe % Ak C e e e s
:
|
3 :

[.
S we = mim q x| 71;(::):0)
4 x < >
() = ° - < =
% {O GHruumse, %{DCD k\)

Written by Gabriel R.

288 Computability simple (for real)

So, it can’t exist. Suppose g(x) = [I,«x f (¥) is computable then, f(y) has to be computable, specifically
using g as a recursive definition, something like: f(x) = g(x — 1) * g(x) which should be computable
considering it is the composition of computable functions, which actually is not.

Exercise (2010-03-19)
Prove if the function f: N — N defined as:

_(x, Vx < x, ¢, total
fe) = {0, otherwise

is computable. Give adequate reasons for your answer.
Solution

The function is computable. Given ¢, (y) is total, define y, = min{y | ¢, (y) 1}. We then define a function

f@) = {z N o= XSG00 — By ()

k otherwise

which is computable.

Exercise (2019-11-18-solved)

Define a total non-computable function f: N — N s.t. dom(f) < {0,1}.
Can the function sg o f be computable? Motivate your answer
Solution

Define f: N — N by diagonalization as follows:

o) = IO xE W

0, otherwise
f is total but not computable, given by definition f(x) # ¢, (x) Vx € N.

Observe sg o (sg o f), soifit sg o f were computable, also f would be computable by composition, but it
is not.

Exercise (2017-11-20)

Is there a total non-computable function f: N — Ns.t. cod(f) = {y | 3x € N. f(x) = y} is finite? Show an
example or show that this function cannot exist.

Solution

Yes, it exists. Consider:

flx) = {@((PX(X)), x € Wy

0, otherwise
The function f:

- istotal

- isnot computable since for all x € N we have f(x) # ¢, (x); infact, if ¢, (x) | then f(x) =
@(qu(x)) # ¢, (x) and if instead ¢, (x) T then f(x) = 0 # ¢, (x)

- clearly, cod(f) < {0,1}

Written by Gabriel R.

289 Computability simple (for real)

Exercise (2018-11-20-parziale)

Is there an index e € N and a non-computable function f: N — N, such that denoted by dom(f) and
cod(f) domain and codomain of f (such that dom(f) = {x | f(x) 1} and cod(f) = {y | Ix. f(x) = y}),
we have dom(f) = W, and cod(f) = E,? Show an example or bring a counterexample. Can a function f
such that dom(f) = W, and cod(f) = E, be found for alle € N?

Solution
For the first part, consider an index e € N for the identity function, so W, = E, = N and define:

£x) :{¢x(x)+1, x €W,

T, otherwise

The function f is total, so dom(f) = N = W,. Moreover, dom(f) = N = E,. In fact, foreachn € N, ifn =
0 then, given an index x of the always undefined function, we have f(x) = 0. If n > 0, then consider
whatever index x of the constant functionn — 1 andwe have f(x) =n—-1+4+1=n.

For the second question, the answer is clearly no. For example, if we consider e € N such that ¢, is the
always undefined function, every f such that dom (f) = W, = @ coincides with ¢, and so it is computable.

Exercise (2020-11-23)

Define a total non-computable function f: N — N s.t. img(f) = {2" | n € N} (where img(f) =
{f(x) | x € N}

Solution
Proceed by diagonalization defining:

26x(0) if x €W,
1, otherwise

fe ={
The function f is clearly total. Moreover:
- f not computable since Vx € N, f # ¢,, so f is different from all computable function. Infact, if

x € W, then f(x) = 2%x() > ¢, (x) and so x & W, we have f(x) = 1 # ¢, (x) given ¢, (x) 1.

- Itholdsimg(f) = {2™ | n € N}. By definition, img(f) € {2 | n € N} given x € W, and so f(x) =
29X and x & W, then f(x) =1 = 2°. The converse implication also holds. Infact, given any n €
N, the constant function n is clearly computable. Using x as whatever index for that function,

¢, (y) = nforally given x € W, = N it holds f(x) = 2#x®) = 27,

Written by Gabriel R.

290 Computability simple (for real)

22.7 REDUCTION, RECURSIVENESS AND RECURSIVE ENUMERABILITY

Note: understand exactly what reduction does and read carefully what you have to prove and try to prove
it the simplest way possible (knowing what recursive/semidecidable and other things are). They are “if and
only if” — prove the first part and then move to the second one, keeping the conditions.

Exercise 7.1. Prove that a set A is recursive if and only if there is a total computable function
f N — N such that x € A if and only if f(z) > .

If A is recursive, then its function is computable and so we want to make a function in which f(x) > x, so
we can create for example f(x) = x + y,(x), where y, is the characteristic function. Given it holds if and
only if the function is f(x) > x, then we can have: y,(x) = sg(f (x)— x) is computable and therefore A is
recursive.

Exercise 7.2. Prove that a set A is recursive if and only if there are two total computable functions
f,g: N — N such that for each x € N

x € A if and only if f(z) > g(x).
Let A be recursive, then like before the characteristic function X4 is computable. We can give some values
for the functions, say f(x) = %and glx) = g, respecting the condition. The functions are computable if
and only if f(x) > g(x), and so like before we can use y,(x) = sg(f(x) — g(x)) and therefore A is

recursive and y,4 computable.

Exercise 7.3. Prove that a set A is recursive if and only if A <,,, {0}.

As before, let A recursive, then y, is computable. We try to give a value to the reducing function, which can
be something which can give 0 as a result, which means it terminates. We argue the function can be 1 +
xa(x). Conversely, if reduction holds, we have y,(x) = sg(f(x)), giving the appropriate finite value and
then A is recursive and the function is computable.

Exercise 7.4. Let A < N be a set and let f: N — N be a computable function. Prove that if A
is r.e. then f(A)={yeN |3z e A. y = f(x)} is r.e. Is the converse also true? That is, from f(A)
r.e. can we deduce that A is r.e.?

Given A is r.e., there exists a sc¢, computable and so y = f(x) for some x € A. To prove this, we have to
define how sc, should appear, hence composing f(A4) and f together, obtaining this way all inputs.

Hence, we give:
scray) () = 1(uw. [xa — 11)
considering the possible function to give is

(1, Ix €EAs.t.f(x)=y
X) = {T, otherwise

hence, if this one semidecides f(A) it returns the required y if there exists some x € A s.t. f(x) = y. This
makes f(A) recursively enumerable.

The converse is not true, considering for example f(4) = {0}, which is clearly an enumerable set, but 4 is
not r.e.

Written by Gabriel R.

291 Computability simple (for real)

Solution: Let e, e’ be such that f = ¢, and sc4 = @e. Then

scea)(y) = L(pw. H(e, ()1, (w)2) ~ S(e, (w)1,y, (w)3))

hence f(A) is r.e. The converse is not true. For example 1(K) = {1} is r.e., but K is not r.e. [J

Exercise 7.5. Let A be a recursive set and f : N — N be a total computable function. Is it true,
in general, that f(A) is r.e.? Is it true that f(A) is recursive? Justify your answers with a proof or
counterexample.

Since A it’s recursive, there exists a total computable function X, and we consider:
screay(x) = xalpw. f(x) —y)

The function semi-decides the predicate whether y € A but is not necessarily recursive, given the set of
f(A4) can be infinite and so f(A) is not recursive.

As a counterexample, consider the function f: N — N defined as f(x) = 2x and the recursive set A =
{x |x is even}. The set f(A) is cleary r.e., but not recursive, given we know nothing about the nature of the
underlying set.

Exercise 7.6. Let A = N be a set and let f : N — N be a computable function. Prove that if A is
recursive then f~1(A) = {z € N | f(x) € A} is r.e. Is the set f~1(A) also recursive? For the latter
give a proof or provide a counterexample.

If A is recursive, there exists some function able to compute it, which is y4(f (x)). This is infact obtained by
the semicharacteristic function this way:

Scf—l(A)(x) = XA(f(x))

The set f~1(A) is not recursive, given it is the halting set K (so, it holds scg*(N) = K

Exercise 7.7. Prove that a set A is r.e. if and only if A <,,, K.

We can prove this in two ways:

(=) If Aisr.e., there exists a total computable function able to compute its inputs and effectively provide
outputs. Hence, the semicharacteristic function can be described by the smn-theorem as the
parametrization of the underlying subinputs, specifically as g(x,y) = sc4(x, y).

(<) If Ais reducible to K, it means there is only one x € A for which f(x) € K. This means that the

function sc4(x) can be defined as SCK(f(x)), this way obtaining a single value as shown by the smn-
theorem, like sc,(x,y) = 0/1if f(x) € Kor f(x) € K

Exercise 7.8. Prove that a set A is r.e. if and only if there is a computable function f: N - N
such that A = img(f) (remember that img(f) = {y:3z. y = f(2)}).

If a set A is r.e., we consider f(x) = x * sc,(x), which means we can either obtain that value or not.
Conversely, if A = img(f) for the function f, we can define scy(x) = 1(uw. (f (z) — y), which can be
done by partial recursion and composition like f(x) = ¢, for a suitable e € N, doing sc,(x) =

l(uw. S(e,(w)q, x, (W)z))-

Written by Gabriel R.

292 Computability simple (for real)

Exercise 7.9. Given a function f : N — N, define the predicate Py(z,y) = “f(z) = y”, Le.,
Ps(z,y) is true if € dom(f) and f(z) = y. Prove that f is computable if and only if the predicate
Py(z,y) is semi-decidable.

Let f: N — N be a computable function. Considering the predicate is semidecidable, there exists a
semicharacteristic function able to compute f(x). Specifically, if we consider f as the computation of the
program on index e such that f = ¢, then we have scp(x,y) = 1(uw. |f(x) — y|) as computable, given
Pr(x,y) is semidecidable.

Viceversa, if P is semidecidable, there exists a program e such that ¢, = scp. Then, we can characterize the
semicharacteristic function using the computation of index e over f(x) such that:

f(X) = uw. (H(e, X, (W)ll (W)Z) A S(er (W)lr (W)Z)
which is computable thanks to f. Alternatively, for this last part:

Vice versa, let P(z,y) be semidecidable and let e be an index for the semi-characteristics
function of P, namely cpgz) = scp. Then we have f(z) = (uw.H® (e, (z, (w),), (w)2));. O

Exercise 7.10. Let A € N. Prove that A is recursive and infinite if and only if it is the image of
a function f: N — N computable, total and strictly increasing (i.e., such that for each z,y € N, if

r <y then f(x) < f(y)).

Let’s start defining a function just like the exercise defined. We define a function g: N — N which is both
recursive and infinite, like g(x) = [, xa(y) + ¢«

This function, given the productory lists all elements according to the underlying property, assigns values in
a monotone way, increasing each time as x increases. Given it is monotone, foreachx € N, g(x) < g(x +
1). This is also infinite, cause the result of recursion is inside the natural and so img(N) = N. We then
define the function f as follows, via minimalization, hence making the computation possible (for the
property x < y).

f)=ux.gx+1)=n+1

The function is computable, given it uses minimalization, and it is total, given the image is always defined
recursively over the naturals. By using this definition, it is also increasing, given x < y, hence constructing

gn) <gim) =g n)+1) < g(f(m)+ 1and therefore f(n) < f(m)

The characteristic function x, allows us to get x, which will get 1 if x4(x) = 1 otherwise will allow us to get
n+1.

For the converse implication, we use the image of function itself as infinite, with a function total
computable and increasing. Given the set A is infinite and increasing, we can see f(x) = z s.t.z < y. This
way, the characteristic function can be expressed as X, (x) = sg(l_[;'zog(z) + f(x)]). This ensures f(x) >
z is satisfied and it’s defined totally on all possible values, hence being computable.

Written by Gabriel R.

293 Computability simple (for real)

Exercise 7.11. Let 7 : N2 — N be the function encoding pairs of natural numbers into the natural
numbers. Prove that a function f : N — N is computable if and only if the set Ay = {7 (z, f(z)) z €
N} is recursively enumerable.

We will prove this in two ways:

- Assuming we have the & function, which is the encoding in pairs, it holds there exists a computable
function f(x) = ¢, = Wy (x, x). Considering a suitable index e € N, we use a function f = ¢, as
follows, considering both input and output will be inside the domain (using as encoding instead
of w:

SCA(x) = 1(.“W S(e! (T[)l; X, (T[)Z) A H(e! (7'[)1,7'[, (T[)S))

Given this definition, we consider a function h: N — N be such that h(x) = m(g(x)) and since g is
computable, h(x) also is. Hence, the semicharacteristic function semidecides the predicate and
Xa(r) is computable and the setis r.e.

- Assume now Ay is r.e. hence there exists a total computable function g:N - N s.t. Ar = img(g)
and it means there exists a corresponding g(y) = m(x, f (x)). By minimalization, the encoding in
pairs will give us back exactly one value, the needed one, so we can express:

) = 1. (g) — 7 (x(£())))
Hence showing that if it is r.e., it is computable.

Exercise 7.12. Prove that a set A < N is recursive if and only if A <, {0}.

If A is recursive, there exists its characteristic function

(x) = {1, x €A
XalX) =1y, otherwose

If A is recursive, by definition such function is computable, and it is total. It is immediate to see that it is a
reduction function for A <,,, {0} since x € A iff y,(x) = 0iff y,(x) € {0}.

Exercise 7.13. Let A € N be a non-empty set. Prove that A is recursively enumerable if and only
if there exists a function f : N — N such that dom(f) is the set of prime numbers and img(f) = A.
We will prove this in two ways:

If A is a non-empty set, we will prove this is r.e., defining a function for example like:

foo = U xEWeandp=minp! €PrIp < ()
1, otherwise

The function defined this way:

- istotal, given it is defined for all natural numbers
- it's computable, given we characterize the following:

sca(x) = 1(uw. S(x, (W)1, 0, W)3)

also, given the condition f(x) < ¢, (x) and will halt for its values having ¢, (x) { when f(x) has a
prime number smaller than ¢, (x), having it defined for all cases

- we have img(f) = A, given from each prime number we can construct a constant function g(x) =
p — 1 Vx € N and the function is computable given for a suitable index n we can construct g = ¢,

Written by Gabriel R.

294 Computability simple (for real)

For the converse implication, if A is r.e., there exists a semicharacteristic function s.t. dom(f) = p and
img(f) = A. We construct f(x) = x * scs(x) and this will be well-defined when describing: 1 if elements
arein A, T if not (in that case, the function f(x) = 0 for any fixed value to have it well-defined), given it will
halt giving in output a definite prime number, making it computable and defined for all possible values.

Exercise 7.14. Let A < C be a set of computable functions such that, denoted by 0 and 1 the
constant functions 0 and1, respectively, we have 0 ¢ A and 1 € A. Define A = {z : ¢, € A} and
show that either A is not or A is not r.e.

Consider in the first case A is not recursive and it is saturated, since {A = x: ¢, € A} where A =
{f | p.(x) L }.By Rice’s theorem, we have that A # @, A # N since:

- ife €N, consider ¢, =id andsoe € 4,sincee ENand ¢, =1 €N, but# N
- ife’ € Nconsider ¢, = @thene ¢ A,soe¢ Pandp, =1+ 0

We already see the set is not recursive. For the converse set it’s literally the same proof. Therefore, given
they are both not recursive, they would not be r.e.

Exercise 7.15. Establish whether an index x € N can exist such that K = {2¥ —1 :y e E,}.
Justify your answer.

Looking at the problem definition, it cannot exist, because 2¥ — 1 to be inside E, must be recursively
defined, hence recursively enumerable inside a set. The problem gives us the complement of the halting
set, which we know it is not r.e. More precisely, this can be seen as K = {2¥ — 1:y € E,.} = img(f ¢ E,)
which would imply the set is r.e., unlike K and they cannot coincide.

Exercise 7.16. Given two sets A, B € N what A <,,, B means. Prove that given A, B,C < N the
following hold:

a. if A <, B and B <, C then A <,;, C,;

b. if A # N then & <,,, A.

For the first part, we are trying to prove transitivity, so if we consider A, there must be a computable
function f: N — N such that f(x) € BVx € Nand x € A.

Similarly for B, there will be a total computable function g:N = Ns.t. Vy € N,y € B, g(y) € C. Using
composition ensures that considering a composing function h: N - N as h(x) = g(f(x)), it will happen
that h(x) = g(f(x)) € C, ensuring the previous properties (given g o f holds as computable).

For the second part, if A is not inside the naturals, we simply consider a value which is not present inside
the set. This way, the always undefined function will reduce to A iff and only if it is defined on a value the
original set is never defined upon, giving “empty” as a result (more formally, a fixpoint). We simply consider
for example ay s.t.ay & A, f (x) = ay. This holds for each x € N, hence working properly.

Exercise 7.17. Given two sets A, B € N define what A <,, B means. Is it the case that A <,,
A u {0} for all sets A? If the answer is positive, provide a proof, otherwise, a counterexample. In
the second case, identify a condition (specifying whether it is only sufficient or also necessary) that
make A <, Au {0} true.

For the first part, we recall the definition given here for reduction. The intersection does not hold, since {0}
is part of the naturals, but here can happen x € N \ {0} and so the reduction cannot work.

Written by Gabriel R.

295 Computability simple (for real)

In general, this holds, but we have to distinguish cases over the 0 value:

- if 0 € Ait will hold for all sets A and the function will simply map 0 into A using for example the
constant function or the identity function on 0

- if 0 € A, given A is finite and # N we would have xy € A, xy # 0 and so the reduction function can
be:

X, ifx=0
X, otherwise

fe ={

Exercise 7.18. Given two sets A, B N define what A <,, B means. Prove that, given any
AC N, we have A re. iff A <,,, K.

Given sets A, B < N, we say that A <, B if there exists a total computable function
f: N — N such that for all x € N, it holds z € A iff f(z) e B.

Considering A <,,, K, we know A is r.e., given K is r.e. too. Specifically, a semicharacteristic function can be
defined as:

sc,(x) = {1, x €K
AV, otherwise

To properly define it, given A is r.e., we can use the smn-theorem defining a total computable function
s:N - Ns.t. g(x,y) = scy(x) = ¢gx)(¥) and this way, given there exists only one index on which this is
parametrized, then s can be correctly considered as a reduction function for A <, K.

Exercise 7.19. Prove that a set A C N is recursive if and only if A and A are 1.c.

PrOOF. (=) If A recursive,
1 z€A
Xalz) =
al@) {0 otherwise

is computable. Then sca(x) = 1(pz.|xa(x) —1|) is computable, therefore
A is r.e. Since A is recursive, then A is recursive, thus, r.e.

(<) Let A, A be r.e., then by definition sc4 and scj are computable, and we
can define

0 zeA

1—scz(x) =
seal®) {T otherwise

that is computable. This means that deg, e; € N such that

Pey = SCA Ye, =1 —5c3

therefore we can “combine two machines” and wait until one of the two
terminates. Since either x € A or x € A, then the process will terminate
for sure. We can build the characteristic function of A as

xa(z) =(uw.1S(eo, 7, (W)1, (w)2 A Sler, x, (w1, (W)2)) — 1)
(M. [XS(eq.z,(w)r,(w)2 A S(er . (w)i.(w)2)) — L)1

which is computable, therefore A is recursive.

Written by Gabriel R.

296 Computability simple (for real)

Exercise 7.20. State and prove Rice’s theorem(without using the second recursion theorem).

Theorem

Let A €S Nbeaset, 4 +# @, A # N.If Aissaturated, then A is not recursive.
Proof

We start from the halting problem, making it reducible to A. So:

K <,, A (since K is not recursive = A is not recursive)

To remember, this happens with reduction “behind the scenes”:

Let ey be aninindex s.t. ¢, (x) T Vx (program for the function always undefined)
1) Assume e, & A

Let e; € A (it exists since A # @)

define
) = {qbel(y), if x €K
FEV =900, ifx€R
B {«pel(y), ifx€K [fp(x) 4]
- T ifx€K [pe(0) 1]
= e, () * 1 ($p(x))
1 g
T oMwuwse
= ¢e1 (y) * l(lpU(x' X))
computable.

By the smn-theorem, there is s: N = N total and computable s.t. Vx, y:

be,¥), ifx€K

¢S(X)(y)=g(x’y)={¢eo(}’), l'fXEE

s is the reduction function for K <,,, A
*xeEK=>s(x)€eEA

if x € K then 5 (¥) = g(x,¥) = ¢, (¥) Vy
i.e.dsx) = Pe, sincee; € Aand A saturated > s(x) € 4

*x¢K=>s(x)¢g A

Written by Gabriel R.

297 Computability simple (for real)

if x € K then ¢ (y) = g(x,¥) = ¢e,(y) Vy
l.e.gx) = Pe, since ey & A and A saturated > s(x) € A

Hence, as expected by our construction, s is the reduction function and since K is not recursive, we deduce
A not recursive either.

2)ifinstead gy € A

ey & A

A saturated (since 4 is saturated)
A # @ (since A # N)

A # N (since A # 0)

— by (1) applied to A we deduce A not recursive — A not recursive

Exercise 7.21. Define what it means for a set A € N to be saturated and prove that K is not is
saturated.

Definition

A subset A € N is saturated (or extensional) if Vv m,n € N

ifmeAand ¢, = ¢, thenn € A

(in words: given two programs, if the first program is in the set of programs satisfying the property and two
programs are computing the same thing, then also the second program satisfies the property. This means
that if one program with a certain property is in the set, all programs computing the same function must
also be in the set.).

g
A saturated if A = {n | ¢,, satisfies a property of functions} = {n | ¢,, € A}
where A C F
'\
property of functions set of all functions
*K = {n| ¢,(n) 1} (this is the halting problem, checking if it terminates over the program code)
Formally, | should find m,n € N

meK ¢,(m)!
meéK g1

and ¢y, = ¢y

(they have different values, but they are computing the same function).

If we were able to show there is a programm € N s.t.

1, if x=m *

Pm (%) = {T, otherwise

Written by Gabriel R.

298 Computability simple (for real)

we can conclude:

UmEK] $mlm) L

2) for a computable function there are infinitely many programs hence there isn = m s.t| ¢,, = ¢,

s K]

dn(n) = (M) T

bn = Om n*m

J

K is not saturated!

Exercise 7.22. Let A € Cbe a set of functions computable and let f € A such that for any function
overfl C f is worth 6 ¢ A. Prove that A = {zx e N | p, € A} is not r.e.

If A is notr.e. then consider the identity function id for which it is defined for all natural numbers and
consider as a finite subfunction 8 = 1 (constant 1), which might not be defined for all situations.

For example, more formally consider:

1 x €K
scx(x) =4
r() {T, otherwise

which is not r.e. and a finite subfunction like the previously defined is finite but & A
Exercise

Let A € N be asetand let f: N — N be a computable function. Is it true if A isr.e. then f1(4) =
{x e N|f(x) € A}isr.e.? And if A is recursive, then A~ 1 is recursive?

Solution

Given A is a computable function, then we know f(x) € A s.t. f(x) | and there is a semicharacteristic
function able to compute it, for example able to compute SCA(f(x)) = 1 where s¢y is the
semicharacteristic function and it exists, giving A as r.e. Then, s¢g-1(,4) = sc4(f (x)) computable since it is
the composition of computable functions, so f~1(4) is r.e.

For the second part, we’re arguing that if the first set is recursive, a set maintaining the same property on
the image is also recursive. This does not happen however; consider the semicharacteristic function of the
halting set defined as scx = {x € K | f(x) !}, so sc;! = {x |scx(x) |} = K not recursive, considering N is
recursive.

Exercise (16-09-2020)

Consider 4, B < N. Define the reduction notion for A <,,, B. Consider set S, = {4 * n | n € N}, so the set
of multiples of 4. Show that A is recursive iff A <,,, S,.

Solution
Recalling the definition for the reduction:

Given A, B € N, we say the problem x € A reduces to "x € B" (or simply that A reduces to B) if there is a
total computable function f:N - N s.t.Vx € N

Written by Gabriel R.

299 Computability simple (for real)

x€Aiff f(x)EB

Set A is recursive, consider we can consider g(x,y) = y if x € Sy and g(x,y) = scg, (x) * y. By the smn-
theorem, there is a total computable function s: N — N s. t. ¢5(x)(¥) = g(x,¥) and this can be shown to
be the reduction function of such problem:

- ifx€S,then g(x,y) = sy (y) =y ,Vy ENthenEg,) = Nand 4+ N € Eqy. So, s(x) €S,

- ifx € S,then g(x,y) = ¢s)(¥) T,Vy € N.Inthis case Eg(,) = @and 4 * n & Eg(y), s0s(x) € S,
Exercise (15-05-2020)
Let A,B € N s.t. A is finite and B # @, N. Show A <mB
Solution

Given A, B € N, we say the problem x € A reduces to "x € B" (or simply that A reduces to B) if there is a
total computable function f:N - Ns.t.Vx € N

x €A iff f(x) €B

Define:

_(bq, X€EA
g(x;}’) _{x, x%A

with b; € B and b, & B (which exist for sure, given B # 0, B # N). Given 4 is finite, it means 4 is recursive,
so X7 computable.

We can then define g(x,y) = by * x7(x) + by * sg(xz(x)) and this is computable. By the smn-theorem,
there is a total computable function s: N = N s.t. 5,y (¥) = g(x,y) and this can be shown to be the
reduction function of such problem:

- X€EA> ¢y)(y) =b Vy > s(x) EB
- x&‘Aﬁqu(x)(y):bOVy—w(x)eEB

Exercise (2022-01-19-solved)

a. Provide the definition of reducibility, i.c., given sets A, B < N define what it means
that A <, B.

b. Show that if A is not recursive and A <, B then B is not recursive.

c. Show that if A is recursive then A <, {1}.

a. Given two sets 4, B € N, we say A <,,, B if there exists a total computable function f: N - N s.t.Vx €
N,x € Aiff f(x) EB

b. If Ais not recursive, then B is not recursive. Infact, if we consider f: N — N as the reduction function, we
can define y4(x) as the characteristic function of A, which in this case is equal to yg(x). This is computable
but consider a non-computable f(x) s.t. x4 = xg °© f. Given f is not computable since B is not recursive,
the whole thing is not recursive, otherwise also A would be recursive. Hence, B is not recursive.

c. To show this, if A is recursive, there exists a characteristic function y, s. t.

(x) = {1, XxX€EA
XalX) =1, otherwise

Written by Gabriel R.

300 Computability simple (for real)

Since A is recursive, the function is total and computable and the reduction function for A <,,, {1} holds
sincex € Aiff x,(x) = 1iff x4(x) € {1}

Exercise (2019-01-24)

Given two sets A, B € N, define the reduction A <,,, B and show A <,,, B and A is not recursive, then B is

not recursive. Can a set A € N be such that A <, A? Show an example or show the non-existence of such
set.

Solution
Recalling the definition for the reduction given here:

Given A, B € N, we say the problem x € A reducesto "x € B" (or simply that A reduces to B) if thereis a
total computable function f:N - Ns.t.Vx € N

x€Aiff f(x)EB

If A is not recursive, B is not either. Suppose for the sake of contradiction A is recursive; then, there would
be a total computable function g:N - N s.t.Vx g,(x) = 1if x € A, g4(x) = 0 otherwise —Assuming B
is recursive, the same holds, specifically gg(y) = g4(x).

In this case, if f(x) € B, then gg(f(x)) = 1and so g4(x) = 1 otherwise g,(f(x)) = 0 and so g4(x) = 0.
However, since A is not recursive, B can not be recursive either.

There is not set such that A <,,, A because that would imply a set and its complement share basically the
same elements.

Infact:

- ifx € A, then f(x) € 4, but A contains exactly the elements not in 4, so f(x) & A and the
reduction does not hold

- ifx & A, then f(x) € 4, but A contains exactly the elements not in 4, so f(x) & A and the
reduction does not hold again

Exercise (2016-07-01)
Let A be a recursive set and let f;, f,: N = N be computable functions. Show that f: N — N defined as:

(i), x€A
f(x)_{f:(x). xg A

Does the result still hold if we weaken the assumptions and assume A r.e.? Explain how the proof fits, if so,
or provide a counterexample, if not.

Solution
Giving A is a recursive set, we have that f(x) is defined and computable.

Considering f; = ¢,, and f, = ¢,, and we have:

fG) = pw. ((scel,x. wi,wa) A (s9(Xa @)) v (SCer w1, w2) v (@(XM)))))
1

which is computable. If A is r.e., then y,4 is not computable, for example considering f; = 1 and f, = 0 we
have:

Written by Gabriel R.

301 Computability simple (for real)

1, x €A
f(x)z{o, x¢A

which is not computable.
Exercise (2016-07-01)

Show that a set 4 is r.e. iff there exists a function f: N = N computable such that A = img(f) =
{f(x):x € N}
Solution

If a setis r.e., the semicharacteristic function sc, (x) is defined. We will define a simple function by
composition, which is computable itself. For example, define g(x) = sc4(x) * x.

Conversely, if there is a computable function with the specified properties, the set is r.e. Looking at the
properties, we have the program is defined on itself, which means it uses its own index as computation
(fixed point). In simpler terms, just consider e as the index of the program and f = ¢, as the computation

over said program and define sc,(x) = 1 (uw. (S(e, (w)q, x, (W)z)))

Exercise (2021-09-07.solved)

Let A, B € N. Define the reduction A <,;, B. Show that A € N isr.e.iffA <, K.
Solution
Let A,B € N. We write A <,,, K if 3f:N — N total and computable s.t. Vx € N,x € A iff f(x) € B.

Set K is not recursive butis r.e. So, if A <,,, K, A is r.e and we can write its semicharacteristic function as
Sscy = scg o f which is computable by composition.

On the converse implication, if A is r.e. there exists a total computable semicharacteristic function sc4 and
consider the function of two arguments g(x, y) defined as sc,(x) which is computable. By the smn-
theorem, there exists a total computable function s:N = N s.t.Vx,y € N, 5, (¥) = g(x,y) = sca(x).

It's easy to see s is a reduction function of A

- ifx €A, then g5 (¥) = g(x,y) = scy(x) = 1Vy €N, sos(x) € W) = N ands(x) € K
- ifx & A, then g () = g(x,¥) = scu(x) =T Vy €N, sos(x) € Wi,y = @ands(x) € K

Exercise (16-05-2020)

Let A,B € N and consider A is finite and B # @,N. Show A <, B.

Solution

Recall the reduction definition; there exists a total computable function f: N - Ns.t. Vx € N
x€EAe f(x)€EB

If we know 4 is finite, there is a total computable function which describes it

1 x€A
— x e)
X7 (%) {T, otherwise

Given B is finite, there exists a function which is able to express the conditions of it:

xeW,

@ ={;
g y) = T, otherwise

Written by Gabriel R.

302 Computability simple (for real)

By the smn-theorem, there exists a total computable function s:N - N s.t.Vx € N, g(x,y) = ¢5c0) (7).
This is a correct reduction function:

- fx€B,¢ps)(¥Y) =1,50E5,) =1#N=+0@andsos €A
- ifx € Bog)(y) =1,50 Eg(yx) = N,Ws(,) # Dandsos € A

Exercise (15-07-2020)

Let A, B € N. Define reduction for A <,,, B. Is it true that if A is recursive and B is finite, not empty then
A <,, B? Show it or give a counterexample. And without finiteness hypothesis for B? In case in general it
doesn’t hold with B infinite and give a condition which allows to restore the property

Solution

Recall the reduction definition; there exists a total computable function f: N - Ns.t. Vx € N
x€EAe f(x) EB

If A is recursive, we can have y, computable. If we consider it as such, we have:

(x) = {1, x €A
XalX) =11, otherwise

If you consider a recursive set, you can have say A be the set of all even numbers and B containing only the
number 2. In this case:

X
1, if—€eA
Xa(x) = { 13
T, otherwise
and
(1, ifx=2
x(x) = {T, otherwise

Since A contains infinitely many elements and B contains only number 2, we can’t map back a function
satisfying all properties of A.

If B is infinite, consider say the set of prime numbers Pr, which is infinite.

(1, if x € Pr
x5 (%) = {T, otherwise
and you have A recursive:
(x) = {1, x€A
XalX) =11, otherwise

We can’t possibly map all elements inside of the first set, given there are infinitely many non-prime
numbers in the second set.

If B is r.e. then A is expressed finitely and recursive, so we can restore the property.

Written by Gabriel R.

303 Computability simple (for real)

22.8 CHARACTERIZATION OF SETS

Note: Know exactly how to prove recursiveness, particularly Rice-Shapiro exact definition, reduction from K

and K and Rice’s theorem (both definition and proof which is used practically here). First see if set is
saturated then try to prove if it is r.e. and from this one one move to recursive check.

Exercise 8.1. Study the recursiveness of the set A = {z € N: [W,| = 2}, i.e., establish if A and A
are recursive/recursively enumerable.

The set is saturated (because it contains a non-trivial property), so {A = x|, € A} s.t.A =
{f € C| |dom(f)| = 2}. We can write here a semicharacteristic function for this set, given it would be
possible for sure to find a value greater than 2 inside the domain, so we write:

sca(x) = 1(uw(H (e, x +2,y) = 1(uw(H(x, x + 2,(w),)

By Rice’s theorem, this set is not recursive: considering e; € N,e; € @, we see e, € A,e; & A. Given the set
is saturated, it is also not recursive by the theorem.

Given these observations, the complement of this set is also not r.e. and not recursive (otherwise both

would be)

Exercise 8.2. Study the recursiveness of the set A = {x e N: z € W, n E,}, i.e., establish if A
and A are recursive/recursively enumerable.

We prove that K <,,, A and define:

x €K
otherwise

1,
g(x» y) = {T
By the smn-theorem, there exists a total computable function s: N — Ns.t. g(x,y) = ¢ ().

We then define the semicharacteristic function of 4 like:
XA(‘X)) = 1(‘UW H(x' X, (W)Z) A S(x! (W)]J X, (W)Z)
We then conclude A is r.e. while 4 is not.

As solved by an old tutor mentioned in beginning of this chapter:

Exercise 8.2. Study the recursiveness of the set A reMN:ze W E.}. i.e., establish if A

and A are recursive/recursively enumerable NoT S\

K=f{xeN| 6 6OVS K < A

kK R.E
'1\ —UMT:Q = e CoMPUMALE

SHN THESREM

= 35 NoN tora copvrmar T fopo() = 80 9)

¥xeN xck o= s(x) €A

B xek >)=y HeN > b))
s0) € Wepy n s €k

S € Nopy n -

Written by Gabriel R.

304 Computability simple (for real)

@ xgk 2 sCYFEA
Eh/ fSCA’) (7) 7 ‘Vy Q’N 2 18(x) ffw_g(g) = s(<) f/A

s0 S A DA NT REcues\E
¢y (x) :ﬂ(f*('fﬁ).H (ff,/ Xy +)_’\ S(XU'Z/X, T))

:ﬂ(rw.H(y/x/(w);_) AN S(K/{w),,/ x/ (w'h)) ComPuimis
DA RE

R pewrnie & B RE

B
2 X is Nor RE &

Exercise 8.3. Study the recursiveness of the set
B={z|zeW,u E,}

i.e., establish if B and B are recursive/recursive enumerable.

We will try to prove the recursiveness of such set showing the reduction from the halting set K, specifically
showing K <,,, B.

If we can write a total computable function, by the smn-theorem, there will also be a semicharacteristic

function showing B is computable and B is not. If we look at the properties of B, we see its domain and its
image have common values, hence if we write a function having a value in K, it will easily hold for the main
problem condition.

We can then write a function of two parameters, considering we want to accommodate the smn-theorem
structure:

(x,y) = {1, x €K
gxy)= 1, otherwise

By the smn-theorem, there is a total computable function s: N - N s.t. g(x,y) = ¢s(,)(y) and we see s is
the desired reduction function. We can then write a semicharacteristic function for B as follows, using H
(function halting in t steps) and the S function, which represents the “compute in t steps”, giving in this
case x, after a number of steps, in this case after (w), composed component steps:

scg(x) = 1(uw. (H(x, x, (w)z) vV S(x, (W)4, x, (W)3))
We conclude this way B is r.e., while B is not, given K is not.

Exercise 8.4. Study the recursiveness of the set A = {x € N: W, € P}, where PP is the set of even
numbers, i.e. establish whether A and A are recursive/recursively enumerable.

We will try to show it is r.e., showing K <, A as we did until now and we consider:

(x,y) = {1, x €K
gxy) = T, otherwise

Written by Gabriel R.

305 Computability simple (for real)

which is computable and by the smn-theorem, there exists a total computable function s: N —
Ns.t.g(x,¥) = ¢sx)(¥) and we see s is the desired reduction function. This infact shows that we will get
¢sx)(¥) = g(x,¥) = 1 and the domain is over the naturals Ws(,) = N.

This shows the function is computable, but we are not inside the set of even numbers, considering we halt
always on an odd number, so we get W,y € P andso s(x) € A, sos(x) € A.

When x & K we have that ¢s,)(y) = g(x,y) =T,Vy and so W,y = @, Ws(,) € P and so (x) € 4, so
s(x) ¢ A. This holds, given Ais r.e., given we can write the following semicharacteristic function:
scz(x) = 1(uw. (H(x,x, W)2,) V S(x, 2(w); + 1, (w)2)
or even:
scz(x) = pw. H(x, 2(w); + 1, (W)2)

(we can use directly this one given we are already in the stopping case, and we can see only this one).
Therefore, A is not r.e.

Exercise 8.5. Study the recursiveness of the set A = {r e N:3y,ze N. 2 > 1 n z =y}, ie,
establish if A and A are recursive/recursively enumerable.

The set A is r.e. given we can write:
seu(x) =1 (#W- Sy zt) A(z>1) A(x= yz))) = 1(uw.S(x, W)y, W)z, (W)3) Asg((w), — 1) Asglx — (W)§W)3I
The set is also not recursive, considering:

x €K

1,
gy = {T, otherwise

Thanks to smn-theorem, there exists a total computable function s: N — N which we show to be the
correct reduction function:

- ifx € K, then @5 (¥) = g(x,y) = 1 foreach y € N. So, Pps,)(s(x)) = s(x)? for some z € N and
G50 (s(x)) Lthus s(x) € A
- ifx € K, then ¢5,)(y) = g(x,y) T foreachy € N. Therefore, W(,) = @ and so s(x) & A

So, the converse of this set is also not r.e. and not recursive.

Exercise 8.6. Study the recursiveness of the set A = {x € N : ¢.(y) = y for infinitely many y},
i.e., establish if A and A are recursive/recursive enumerable.

As solved by an old tutor mentioned in beginning of this chapter:

Written by Gabriel R.

306 Computability simple (for real)

¢y
Exercise 8.22. Study the recursiveness of the set A = {z€ N : ¢, (y) = yfor infinitiesy}, that is
say if A and A are recursive/recursiv bl ~

pefeN G el ;;ﬁ
A=fredl f(y)ﬁy @7—/’7&-‘&7}

i ek {o!(7)>7 b‘,eM

Vo Brmee Dgd 0ly)= w%{&M]

I

86 =849

> 0 ir ~f RE
& 1ol £ A
e }25(7')'1\ VyeN
B OIS G -

Exercise 8.7. Study the recursiveness of the set A = {x e N: W, € FE,}, i.e., establish if A and
A are recursive/recursively enumerable.

Let’s understand if the set is saturated, since A = {x | ¢, € A}, where A is the set of computable
functions, while A is the set, that A = {f | dom(f) S img(f)} and it clearly is.

Let’s use Rice-Shapiro to conjecture that

- Aisnotr.e., sinceid € A, dom(id) S img(id) and there exists a finite subfunction 8,0 € f v 0 €
A. Consider forinstance € A, f(x) =xVx,f € B,O S f

- Aisnot r.e., since id & A but it admits @ as a finite subfunction and 8 € A

From Baldan 2021/2022 ending lessons:

@) A= 4z I W<k}
(.

% A s sotuoted
Ac {1 poccA) A={§ | dom() s e (§D)

¥ A s mot ke
4 ¢ A domn () = N ?’ {1 = cd(D

D=9 <4 dom()=¢ = & = () = Q€ A

= A s mol %e. {l‘ﬁ\a P\\C.L-—BV\O-'P\'Z-O\J

Written by Gabriel R.

307

*

Computability simple (for real)

-A— = mcﬁr Ce.
M damn (Pd) = N < od (pud) = IN
me ek = pud¢ A
S‘-‘-«{D € L4 - 4\:&:;'1 x4 ﬁgpﬁ.ﬁ:
- i Hurgaise T ofuguise ﬁ omte
dom (R) = 40,13 2/ 10} = o (pug)
J¢ A > e A
— we ould hove Comuoukeds
= A s oot Te. 4 xeo \
- -?[1):‘10 x4
Hma A A oo mofur pe. 5 T ollwunse
4 =0
9o :{ T oRwrwnse /
feA RcF Qe
q(zy) ommpotolle
bﬂ stnm Ruwdzecw 9 okl mf‘»mpd*ﬂjﬂ{;ﬁ. s N> N soch Mot
‘-—___6--'_-—_—-‘"
mom@w& CPSI‘;LJ () = &[1,3)

Exercise 8.8. Study the recursiveness of the set A = {z € N: [W,| > [E,[}, i.e. establish whether
A and A are recursive/recursively enumerable.

The set A is saturated, given A = {x | ¢, € A} where A = {f | dom(f) > cod(f)|.

By Rice-Shapiro theorem, we deduce:

Written by Gabriel R.

308 Computability simple (for real)

- Aisnotr.e.

Af ¢ A:f(x)=x—1¢ A,360 € f,0 finites.t.0 € A

x — 1, x<1
0(x) = { T, otherwise

- Aisnotre. (A={x e N||W,| <|E,|)

Af ¢ A:1 ¢ A,30 C f,0 finites.t.0 € A

1, x=1
0(x) = {T, otherwise

Exercise 8.9. Study the recursiveness of the set A = {x € N | p,.(y) = = = y per some y}, that is
to say if A e Aare recursive/recursively enumerable.

This appears as a computable function (given it is the composition of computable functions, using the
product). We can characterize its semicharacteristic function as

sca0) = {7 ¥ g = 1050 W)y xx, W)+, (w))

which is computable, so A isr.e.

We check if it’s also recursive and to do so we test it with a reduction from the halting set:
K<nAx €EKiffs(x) €Aiff 3y € Wy),3k ENs.t.y = k xs(x))
We consider a function of two arguments:

, x €K

gy ={y TSk =Wulsextn)

)

which is computable (given both halting set and the function with usage of smn-theorem work on the same
index, that’s why the universal function is used).

Thanks to smn-theorem, there exists a total computable function s: N — N which we show to be the
correct reduction function:

- ifx €K, then ¢, (¥) = g(x,¥) = 1foreachy € N. So, Pps(,)(1) =1 =s(x) x 1 thuss(x) € A

- ifx € K, then ¢5,)(y) = g(x,y) T foreach y € N. Therefore, there is no such y such that
¢s(x)(}’) = x *y.Thus, s(x)g A

Since A is r.e. but not recursive, then A is not recursive and also not r.e.

Exercise 8.10. Study the recursiveness of the set A = {z € N | |[W, n E,[= 1}, i.e., establish if A
e Aare recursive/recursively enumerable.

The set is saturated, given A = {x | ¢, € A} where A = {f | |dom(f) N cod(f)| = 1}.
By Rice-Shapiro theorem, we deduce:
- Aisnotr.e.

Af ¢ A:f(x) =id € A,36 < f,0 finites.t.0 € A

Written by Gabriel R.

309 Computability simple (for real)

_ (O, ifx=0
0(x) = {T, otherwise

This way, the domain and codomain of normal set will be 0 (while the same — so, domain/codomain — will
be 1 for the complement). Therefore, 8 € A.

- Aisnotr.e.
Af g A:f(x) =0 & A,30 C f,0 finites.t.0 € A

Such function can be the always undefined function, for which it holds @ € A, considering cod(8) =
dom(8) = @. Therefore, 6 € A.

Since A is not r.e. then is not recursive, and also the same can be said for the complement.

Written by Gabriel R.

310 Computability simple (for real)

Exercise 8.11. Say that a function f : N — N is strictly increasing when for each y, z € dom(f),
if y < z then f(y) < f(z). Study the recursiveness of the set A = {x | ¢, sharply increasing}, i.e.,
establish whether A and A are recursive/recursively enumerable.

Let’s start reasoning from A, which considers an increasing ¢,, in a way such that Vy < z, f(y) < f(2).

This means that for every two values we put inside our total function composed by the two ones, we get
the same output, in such a way that Vy, Vz, ¢, = ¢,. Just a bit of formalization here, it means the set is

saturated.

We might use Rice’s theorem to prove this, only needing to define the function not inside the empty set
and not over the naturals. So, let’s use the set of computable functions 4, in which we know ¢, is sharply
increasing, in which we know A = {x € N | ¢, € a}.

By Rice-Shapiro, Af, f € A,360 < f, 0 finite, 6§ & A, we want to understand if the set if r.e. or not. A
function which is always in A is the identity function, which is total.

Having id € A,V0 C id, 0 finite,0 & A.

We can also use the empty set function, which is @ € A, given it is defined and again, this is inside the
identity, so @ € id ¢ A.

So, we showed A is not r.e., using the computable set A and properties alike.

If A = @ on some points, it means this is recursive. The complement, at this point, probably won’t be. We
can try to write a semicharacteristic function showing the complement is r.e.

We want the function x to stop with input z with t steps, so S(x, z, x, t). The function will stop eventually,
soy € W,, given x is total, so ¢, (y) !, so H(x, y, t). Again, w represents a tuple. This will end in t steps,
giving in output a value such that the initial property is defined.

We check the y (so, the third element in tuple, given w = (z, t, y), halting effectively in t steps over the
search of y, given y, z elements, so its sum will be ordered the same way

scz(x) = L(uw. S(x, W)y, x, W) V ((x = F(W)3 + W)a)) A H(x, (W)3, (W),))

Hence, we will write:
scz(x) = 1(uz. S(x, W), W)z + W)3,) VS(x, W)y + W)z + 1, (W)3, (W)4)

This is a combination of tuples, considering the sum will always be in the same order, so combining it this
way will allow us to halt obtaining in the S function a value (w), effectively.

Therefore, given on the complement Rice’s theorem properties hold, A is not recursive.

Written by Gabriel R.

311 Computability simple (for real)

Exercise 8.12. Say that a function f : N — N is almost total if it is undefined on a finite set of
points. Study the recursiveness of the set A = {z | ¢, almost total}, i.e., establish if A and A are
recursive/recursively enumerable.

We start from understanding if the set is saturated or not and use Rice-Shapiro to guess the set is not r.e.
We also need to see, for Rice’s theorem, it is not empty or not the naturals. A = {f € C | f almost total}
using Rice-Shapiro and guess it is not r.e.

We show there is, using the identity function, which is total and r.e.

As solved by an old tutor mentioned in beginning of this chapter:
A :£xC~N[i e/(lj
N=JHel| F oohhmnd hrbl

3F ¢6B b YOS/ O OF B 1= 8 dewer e£.
L

id € A
"Yocid O rue 5 9gN

23f (R o 30<f Prae OB > R
ok e () =>Ini/£"/5\ T
Belk gt vﬁ AR
5 L1

LT

Exercise 8.13. Study the recursiveness of the set A = {x € N: W, n E, = @&}, i.e., establish
whether A and A are recursive/recursively enumerable.

The set is saturated, considering A = {x € N: ¢, € A} where A = {f | dom(f) N cod(f) =).

We now use Rice-Shapiro to argue both sets are not r.e.
- Anotr.e.

In this case a subfunction clearly in this setis 8 = @ € A, while id & A (because dom(f) N cod(f) = N #
)]

- Anotre.
Consider the complement of this setis A = {x € N:W, N E, # @}.
In this case, simply reuse the functions of before:id € A, 0 = @ & A.

Given the two sets are not r.e. they are also not recursive.

Written by Gabriel R.

312 Computability simple (for real)

Exercise 8.14. Given a set X € N, we define X +1 = {z + 1: 2 € X}. Study the recursiveness of
theset A = {xreN: E, = W, + 1}, i.e., establish if A and A are recursive/recursively enumerable.

The set is saturated, considering A = {x € ¢, € A}, where A = {f | cod(f) = dom(f) + 1.
By Rice-Shapiro theorem, we deduce:
- Aisnotr.e.
Af ¢ A:f(x) =id ¢ A,30 < f,0 finites.t.0 € A
Infact, define:

_(x+1, ifx=0
0(x) = { 1, otherwise

Using the identity, we have id & A given cod(id) = N # dom(f) + 1 = N\ {1}. The always undefined
function respects the conditions of this case, so it’s correct also using that (given it exists inside the domain
and codomain)

- Aisnotr.e.
Af g A:f(x)=1¢A,30 S f,0 finites.t.0 €A

In this case, considering there are the complementary conditions, we have to use them to create a function
using x and putting it inside its domain.

1, x<1
fl) = {x, otherwise
and
1, x=1
0(x) = {T, otherwise

with cod(f) =dom(f)+1=N+1and6 C f, 0 € A with cod(0) # dom(6) + 1.

Exercise 8.15. Let P be the set of even numbers. Prove that indicated with A = {x e N : E, = P},
we have K <,,, A.

The set is saturated, because it’s trivial to check if the codomain it’s made of even numbers. We might
argue it is not r.e. using the reduction from the complement of halting set (longer than Rice-Shapiro to do
the same thing). Define:

_ (2y, if =H(x,x,y)
gl y) = { 1, otherwise

The function f can be defined as computable, considering we defined it is even when it does not halt,
otherwise it is odd (important later).

So, f can be written as f(x,y) = 2y * @()(H(x, X, y)) + xu(x, x,y). By the smn-theorem,
®s)(¥) Vx,y € N, which can be used as a reduction function.

- ifxekK

In this case, the computation halts (so, H(x, x,y) = 0) and we get ¢¢) = g(x,y) = 2y for all y and so the
domain is made by even numbers and s(x) € A

Written by Gabriel R.

313 Computability simple (for real)

- ifx & K, the function halts giving 1 as number, so y (x,x,y) = 1 and ¢s)(¥) =1, having 1
inside the domain but not as an even number. Hence, s(x) ¢ A.

Exercise 8.16. Study the recursiveness of the set A = {z e N: p.(z) | A ¢.(x) <z + 1}, e,
establish if A and A are recursive/recursive enumerable.

In this problem, it’s convenient to try to use a reduction from the halting set, so try to K < ,,,A. The
reduction function can be shown to be:

(x,y) = {0, x €K
g\xy)= 1, otherwise

and is computable since it is defined by cases. By the smn-theorem, there exists a total computable
function s: N - N s.t.Vx,y € N, this can be shown to be the correct reduction function from K <, A.

- ifx €K, g(x,y) = ¢psi)(y) = 0. Therefore, s(x) € W,y = Nands(x) € A
- ifx €K, ,g(x,¥) = ¢psx)(y) = 1. Therefore, s(x) & W,y = Dands(x) € A

This set is not recursive, but it is r.e., since we can write its semicharacteristic function:
sca(x) =sg(x+ 1 — ¢y(x))

Since A not r.e. nor recursive, also A4 is not r.e.

Exercise 8.17. Study the recursion of the set A = {reN:2eW, A @.(z) =22}, i.e., establish
if A and A are recursive/recursive enumerable.

Again, we try to use a reduction from the halting set, so try to K < ,,; A. The reduction function can be
shown to be:

y?, x €K
T, otherwise

g(x,y) ={

This is computable, since g(x, y) = y? * scix(x). By the smn-theorem, there exists a total computable
function s:N - Ns.t.Vx,y € N, ¢p5»)(¥) = g(x,¥). This can be shown to be the correct reduction
function, since:

- ifx €K, 50 () = g(x,¥) = y* Vy € N. Therefore, s(x) € W) = Nand s(x) € 4
- ifx & K then g5y (y) = g(x,y) T Vy € N. Therefore, s(x) & Ws) = @and s(x) & A

Since we can write the following semicharacteristic function, A is r.e. (we use the universal function since
basically we are using as index x to find when the same function is stopping on x (¢,) to retrieve x?)

sca(x) = 1(pw. |x? — ¢y (x)) |= 1(pw. |x? = Wy (x, x))) |

which is computable. Since A is not recursive but r.e., 4 is not r.e. and not recursive.

Written by Gabriel R.

314 Computability simple (for real)

Exercise 8.18. Study the recursiveness of the set A = {z € N: 3k € N. p,(z+3k) 1}, i.e., establish
if A and A are recursive/recursive enumerable.

Given the function does not terminate, one can argue a reduction from the complement of the halting set,
soK.
(K <,, A). The reduction function can be shown to be:

if H(x,x,y),so0if x €K
otherwise

feen ={y

By the smn-theorem, there exists a total computable function s: N - N s.t. Vx,y € N, 5 (¥) = f(x,).
This is a correct reduction function, considering:

- ifx € K then b5y ¥) =g(x,y) =0Vy €N, withs(x) €A
- ifx € K then b)) =g(x,y) =T Vy €N, withs(x) € A

Considering K is not recursive nor r.e., A is not recursive or r.e. either

(K <,, A). The reduction function can be shown to be:

_ (0, if =H(x,x,y)
feoy) = {T, otherwise

By the smn-theorem, there exists a total computable function s: N - N s.t. Vx,y € N, 5 () = g(x,y).
This is a correct reduction function, considering:

- ifx €K then bso(¥) =g(x,¥y) =0Vy €N, withs(x) € A
- ifx €K then b5 =gx,y) =T Vy €N, withs(x) & A
Considering K is not recursive nor r.e., A is not recursive or r.e. either

Exercise 8.19. Study the recursiveness of the set A = {x e N: W, = E_}, i.e., establish if 4 and
A are recursive/recursively enumerable.

The set A is saturated, since A = {x : ¢, € A}, since A = {f € C:dom(f) = cod(f)}. We can use Rice-
Shapiro’s theorem to prove the following:

- Anotr.e.
3f.C,f € ANVO S | finite,0 € A

With the specified requirements, we find:

1, x €A
fl) = {T, otherwise

Thisway, 8 € f,0 € A, dom(f) = {1} # cod(f) = {N \ 1}.

- Knotr.e.
Af.C,f EAAVO C [finite,0 € A

If we have the previous function definition, we have 8 & A. Moreover, consider the always undefined
function @ € A. Since 6 C f, 0 finite, 8 € A since dom(@) = cod (@) = @

Written by Gabriel R.

315 Computability simple (for real)

Exercise 8.20. Study the recursiveness of the set

B ={m(z,y) P:(r)] in less than ysteps},
i.e., establish whether B and B are recursive/recursively enumerable.
This is an interesting exercise, similar to 8.51

Set B can be definedas B = {x € K AH(x,x,y — 1). B is r.e. given we can express it like (using the pair
encoding instead of (w) — because we use the latter only because we miss 7, this is proven by theory):

scp(x) = SCK(7T1(Z)) * scy(mq(2),m1(2),m2(2) — 1)

Set B is recursive, considering B can be defined as:

el B -

which is computable. So, B is considered recursive.
Set B is r.e., considering B is r.e. and also recursive, hence they are both recursive.

Exercise 8.21. Given A = {z | , is total}, show that K <, A.

(K <,, A). The reduction function can be shown to be:

_(yv, if-H(xxy)
feoy) = {T, otherwise

By the smn-theorem, there exists a total computable function s: N - N s.t. Vx,y € N, 5 () = g(x,).
This is a correct reduction function, considering:

- ifx €K then bsqo)(¥) = g(x,¥) =y Vy €N, with qbs(x)(s(x)) =y€EN,sos(x) €A
- ifx € K then s (@) = g(x,y) =1 Vy € N, with Wy, = 8, 50 ps1(s(x)) T, s0s(x) & 4

Considering K is not recursive norr.e., A is not recursive or r.e. either.

Written by Gabriel R.

316 Computability simple (for real)

Exercise 8.22. Study the recursiveness of the set A = {x € N : @, (y) = yfor infinitiesy}, that is,
say if A and A are recursive/recursive enumerable.

It’s the same exercise as 8.6 and very similar to 8.49. Basically, no finite subfunction can be here,
concluding easily by Rice-Shapiro.

As solved by an old tutor mentioned in beginning of this chapter:

by - —~ 8
Exercise 8.22. Studyv the recursiveness of the set A = {z € N: 2.(y) = ylor infinitiesy}, that is o 8 - 6 ~ . ~9

A:Z S(GN ; ‘ﬂ, EA‘E ;ﬁ
LD=5fel: Flp=y ﬁr/hj‘ue/j
id ¢ AX 201(7)=7 Vfé—N

0ed Brece DFd 8-y ot fpky
> b Mrrcﬂl EE.

A P P

/6: iy rd RE.

Exercise 8.23. Given a subset X € N define F(X) = {0} v {y,y + 1 | y € X}. Studying recur-
siveness of the set A = {x € N: W, = F(E,)}, i.e., establish if A and A are recursive/recursively
enumerable.

Solution: The set A is saturated, since 4 = {z : ¢, € A}, where A = {f € C : dom(f) =
F(code(f))}}.

Using Rice-Shapiro’s theorem we prove that both A and A are not r.e .:

e Aisnotre.
Consider the function

f{lr}z{ 0 ifrx=20,1,2

= otherwise

We have f ¢ A, since dom(f) = {0,1,2}ecod(f) = {0}. Thus F(cod(f)) = {0.1} # dom(f).

Moreover consider

0 ifx=0,1
0(x) = { 1 = otherwise
Clearly # € f. In addition dom(6) = {0, 1}ecod(#) = {0}. Then F(cod(#)) = {0,1} = dom(6)

and therefore # € A. By Rice-Shapiro’s theorem, we conclude that A is not r.e.

e Aisnotre.
Note that if 6 is the function defined in the previous case, # ¢ A, but the function always
undefined @ € A, since dom() = cod(F) = & and therefore F(cod()) = {0} # dom().
Thus, summing up # ¢ A, but it admits a finite subfunction, i.e., the function always undefined
¢ € A. By Rice-Shapiro’s theorem, we conclude that A is not r.e.

Written by Gabriel R.

317 Computability simple (for real)

Exercise 8.24. Study the recursiveness of the set
B={z|k-(x+1)e W, n E.for each k € N},

i.e., establish if B and B are recursive/recursive enumerable.

Solution: The set A is not r.e., since K <,,, A. We prove it by considering
—H(z, x,
g(m,y)={ f’F (z2,)

otherwise
This is computable and, by using the smn theorem, one can obtain the reduction function.
Also A is not r.e., since K <,,, A. The reduction function can be obtained by considering

, B y relk
g(x,y) = { 1 otherwise

Exercise 8.25. Let (7 be the always undefined function. Study the recursiveness of the set A =
{x | ¢ = @}, i.e., establish if A and A are recursive/recursive enumerable.

Solution: The set A is non-recursive, by Rice’s theorem, since it is saturated, not empty (the
always undefined function is computable) and different from N.
In addition A is r.e., since

sci(z) = 1(pw.H(z, (w)1, (w)2)

Thus A not r.e. O

Exercise 8.26. Study the recursiveness of the set A = {z Vy. if y + x € W, then y < ¢, (y + z)},
i.e., establish whether A and A are recursive/recursive enumerable.

Solution: Theset A= {z Jy.y+2xe W, » y=> . (y+x)} is not is recursive, since K <,,, A.
Consider the function

0 ze K
T otherwise

9(:7:% y) = {

It is computable and thus, using the smn theorem, we deduce the existence of a total computable
function s : N — N, such that g(z,y) = @) (y). The function s can be the reduction function.

In fact, if x € K, we have that y..)(y) = g(x,y) = 0 for all y. Hence @y,)(s(x) +1) =0 <
s(x) + 1, and therefore s(x) € A. If, on the other hand, x ¢ K. we have s(x) ¢ A.

The set A is r.e.. in fact
sci(z) = pw.S(z, (W) + x, (w) + (w)2 + 1, (w)s)

where, intuitively, (w); represents the value y we are looking for and the value of the function is
required to be (w); + (w)2 + 1 > (w);.
Therefore, A is not r.e.

O

Written by Gabriel R.

318 Computability simple (for real)

Exercise 8.27. Study the recursiveness of the set A = {z | w.(y +2) | for some y = 0}, i.e.,
establish if A and A are recursive/recursively enumerable.

Solution: The set A = {z | w.(y +) | for some y = 0} is not recursive because K < A. In
order to prove this fact, let us consider the function g : N2 — N defined, by

{ 1 ifze W,

gla.y) = T otherwise

The function is computable sinee g(x,y) = sci(x). Hence, by the smn-theorem, there is a total
computable function s : N — N such that ¢, (y) = g(z,y) for all x,y € M. We next argue that s
is a reduction function for K <, A. In fact

o If € K then @) (y) = glx,y) = 1 for all y € N. In particular, @,,(0 + s(z)) |. Hence
s(x) e A.

o If 2 ¢ K then @)(y) = g(x,y) T for all y € N. Hence @y (y + s(x)) 1 for all y € N. Hence
s(x) ¢ A.

The set A is r.e., since it semi-characteristic function
sca(z) = Up(y.t).H(z,z + y,t))

is computable.
Therefore, A is not r.e. O

Exercise 8.28. Let X = M be finite, X # (7 and define Ax = {z e N: W, = E, u X}. Study the
recursiveness of A, i.e., say if Ax and Ay are recursive/recursively enumerable.

Solution: The set A, is saturated, since Ay = {r : ¢, € A}, where Ay = {f e C : dom(f) =
cod(f) u X}}. B
Using Rice-Shapiro’s theorem we prove that A and A are both not r.e .:

e Aisnotre.
Let € X and y ¢ X and consider the function

= ifre X uiy}
f@) = { 1 otherwise

We have f ¢ A, since dom(f) = X v {y} # X = X u {2} = X U cod(f). Moreover, if we
consider

T otherwise

6'(3:)={ r ifreX

clearly § € f. Note that dom(#) = X = X u {z} = X U cod(#) and therefore # € A. Thus, by
Rice-Shapiro’s theorem we conclude that A is not r.e.

e Aisnotr.e.
Note that if 6 is the function defined above, # ¢ A, but the function always undefined
& € A, since dom(f) = @ # X = cod(@) u X. Thus, summing up @ ¢ A, but it admits a
finite subfunction, i.e., the function always undefined ¢f € A. By Rice-Shapiro’s theorem, we
conclude that A is not r.e.

Written by Gabriel R.

319 Computability simple (for real)

Exercise 8.29. Let A ={reMN: W, n E, # @}. Study the recursiveness of A, ie., say if A and
A are recursive,/recursively enumerable.

Solution: The set A is saturated, since A = {x : p, € A}, where A = {f € C : dom(f) ncod(f) #
@}. It is not empty (since 1 € A) and it is not the entire N (since ¢ ¢ A), thus by Rice’s theorem
A is not recursive. Furthermore. A is r.e. since

scalz) = L(pl(y, =z, t).H(z,yt) ~ Sz, z,y,t))
= Ypw.H(z, (w), (w)z) » Sz, (w)z, (w), (w)3)

Therefore A is not is r.e. O

Exercise 8.30. Study the recursiveness of the set 4 = freM:VkeM x4+ ke W.}, ie., establish
if A and A are recursive/recursively enumerahble.

Solution: We prove that K <,, A, and thus A is not r.e. In order to obtain the reduction function.
consider the following computable function

g(m,n:{ y if ~H(z,z,y)

T otherwise

and then use the smn theorem.
Also K =, A. In order to obtain the reduction function, consider the following computable
function

(z.y) = 1 ifze K
g\E Y} = 1 otherwise
and again, use the smn theorem. Therefore K < A and therefore A not r.e. O

Exercise 8.31. A partial function f : B — M is called injective when for each x,y € dom(f), if
flz) = f(y) then = = y. Study the recursiveness of the set 4 = {z , injective}, i.e., establish if
A and A are recursive/recursive enumerable.

Solution: The set A is clearly saturated, since 4 = {r | ¢, € A}, where 4 is the set of injective
functions. Since 7 € A and 1 ¢ A, by Rice's theorem the sets 4 and 4 are not is recursive. Also
Ais r.e, since

scalx) = Ypw. (S(z, (w)i, (w)a, (w)a) A S(x, (w)a, (w)a. (w)a) A (w) # (w)a)).

Written by Gabriel R.

320 Computability simple (for real)

Exercise 8.32. Study the recursiveness of the set A = {zreN:3ye E, dze W,. z =y =*z}, ie,
establish if A and A are recursive /recursive enumerable.

Solution: We show that K = A, thus A is not recursive. In fact. define

(z,y) = 1 ifre K
g9\xy) = 1 otherwise

The function g(z,y) is computable, since

9(z,y) =k (x)

So by the SMN theorem, there exists a total computable such function s : N — N such that for
each z,ye N

Ps(x)(y) = 9(z,y)
The function s is a reduction function of K to A. Indeed, if x € K, then @,.)(y) = y for each
y, and thus we can take s(xr) € Wy(,) and 1 € E(,) such that s(x) = s(z) * 1. Thus s(x) € A.

Otherwise, ,,) = & and thus it is easy to conclude s(z) ¢ A.

Furthermore, A is r.e., since

sca(z) = Lpw. S(z, (w)1, (w)a, (w)3) A (wh = (w)2 = x)
Therefore A is not r.e. Il

Written by Gabriel R.

321 Computability simple (for real)

(Also present in the exam 2016-07-01)

Exercise 8.33. Study the recursiveness of the set A = {z e N:x e W, A ¢i(z) > z}, ie,
establish if A and A are recursive/recursive enumerable.

We show that K <,,, A and A4 is not recursive, defining a function like:

_(y+1, ifx €K
90y) = { T, otherwise

The function g(x, y) is computable since g(x,y) = (y + 1) * sckx(x). Bu the smn-theorem, there exists a
total computable function s: N — N s.t. Vx,y € N, then ¢ (¥) = g(x,¥).

This can be shown the correct reduction function, since:

- ifx €K, wehave ¢sr) = g(x,y) =y + 1Vy € Nand so s(x) € Wy(x) = Nand ¢ (s(x)) =
s(x) + 1> s(x) and s(x) € A.
- ifx € K then ¢g,)(¥) = g(x,y) T Vy € N and therefore s(x) & W) = @ then s(x) & A.

The set A can be expressed by a semicharacteristic function like the following:
sca(x) = 1(uw. (x +1) = ¢, (1)) = L(uw. (x + 1) — Wy (x,x))

hence it is r.e. Since this holds, A is not r.e. or recursive either.

Exercise 8.34. Let f be a total computable function such that img(f) = {f(x) : 2 € N} is infinite.
Study the recursiveness of the set

A={z JyeWy. z < f(y)},
i.e., establish if A e A are recursive/recursively enumerable.
Set A is not recursive, given there is a reduction from the halting set, so K <,,, A. Consider:

x €K

1,
gluy) = {T, otherwise

which is computable. Therefore, by the smn theorem there exists a total computable function s: N —
Ns.t.g(x,¥) = ¢s)(¥). This is shown to be a correct reduction function:

- ifx €K, dse(¥) = g(x,y) = 1 Vy € N. Hence, W,y = Nand f(W(,)) = F(N) = img(f). So,
there exists z € f(Ws(x)) S.t.x <zs0y € Wy s.t.s(x) < f(¥).So,s(x) EA

- ifx €K, ¢su) () = g(x,y) =T Vy € N. Hence, Ws(,) = @ and so thereisno y s.t.s(x) < f ().
So,s(x) & A

Written by Gabriel R.

322 Computability simple (for real)

Exercise 8.34. Let f be a total computable function such that img(f) = {f(x) : x € M} is infinite.
Study the recursiveness of the set

A={r ye W,. z < fly)}.

Le., establish if A e A are recursive/recursively enumerable.

Solution: The set A is not is recursive since K =, A. In fact, consider the function

1 rek
1 otherwise

glz.y) = {

It is computable. Therefore for the smn theorem there exists a total computable function s : I — B,
such that g(z.y) = ¢ (y). The function s is a reduction function.

In fact, if € K, we have that ¢, (y) = glx,y) = 1 for each y. Hence W,y = M, and
therefore f(W,x)) = f(M) = imgi(f). which is infinite for hypothesis. Thus there certainly exists
z € f(W,(;) such that & < z, i.e., there exists y € W, such that s(x) < f(y). Therefore s(x) € A.

If, on the other hand, x ¢ K, we have that . (y) = g(x,y) =1 for each y. Hence W, = ¢,
and therefore, certainly there is no y € Wy, such that s(x) = f(y). Thus s(z) ¢ A.

The set A is r.e., in fact

sealx) = pw (H(x, (w).(w)z) ~ =< f((w)))

Therefore, 4 is not r.e.

Exercise 8.35. Study the recursiveness of the set B = {x € N:x € E,}, i.e., establish if B and B
are recursive/recursively enumerable.

Set B is not recursive, considering:

x €K

1,
gxy) = {T, otherwise

which is computable, given g(x,y) = f(x) * scx(x). Therefore, by the smn-theorem, there exists a total
computable function s:N = N s.t. g(x,y) = ¢ps)(¥)-

This is a correct reduction function:

- ifx €K, psn(¥) = g(x,y) = 1Vyandso Wy,) = Nand s(x)sx) = N,sox € B
- ifx €K, ¢gn(y) = g(x,¥) =T Vyandso W) =@andsox & B

Set B is also r.e., given:
SCA(x) = uw. (H(x, (W)lr (W)Z)

Therefore, B is not r.e. (also not recursive, otherwise both sets would be recursive).

Written by Gabriel R.

323 Computability simple (for real)

Exercise 8.36. Study the recursiveness of the set V = {z € N : W, infinity}, i.e., establish if V'
and V' are recursive/recursively enumerable.

As solved by an old tutor mentioned in beginning of this chapter:

Exercise 8.36. Study the recursiveness of the set | {r € N : W, infinitg, i.e., establish if V'
and V' are recursive /recursively enumerable.

V=0xeN e} 74
U_:i FENT [olow(F) wFMrgl 7 N
RiE - SHAPIRD

d€ U domlol) =N

b’@ E 10! F WITE 5%0’ Ao%@) £ IMITE

deU
(@Igio\ ;ﬁEU JOM(Q‘):% F(~(E

FinNLTE

Y et RIE]

S mtRE

Exercise 8.37. Study the recursiveness of the set V = {x e N:3ye W,. Ik e N. y = k -z}, ie,
establish if V and V are recursive /recursive enumerable.

(Basically, it’s adapting exercise 8.32 here)
We try a reduction from the halting problem, so we argue K <, VV:

x €K

1,
gluy) = {T, otherwise

The function g(x, y) is computable, given g(x,y) = scx(y) and by the smn-theorem, there exists a total
computable function s:N = N s.t.Vx,y €N, ¢ () = g(x,).

This is a correct reduction function, because:

- ifx €K, ¢su)(¥) =y Vy €N, sowe can take s(x) € Ws(,)and 1 € E5,) = Nandsos(x) €V
- ifx €K, ¢g0n(¥) T Vy €N, sowe can take s(x) & W,y = @andsos(x) & V
A is r.e. since we can write:
scy(x) = 1(,uW.H(x,y, kx)AN(y*k = x))

sca(x) = 1(uw. xu (x, W)1, W)z, W)3) A (W)2 * (W)3 = x))

Given A is r.e. then it is not recursive (one could use Rice’s theorem here) and also A is not recursive
(otherwise both would be recursive) or r.e.

Written by Gabriel R.

324 Computability simple (for real)

Exercise 8.38. Study the recursiveness of the set V = {z € N: |W,| > 1}, i.e., establish if V and
V are recursive/recursive enumerable.

We argue V is saturated because B = {x | ¢, € B} where B = {f € C | dom(f) > 1}

- Aisnotr.e.
1, x<1
fl) = {x, otherwise
1, x <1
0(x) = {x, otherwise

Wesee f € Abutd € Aandso Aisnotr.e.
- Aisnotr.e.

The previously defined 8 € A but consider @ & 4, given |W,| = @ # N (where n > 1)

Given both sets are not r.e. they are also not recursive.

Exercise 8.39. Let P be the set of even numbers and Pr the set of prime numbers. Show that
P <,, Prand Pr <,, P.

Following the definition:
X € P reduces to x € Pr if there exists a total computable function f:N - Ns.t.Vvx EN,x e P & f(x) € Pr

Define a function of two arguments as follows:

X+x, xX€EP

glx,y) =42 =qt(2,y) + x + uz.vm(2,y)

T, otherwise

which is computable.
By the smn-theorem, there exists a total computable function s: N - N s.t.Vx,y €N, ¢ (¥) = g(x,).

This is a correct reduction function, because:

- fx €P,¢ps(y) = % + x Vy € N, so we can take s(x) € Ws(y) s.t.p € Prand so§+ x € Eg(y)
s.t.§+x € Nand 1€ Esy) = Nandsos(x) € Pr

- ifx &P, s (¥) T Vy EN, so we can take s(x) & W) = @ and so s(x) & Pr
Following the definition:

X € Pr reduces to x € P if there exists a total computable function f:N - Ns.t.Vvx € N,x € Pr & f(x) € P

gy ={r e =5GP

. otherwise

which is computable.

By the smn-theorem, there exists a total computable function s: N - N s.t.Vx,y €N, ¢ (¥) = g(x,¥).

Written by Gabriel R.

325 Computability simple (for real)

This is a correct reduction function, because:
- ifx €Pr, s (¥) =p Vy EN, sowe cantake s(x) € Wy(y) s.t.p E Pandsop € Es,) = Ns.t.
sos(x) EP

- ifx € Pr,ds)(¥) T Vy €N, sowe can take s(x) & Ws(,) = @ and so s(x) & P

Exercise 8.40. Let f: M — M be a fixed total computable function. Study the recursiveness of
the set B = {re M f(r)e E.}, i.e. establish if B and B are recursive,/recursively enumerable.

Solution: Ohbserve that B is r.e., in fact we can write its semi-characteristic function as follows:

seglr) = Hpw. (x, (w)y, flx). (w)z))
Moreover B is not recursive since K <., B. In order to obtain the reduction function consider
m

. Y ifre HJ
glz,y) = { 1 otherwise

Hence .B is not r.e. O

Exercise 8.41. Let f : N — N be a fixed total computable function. Study the recursiveness of the
set B={reN img(f)nE, # &}, i.e., establish if B and B are recursive/recursively enumerable.
Please note that img(f) = {f(x) | x € N}.

B is saturated given B = {x | ¢, (x) € B}so B = {f € C | img(f) N cod(f) # @}. Using Rice-Shapiro, we
argue that:

- Bisnotr.e.

Consider for example id € B given B = {f | img(f) N cod(f)} = N # @ and both image and codomain
are finite and consider no finite subfunction can be inside B

- Bisnotr.e.

Consider @ (always undefined function) which conversely is definitely in this set given B = {f | img(f) N
cod(f)} = @, which is exactly what we want (so 8 € B)

Given both sets are not r.e. they are both not recursive.

Exercise 8.42. Study the recursiveness of the set B = {x ¢ N E, D W,}, i.e,, establish if B e
Bare recursive/recursively enumerable.

As solved by Baldan by Moodle 2020-2021.

If Ais saturated, A = {x | ¢, € A} where A = {g | img(f) Nnimg(g) = 0}
- Anotre.

feA img(g) nimg(f)|=img(f) # @ because f is total

ocf img(f)nimg(@)=>0€A

So, A is not recursive = A not recursive

Written by Gabriel R.

326 Computability simple (for real)

Anotr.e.
Letes.t.¢p, =f
scy(x) = look for y common output of "x" and "e"
= look for y, z, input for x, z, input for e s.t.x on z; produces y and e on z, produces y
= puw. S(x, W)z, W)1, W)a) AS(e, W3, (W1, (W)4)

where (W), =y, W) = 2, (W)3 = 25, (W), = ¢

Exercise 8.43. Let B = {z | Ym € N. m - x € W, }. Study the recursiveness of the B set, that is
to say if B and B are recursive/recursively enumerable.

As solved by an old tutor:

I-}xlrrci:«- 8.43. Lot B : ¥m e N, m-x € W,}. Study the recursiveness of the B sct, that is
if BandBan rsive)/rocursively enumerable,

Kﬁw‘g PK[X)%),&—V\VMQQ/VI\A’W
Vx eN XéET¢>s()éB 30 P I MﬁF@MRngy
¢ X H(/>LZ € i X i
][(/7> { al_\i/iz_ = /~4W. 'TH[k/?v/y)
b Jﬂmme i ﬂw‘/k&(}?,(”) CoMOUVBLE
> JsN—ﬂ\L st £l = \i()
Cone
kK<.B EJ:é,XJIEﬁEN m-x Pl | &
0 x&k,
H”.f?’)’- {T‘ o = (sq (x)) err
AU EY SRR :
= ﬁf;{? T VI _m
® xeK)ﬁ’ﬂ,..)iy)f eN > ¢, 6607 > s00f W,
2slx) €R
© <#K 2rck > 4y (=0 ¥yeN > Wy, = N?E;}Tﬁm{m
5K B 28 ng RE, > S8

@ xek > ?’“l}) (@) Jnlf;éw 2 ‘f;f >(’h: 5(x)) =0 HipyeN
m-56) € gy VaalN
;. =skx)<B
®) x£k 2 d yp N st ﬁ”fy)?bf?;yb 2 Qmeﬂi ot 'fw{ns&))'}\

2> JeeN h"sfH)?@' s6x) %5{&),@’5
KX B > B s wr B.E

Written by Gabriel R.

327 Computability simple (for real)

Exercise 8.44. Given A = {z | ¢, is total}, show that K <, A.
This is present inside 2012-06-20.

Define:

if =H(x, x,y)
otherwise

g(xy)—{'

)

By the smn-theorem, there exists a total computable function s: N = N s.t. g(x,y) = ¢, (y) and this is
shown to be the correct reduction function:

- ifx €K, g(xy) = ¢psu(¥) = y and H(x, x, y) does not terminate. So, we have s(x) €
Wstxy Psi(s(x)) = s(x). Therefore, s(x) € 4

- ifxeK,glxy) = bsq)¥) = g(x,¥) TVy € N.Therefore, s(x) & Ws(,) = 0. So, s(x) & A.

Exercise 8.45. Study the recursiveness of the set B = {z € N Jy > z. y € E,}, i.e., establish ifB
and B are recursive/recursively enumerable.

As solved by an old tutor mentioned in beginning of this chapter:

he set B = {re N 3y > r. ye E,}, i.c., establish ifB

ST iL\M :/-sck(x) CoMPUTALE

) _otterunne
> A NN orar L ommunsiEl st (stx)(ﬂ 5677)
xek &> 36) B YueN i LYY
.

@) xck 2 \Fs&)(ﬂ H ¥y eN m
D fogey (8014)=8CO 4 > 5634 By, 26 e B
® gk 5 Gy DT HyeN 2 Aysson yebgy = s0E8

<. B =>Bm7v{‘r:¢o«m‘~e,

$Cy () :ﬂ@g@;x A S(x,2,y, T)))

l v
=4 (r\w. ((w)px A S(x/ (w)&/ (wy, (wJ_,,))) CoMPUIP L
= B IRE.
=51 al A RE]

R s e e e

Written by Gabriel R.

328 Computability simple (for real)

Given the following ones are not different and are already solved (I solved them myself as exercise, but
nothing new to note, I'll paste them here for the sake of completeness)

Exercise 8.46. Study the recursiveness of the set B = {z e N Vy > z. 2y e W, }, i.e., establish if
B and B are recursive/recursively enumerable.

Solution: Observe that B is not r.e. since K <,,, B. In order to get the reduction function consider

oy _ by if—-H(zz,y)
9(z.y) _{ 1 otherwise

Also B = {z | Iy > x. 2y ¢ W,} is not r.e. In order to reduce K <,, B, the reduction function
can be constructed from:

g(l',y)={ } Lo g i = sc (z)

otherwise

Exercise 8.47. Study the recursiveness of the set B = {x € N : 1 < |E,| < 2}, i.e., establish if B
e B are recursive/recursively enumerable.

Solution: The set B is saturated, since it can be expressed as B = {x : ¢, € B}, where B= {f €
C:1< |eod(f)| <2}
Using Rice-Shapiro’s theorem, we prove that B and B are both not r.e .:

e Bisnotre.
Note that id ¢ B but there is a finite function

0 ifz=0
0(z) = { 1 otherwise

such that 6 < id and # € B. Hence by Rice-Shapiro’s theorem we conclude that B is not is
r.c.

e Bisnotre. B
Note that if 6 is the function defined in the previous case, 8 ¢ B, but the function always
undefined ¢F € B. By Rice-Shapiro’s theorem we conclude that B is not r.e.

]

Exercise 8.48. Study the recursiveness of the set A = {x € N | P € W}, i.e., establish if4 and A
are recursive /recursively enumerable.

Solution: The set A is saturated since A = {z | v, € A}, where A = {f | P < dom(f)}. We can
use Rice-Shapiro’s theorem to show that

e Aisnotre.
In fact id € A since P € dom(id) = N and no finite 6 € id can be in A, since functions in A
necessarily have an infinite domain.

e Anotre. ~ ~
In fact, id ¢ A, and J < id, e A.

Written by Gabriel R.

329 Computability simple (for real)

Exercise 8.49. Study the recursiveness of the set B = {z € N . (y) = y? for infinitive y}, i.e.,
establish if B and B are recursive/recursive enumerable.

Solution: We observe that B is saturated, since B = {z | ¢, € B}, where B = {f | f(y) =
2 for infinite y}. Rice-Shapiro’s theorem is used to deduce that both sets are not r.e.

e B is not r.e. because B contains 2 and none of its sub-functions finite (it does not contain
any finite functions).

e B is not r.e. since @ € B and & admits as an extension y? ¢ B.

Exercise 8.50. Given X < N, indicate by 2X the set 2X = {2z : x € X}. Study the recursiveness
of the set B = {x € N 2W, € E,}, i.e., establish if B and B are recursive/recursive enumerable.

Solution: Rice-Shapiro’s theorem is used to prove that both sets are not r.e .:
e B is not r.e. because it contains &, but not all functions (e.g. it does not contain ¢ = {(1,4)}.
e B not r.e. since it contains @, as defined above, but not ¢ = {(1,4), (2,2)}.

Exercise 8.51. Study the recursiveness of the set B = {x € N W, 2 Pr}, where Pr < Nis the set
of the prime numbers, i.e., establish if B and B are recursive/recursively enumerable.

Solution: We use Rice-Shapiro’s theorem for proving that both sets are not r.e .:

e B is not r.e. because it does not contain any finite functions and it is not empty (e.g. id € B,
but no finite subfunction of id can be in B).

e B is not r.e. since it contains &, but it does not include all functions (e.g. it does not contain
id, of which ¢ is a finite subfunction).

O

Written by Gabriel R.

330 Computability simple (for real)

Exercise 8.52. Classify the following set from the point of view of recursiveness
B = {n(z,y) P, stops on input z in more than y steps},
where 7 : N2 — N is the pair encoding function, i.e., establish if B and B are recursive/recursively
enumerable.
Solution: The set B is r.e., but not recursive. In fact
B={z:2e K A —H(z,z,y)}

For proving that it is not is recursive, note that K <,,, B. In fact, x € K iff w(x,0) € B. Furthermore,
B is r.e. since its semi-characteristic function is computable:

scg(z) = scg(m1(2)) - scog(mi(2), m1(z), ma(2))

Thus B non-recursive. O

Exercise 8.53. Say that a function f: N — N is symmetric in the interval [0, 2k] if dom(f) 2
[0, 2k] and for each y € [0, k] we have f(y) = f(2k — y). Study the recursiveness of the set

A= {zeN:3k> 0. p, symmetric in [0, 2k]},

i.e., establish if A and A are recursive/recursively enumerable.

Solution: The set A is r.e. In fact:

sca(z) = WphNy<htt 0x(y) = p=(2(h+ 1) —y))

It is not recursive by Rice’s theorem. In fact, A is saturated. Moreover, if ey ed e; are indices for
the functions ¢ and 1, respectively, we have that ey ¢ A and e; € A. Hence A # &, N. O

Exercise 8.54. Given X < N define inc(X) = X u {z +1: 2 € X}. Classify the following set
from the point of view of recursiveness B = {z € N : inc(W,) = E.}, i.e. say if B and B are
recursive/recursively enumerable.

Solution: We have that B = {f | inc(dom(f)) = cod(f)}, thus the set is saturated. Furthermore
@eB,but @ <1 and1l¢Bsince N =inc(dom(1)) # cod(1) = {1}. Hence, by Rice-Shapiro’s
theorem, the set B is not r.e.

_ The function § = {(0,0)} € B, but @ < id ¢ B, therefore, again by Rice-Shapiro’s theorem, also
B is not r.e. O

Exercise 8.55. Classify the following set from the point of view of recursiveness
B={z ¢:(0)1 v ¢(0) =0},
i.e., establish if B and Bare recursive/recursively enumerable.
Solution: Observe that B is saturated, the corresponding set of functions can be defined as
B ={f:f(0)1 v f(0) =0}. We have that 1 ¢ B, while the finite subfunction & € B. Thus,

by Rice-Shapiro’s theorem, B is not r.e. Instead B = {z : ¢,(0) | A ©,(0) # 0} is r.e., since
scp(x) = 5G(p.(0)) is computable. O

Written by Gabriel R.

331 Computability simple (for real)

Exercise 8.56. A function f : N — N is said increasing when for each x,y € dom(f), if x < y
then f(z) < f(y). Define B = {x € N : ¢, increasing} and show that K <,, B.

Solution: One can mimic the proof of Rice-Shapiro’s theorem and define

. [y if—H(z,z,y)
g(z,y) = { 0 otherwise

Thus, if z € K then g, seen as a function of 3, will be the identity, which is increasing. Otherwise
there exists a number of steps y such that H(x,x,y) and therefore from that point onward g(z,y)
is constantly equal to 0 and thus not increasing.
More precisely, observe that the function g(z,y) is computable, since

9(z,y) =y - x-u(z,z,y)
Thus, by the SMN theorem, there exists a function s : N — N total and computable such that for
each z,y e N

Ps(a) (¥) = 9(z,y)

The function s is a reduction function of K into B. In fact

e If z € K then for every y € N the predicate H(z, x,y) is false. Therefore p,(,)(y) = g(z,y) = v
for all y € N. Hence p,(,) is increasing and therefore s(z) € B.

o If z ¢ K then there exists a y € N such that H(z,z,y) holds true, and therefore also
H(z,z,y + 1) holds. Thus ¢y.)(y) = 0 = s (y + 1). Then @y is not increasing and
therefore s(x) ¢ B.

Alternatively, more simply, we can be observe that the function always undefined is increasing
and the constant 0 is not. So just define g(z,y) = scx(x) (semi-characteristic function of the set
K, which is known to be computable since K is r.e.) and then proceed as above. O

Exercise 8.57. Say that a function f : N — N is k-bounded if Yz € dom(f) we have f(z) < k.
For each k € N, study the recursiveness of the set

A = {x e N: g, k- bounded},

i.e., establish if A and A are recursive/recursively enumerable.

Solution: The set Aj is r.e. In fact:

scq, () = Vpw.S(z, (w)1, (w)2 + k., (w)3))
It is not recursive by Rice’s theorem. In fact, A}, is saturated. Moreover, if ey and e; are indices

for thg functions 7 and id, we have that eg ¢ Ay and e; € A, Thus Ay # @, N and we conclude
that A, is not recursive. Therefore Ay not r.e. OJ

Exercise 8.58. Classify the following set from the point of view of recursiveness B = {z + y :
z,ye€N A @.(y) 1}, i.e., establish whether B and B are recursive/recursively enumerable.

Solution: The set B is recursive. In fact, let z; be the minimum index for the function always
undefined. Then, for every z = z; we can express z as zg + (2 — zg) and we have ., (2 — z) 1.
Hence z € B. Therefore, if we denote by 0 = xp|(g .,—1], the finite subfunction of the characteristic
function restricted to the interval [0, zg — 1], we have

[B(z) ifz<z
xn(z) = { 1 otherwise

Since 6 and the constant 1 are computable, and the predicate z < z; is decidable, the characteristic
function is computable. O

Written by Gabriel R.

332 Computability simple (for real)

Exercise 8.59. Let f be a total computable function. Classify the following set from the point of
view of recursiveness By = {x € N ,(y) = f(y) for infinitivesy}, i.e., establish if B and B are
recursive/recursive enumerable.

Solution: Rice-Shapiro’s theorem is used for both sets

e B is not r.e. because it contains f and none of its finite subfunctions (since f is total, B does
not contain any finite function)

e B is not r.e. since @ € B and & admits [¢ B as an extension.

Exercise 8.60. Let [be a total computable function, different from the identity. Classify the
following set from the point of view of recursiveness By = {x e N ¢, = fo,}, ie., establish if
By and By are recursive/recursively enumerable.

Solution: Observe that By is saturated since it can be expressed as By = {z | ¢, € By} where
By ={9lg=1/og}

We can use Rice-Shapiro’s theorem to show that By is not r.e. In fact the identity id ¢ By since
id # f = f oid. Moreover the function always undefined (F € By since ¢ = f o ¢ and clearly
& < id.

Moreover, the complement Bf is r.e. In fact, let e be an index for f, i.e., such that p, = f.
Then we have that = € By iff there is an input z where v = w,(z) | and ¢.(v) # v. Hence the
semi-characteristic function of By can be expressed as follows:

scp; (x) = pw.(S(z, (w)1, (w)z, (w)3) A S(e, (w)z, (w)a, (w)3) A (w)z # (w)a)
O

Exercise 8.61. Study the recursiveness of the set B = {r e N: 3k e N. k- x € W}, i.e. establish
whether B and B are recursive/recursively enumerable.

Solution: We show that K < B and therefore B is not recursive. In fact, define

o p(w) ifre K
g(z,y) = { 1 otherwise

The function g(x,y) is computable, since

g(z,y) = Yu(z,x)

Hence, by the SMN theorem, we have that there exists a function s : N — N total computable
such that for each z,ye N

Ps(z)(Y) = 9(z.y)
The function s is a reduction function of K to B.

Furthermore,B is r.e., since

scg(x) = L(pw. H(zx, (w)y -z, (w)z))

Therefore B not r.e. O

Written by Gabriel R.

333 Computability simple (for real)

Exercise 8.62. Classify from the point of view of recursiveness theset B = {re N:Vke N. k+z €
W,}, i.e., establish if B and B are recursive/recursively enumerable.

Solution: We show that K < B and therefore B is not r.e. In fact, define

0 if ~H(z,x,y)
1 otherwise

g(z,y) = {

The function g(zx,y) is computable, since
9(z,y) = pz.xu(z, z,y)

So by the SMN theorem, we have that there exists a function s : N — N total computable such
that for each x,y e N

() (y) = g(z.y)
The function s reduces K to B.

Furthermore, B not r.e., since K < B. In fact, define

(z.y) = 0 re K
9\&Y) = 1 otherwise
and proceed as before. OJ

Exercise 8.63. Classify from the point of view of recursiveness the set V = {x € N : E, infinite},
i.e., establish if V and V are recursive/recursively enumerable.

Solution: The set V is saturated since V = {z | ¢, € A}, dove A = {f
we can use Rice-Shapiro’s theorem:

cod(f) infinite}. Then

e id € A, but no finite subfunction of id is in A, hence A is not r.e.;

e e A, (F cid, but id ¢ A, hence A is not r.e.

Exercise 8.64. Classify the following set from the point of view of recursiveness B = {re N z €
W,\{0}}, i.e. establish if B and B are recursive/recursively enumerable.

Solution: The set B is r.e., since
sca(z) = 1(pw. (H(z, (w)y, (w)2) Az #0)).
and not recursive. In fact, K <,, B. In order to prove this fact consider

L () ifzeW,
g(z,y) = { 1 otherwise

By the smn theorem, since the function is computable, we obtain s : N — N, computable and
total such that ¢,(,(y) = g(2,y). This is almost the reduction function, except for the fact that it

might have value 0 for some input. However, it is sufficient to take an index % # 0 for the function
o and consider:

s'(z) = { s(x) if s(x) #0

k otherwise

and we are done. O

Written by Gabriel R.

334 Computability simple (for real)

Exercise 8.65. Classify the following set from the point of view of recursiveness
A = {z | W\E, infinite},
i.e., establish if A and A are recursive/recursively enumerable.

Solution: The set A is saturated since A = {z | p, € A} with A = {f | dom(f)\cod(f) infinite}.
By Rice-Shapiro’s theorem:

e A is not r.e., since 1 € A, but no finite subfunction # = 1 can belong to A. In fact dom(#) is
finite and therefore also dom(#)\cod(#) is finite. Therefore 6 ¢ A.

e Aisnot r.e., since e A, 1¢ Aand J C 1.

Exercise 8.66. Classify the following set from the point of view of recursiveness B = {x € N :
|[WA\Ex| = 2}, i.e., establish if B e B are recursive/recursively enumerable.

Solution: The set B is saturated, since B = {z : ¢, € B}, where B = {f € C: |dom(f)\cod(f)| =
2},

Using Rice-Shapiro’s theorem we prove that B and B are not r.e .:

e Bnotr.e.

Observe that f(x) =2 —2¢ B (dom(f) = cod(f) = N, thus dom(f) — cod(f) = &f) but there
is a finite subfunction

9(z)={? fer<?2

otherwise

such that 8 € f and 6 € B. By Rice-Shapiro’s theorem therefore we conclude that B is not
re.

e Bnotre.

Note that if # is the function defined above, then 6 ¢ B, but the function always undefined
& € B. By Rice-Shapiro’s theorem therefore we conclude that B is not r.e.

O

Exercise 8.67. Classify the following set from the point of view of recursiveness B = {z € N :
ke N. Yy = k. ¢,(y) |}, i.e., establish if B and B are recursive/recursively enumerable.

Solution: The set B is clearly saturated since it is the set of indexes of functions in B = {f € C |
dkeN. Yy =k f(y)l}.

We can conclude that B and B are non-r.e. using Rice-Shapiro’s theorem. In fact:

e B is not r.e., since id € B but obviously no finite subfunction 8 < id can belong to B (which
does not contain any finite function).

e B is not r.e., since id ¢ B, but there is a finite subfunction @ < id with ¥ € B.

Written by Gabriel R.

335 Computability simple (for real)

Exercise 8.68. Classify the following set from the point of view of recursiveness B = {re N z >

0 A z/2¢ E.}, i.e., establish if B and B are recursive/recursively enumerable.

Solution: Observe that B is r.e., in fact we can write its semi-characteristic function as follows:
scg(r) =1(pw.2 =0 v Sz, (w),z/2, (w)2))

Moreover B is not recursive since K <,, B. In order to get the reduction function consider

U if x e W,
g(a,y) = { 1 otherwise

Then, by smn theorem, we have that g(x,y) = @) (y) for some total computable function
s : N — N. This is almost the reduction function. We need to be sure that when = ¢ K then s(x),
which is an index of the empty function, is not 0. This can be done by “modifying” function s.
More precisely take any index ny > 0 such that ¢,,, = J (there is such ng since (# has infinitely
many indices). Then define s'(x) = s(z) if s(z) # 0 and s(x) = ng, otherwise. Then &' is still total
and computable, and works as a reduction function.

Hence B is not r.e. O

Exercise 8.69. Classify the following set from the point of view of recursiveness
B={reN:VyeW,.3ze W,.(y <z) A (pz(y) > ¢=(2))},

i.e., establish if B and B are recursive/recursive enumerable.

This is also present inside exam 2016-07-01.

Comments aside, set B is saturated, considering B = {x : y, € B}, where B = {f € C:Vy € dom(f).3z €
dom(f).(y < z) A(f(y) > f(2))}}. Using Rice-Shapiro we show that:

- Bisnotr.e.

Consider id & B considering all values must be ordered and different from each other, but there exists a
finite subfunction 8 for which it holds 8 € id, 8 & B. This subfunction is the always undefined one, so @.
So, this set is not r.e.

- Bisnotr.e.

In this case, there is a finite subfunction which is not inside the complement, which again is the always
undefined function, so B = C \ {®}. Consider the modified definition of this set, which is:

B ={f13y €dom(f).vz >y.(z & dom(f)) v (f () < f(2))}

In this case, it is possible to write a semicharacteristic function, considering we are interested in making the
set halt and it holds that yg = scg * x, where scz = 1(uw. H(x, (w)q, (w)z)).

Given itis r.e, to understand if this is also recursive, we have to use Rice’s theorem.

We showed before already the set # @. There also holds B # N and we know B is saturated and it’s easy to

see (literally copying what was present before) that B is saturated. So, this is not recursive.

Written by Gabriel R.

336 Computability simple (for real)

Exercise 8.70. Classify the following set from the point of view of recursiveness
B={reN:VyeW,3:eW,.(y<2) A (1) < 2e(2))},

i.e., establish if B and B are recursive/recursive enumerable.

Solution: The set B is saturated, given that B = {z : ¢, € B}, where B = {f € C : Vy €
dom(f).3z € dom(f). (y <z) ~ (f(y) < f(2)}}.

The set B is not is r.e. by Rice-Shapiro’s theorem. In fact, observe that 1 ¢ B, but @& € 1 and

e B.

For the complement B = {f | 3y € dom(f).¥z € dom(f).y < z — (f(y) = f(z))}, observe that
if 0 is any finite function,0 # &, y = max(dom(0)) clearly satisfies the condition definition of 5.
Hence, it is enough to observe that id ¢ 5 and consider # C id.,f # (& noting that # € B.]

Exercise 8.71. Classify the following set from the point of view of recursiveness
A={z|W,uE, =N},

i.e., establish if A and A are recursive/recursive enumerable.

Solution: The set A is saturated since A = {z | ¢, € A} with A = {f | dom([f) U cod(f) = N}.
By Rice-Shapiro’s theorem:

e A is not r.e., since id € A, but no finite subfunction # < id can belong to A. In fact dom(#)
is finite and therefore also cod(#) is finite. Hence their union dom(#) w dom(8) is again finite,
which implies that dom(#) v dom(#) # N. Therefore 6 ¢ A.

e Aisnotre., since e A, id¢ Aand & C id.

Exercise 8.72. Classify the following set from the point of view of recursiveness
B={x|3keN. kxeW,},

i.e., establish if B and B are recursive/recursive enumerable.

Solution: We observe that K <,,, A. Define

1 reK

1 otherwise = scx (@)

g(z.y) = {

By smn theorem, we obtain a function s : N — N which is total and computable, such that
9(z,y) = ©s(z)(y) and it is easy to see that s can be the reduction function.
Furthermore, A is r.e., in fact

sca(z) = 1(pw. H(x,z - (w)y, (w)2))

We therefore conclude that A is not r.e. O

Exercise 8.73. Given XY € Ndefine X+Y ={z+y |z e X A ye Y} Study the recursiveness
of the set

B={x|xeW,+ E.},

Written by Gabriel R.

337 Computability simple (for real)

i.e., establish if B and B are recursive/recursive enumerable.

Solution: We observe that K <, A. Define

0 ze K

1 otherwise O(sck(x))

glz.y) = {

By smn theorem, we obtain a function s : N — N total computable and such that g(z,y) = @) (y).
It is easy to see that s can be the reduction function.
Furthermore, B is r.e., in fact

seg(x) = L(pw.(S((w)1 + (w)2, (W), (w)2, (w)3))

We therefore conclude that A is not r.e. N

Exercise 8.74. Classify from the point of view of recursiveness the set A = {x e N: W, nE, = N},
ie., say if A and A are recursive/recursively enumerable.

Solution: The set A is clearly saturated since A = {x | ¢, € A} where A = {f | cod(f)uimg(f) =
N}. We can deduce, by using Rice-Shapiro’s theorem, that A is not r.e., in fact id € A but clearly no
finite subfunction # € id can be in 4 since cod(f). img(f) are finite and thus cod(f) vimg(f) # N.

The complement is not r.e. again by Rice-Shapiro’s theorem. E.g., id ¢ A, but it admits ¢ as
finite subfunction and ¢f € A. O

Exercises (2022-01-19)

Exercise 3
Say that a function f : N — N is quasi-total if it is undefined on a finite number of inputs,

i.e., dom(f) is finite. Classify the set A = {z € N | ¢, quasi-total} from the point of view
of recursiveness, i.e., establish whether A and A are recursive/recursively enumerable.

Solution: Observe that A is saturated, since it can be expressed as A = {z € N | , € A},
where A = {f | f quasi-total}.

Hence, by Rice-Shapiro’s theorem, we conclude that A and A are not r.e., and thus
they are not recursive. More in detail:

e Ais not r.e.
The identity id € A and for all # < id, 0 finite, clearly § ¢ A. In fact, dom (@) is finite
and thus dom(#) is infinite and thus @ is not quasi-total. Hence by Rice-Shapiro’s
theorem we conclude that A is not r.e.

e A is not r.e.
In fact, id ¢ A, but the always undefined function § = ¢ < id and 6 € A, since
dom(f) = & and thus dom(#) = N is infinite. Hence by Rice-Shapiro’s theorem we
conclude that A is not r.e.

Written by Gabriel R.

338 Computability simple (for real)

Exercise 4

Classify the set B = {r € N |3y > 2z. y € E,} from the point of view of recursiveness, i.e.,
establish whether B and B are recursive/recursively enumerable.

Solution: The set B is not recursive since K <, B. In order to prove this fact, let us
consider the function g : N? — N defined, by

, fuy if x e W,
g(z,y) = { T otherwise

The function is computable since g(x,y) = sc.(x). Hence, by smn-theorem, there is a total
computable function s : N — N such that ¢,)(y) = g(z,y) for all z,y € N. We next argue
that s is a reduction function for K <,, B. In fact

=1

o If € K then gy (y) = g(z,y) =y for all y € N. Hence, if we set y = 2s(z) + 1 >
2 s(x) we have vy (y) = y = 2s(z) + 1. Hence 2 s(x) +1 € Ey,y and thus s(z) € 5.

o If x ¢ K then ¢ . (y) = g(x,y) =1 for all y € N. Hence E,,) = J and therefore
there cannot be y > 2z such that yEy). Hence s(x) ¢ B.

The set B is r.e., in fact its semi-characteristic function is
sep(x) = Lpw.(S(z, (W), 2 + 1 + (w)s, (w)3)),

In fact the minimalisation search for a input (w), for the machine z, such that in some
number (w)s of steps, the machine stops providing as an output + 1+ (w). for some (w)s.
When (w)s ranges over the naturals, z + 1 + (w)> ranges over all values greater then .
The semi-characteristic function is computable, since it is the minimalisation of com-
putable functions, hence B is r.e.
Since B is r.e. and not recursive, its complement B is not r.e. (otherwise both B and
B would be recursive). Thus B is not recursive.

Exercise (2022-06-17)

Exercise 3

Study the recursiveness of the set A = {z | p.(y + =) | for some y = 0}, i.e., establish if
A and A are recursive/recursively enumerable.

Solution: The set A = {z | ¢, (y+) | for some y = 0} is not recursive because K < A.
In order to prove this fact, let us consider the function g : N> — N defined, by

1 ifzeW,
1 otherwise

st = {

The function is computable since g(z,y) = scx(x). Hence, by the smn-theorem, there is a
total computable function s : N — N such that p,)(y) = g(z, y) for all =,y € N. We next
argue that s is a reduction function for K <, A. In fact

o If x € K then @, (y) = g(z,y) = 1 for all y € N. In particular, @..)(0 + s(z)) |.
Hence s(x) € A.

o If v ¢ K then . (y) = g(z.y) T for all y € N. Hence oy (y + s(z)) T for all y e I.
Hence s(x) ¢ A.

The set A is r.e., since it semi-characteristic function
sca(z) = Up(y,1).H(z, 2 + y,t))

is computable.
Therefore, A is not r.e.

Written by Gabriel R.

339 Computability simple (for real)

Exercises (2023-02-01)

Exercise 3

Classify from the point of view of recursiveness the set A = {reN|W, =AW, < E,},
i.e., establish whether A and A are recursive/recursively enumerable.

Solution: Observe that A is saturated, since it can be expressed as A = {z € N | ¢, € A},
where A= {f | dom(f) # & ~ dom(f) < dom(f)}.

Hence, by Rice-Shapiro’s theorem, we conclude that A and A are not r.e., and thus
they are not recursive. More in detail:

e Ais notr.e.
Consider the predecessor function pred(xz) = x=1. Then pred € A since dom(pred) =
N = cod(pred), hence dom(pred) # & and dom(pred) < cod(pred). Moreover,
consider a generic finite # < pred. If 8§ # &, i.e., 6 is not the always undefined
function, then it is easy to realise that dem(#) & cod(#). In fact, if & = max(dom(#))
necessarily k ¢ cod(#) (since max(eod(f)) = k — 1). Hence no finite subfunction of
pred is in A and therefore, by Rice-Shapiro, A is not r.e.

e A is not r.e.

In fact, pred ¢ A and # = & < pred, # € A. Hence by Rice-Shapiro’s theorem we
conclude that A is not r.e.

Exercise 4

Let f : N — N be some fixed total computable function and for X < N define
f(X) = {f(x) | # € X}. Study the recursiveness of the set B = {x | x € f(W,) U E.}. ie.,
establish if B and B are recursive/recursively enumerable.

Solution: The set B is not recursive because K < B. In order to prove this fact, let us
consider the function g : N> — N defined, by
|y ifzeW,
glr,y) = { 1 otherwise
The function is computable since g(z.y) = y - scx(z). Hence, by the smn-theorem, there

is a total computable function s : N — N such that ¢ (y) = gz, y) for all z,y € N. We
next argue that s is a reduction function for K <,,, B. In fact

Exercise 4

Let f : N — N be some fixed total computable function and for X = N define
f(X) = {f(z) | z € X}. Study the recursiveness of the set B = {z |z € f(W,) U E,}, ie.,

establish if B and B are recursive/recursively enumerable.

Solution: The set B is not recursive because K < B. In order to prove this fact, let us
consider the function g : N> — N defined, by

(@,y) = y ifzelW,
IYT = 1 otherwise

The function is computable since g(x,y) = y - scix(z). Hence, by the smn-theorem, there
is a total computable function s : N — N such that .. (y) = g(z,y) for all z,y € N. We
next argue that s is a reduction function for K <, B. In fact

Written by Gabriel R.

340 Computability simple (for real)

o If z € K then ¢ ,)(y) = g(x,y) = y for all y € N. Hence W,(,) = E(;) = N and thus
‘3(’}:} € f(ﬂ/’s(r)) u E_.;(m) = f(N) uN=N.

o If x ¢ K then g, (y) = g(z,y) T for all y € N. Hence W,y = E ;) = & and thus
‘;(T) ¢ f(vvs(zj) J Es{z) = f(@) o @ = @

The set B is r.e. In fact x € B if and only if one of the following conditions hold
e v f(W,), ie.. thereis z € W, such that f(z) = z or
e v € E,, Le.. thereis z € W, such that p.(z) =z

Hence the semi-characteristic function of B can be written:

scp(r) = Lpw.(H(z, (w)1, (w)e) A (f((w)) =) v (S(z, (w7, (w))))

and this shows that it is computable.
Therefore, B is not r.e. (hence not recursive).

Exercises (2023-02-20)

Exercise 3

Let X = N be a fixed non-empty finite set. Classify from the point of view of recursiveness
the set

A={z|E.n X # &},

i.e., establish whether A and A are recursive/recursively enumerable.

Solution: Observe that A is saturated. since it can be expressed as A = {z € N | ¢, € A},
where A = {f | cod(f) n A # &}
Moreover A # (7, N. In fact

e ifeeNissuch g, =idthenee€ A, since X n E. =X nN =X # ¢&;
o if e Nissuch o, = @ thene' ¢ A since X nE, =X n@ =
Hence by Rice’s theorem A is not recursive.

The set A is r.e. In fact z € A if and only if there is exists an input y € N such that
©v.(y) | and ¢,(y) € X. The latter condition can be easily checked since X is finite and
thus recursive. Hence we can just search for such an input.

Formally the semi-characteristic function of A can be written as:

sca(z) = L{pw.(S(z, (w)y, (w)a, (w)3) A (w)y € Y))
= 1(pw.(|xs(z, (w)1, (w)2, (w)3) * xy((w)2) — 1]))

and, since S is decidable and X is recursive (since it is finite), this shows that scy is
computable.
Therefore, A is not r.e. (hence not recursive).

Written by Gabriel R.

341 Computability simple (for real)

Exercise 4

Classify from the point of view of recursiveness the set
B = {T e N | I’"V;z: e QS N 111.111(1"";;1:) = 0},

i.e., establish whether B and B are recursive/recursively enumerable.

Solution: Observe that B is saturated, since it can be expressed as B = {z € N | p, € B},
where B = {f | dom(f) # @ A min(dom(f)) > 0}.

Hence, by Rice-Shapiro’s theorem, we conclude that B and B are not r.e., and thus
they are not recursive. More in detail:

e B is not r.e.
Consider the identity function id(z) = z. Then id ¢ B since dom(id) = N, hence
min(dom(id)) = 0. Moreover, consider the finite function 6 : N — N defined by

9(37)_{1 ite=1

1 otherwise

Clearly 6 < id and min(dom(f)) = min({1}) = 1 > 0 hence § € B. Therefore, by
Rice-Shapiro, B is not r.e.

e 3 is not r.e.
In fact, if @ is the function defined above, # ¢ B. Moreover 8 = (7 < 6, 8’ € B. Hence
by Rice-Shapiro’s theorem we conclude that B is not r.e.

Exercise (2021-06-30-solved)

Study from the point of view of recursiveness the set A = {x € N | P n W, = @}, where P is the set of even

numbers and determine if A and A are recursive/r.e.
Solution
Observe A is saturated, considering A = {x € N | ¢, € A} where A = {f |P N dom(f) = @}.

Using Rice-Shapiro, A is not r.e. Specifically, considering the set of computable functions, we will prove
AfeC.f ¢ ANTO C f finite,d €A = Anotr.e.

Consider id & A, given P N dom(f) = P # @ while the always undefined function @ € A, given P N
dom(f) = @ N P = @. Using Rice’s theorem, considering A # @ and A # N, also A saturated, we conclude
this set is not recursive.

Let’s try to show the same for A using Rice-Shapiro in the same way. Define:

2, x = 0mod 2
fl) = {T, otherwise
and
2, x =2
0(x) = {T, otherwise

Clearly, f € A but there isn’t a function 8 which is not inside A. So, Rice-Shapiro fails.
This maybe represents A is r.e., so let’s try to write the semicharacteristic function:

scx = uw.H(x,2 x (w)1,(w),)

Written by Gabriel R.

342 Computability simple (for real)

So, Ais r.e. and not recursive, 4 is neither r.e. nor recursive.
Exercise (2021-06-30-solved)

Study from the point of view of recursiveness the set B = {x € N | 3y,z € W, .x = y * z} and determine if
B and B are recursive/r.e.

Solution

Set B is not recursive and we show it via K <,,, B. To do so, consider the following function:

(x,y) = {1, x €K
gxy) = 1, otherwise

Such function is computable, considering g(x, y) = sck. By the smn-theorem, there exists a total
computable function s: N = N s.t. g5 (y) = g(x,y) Vn € N.

s can be considered the correct reduction function, infact:

- Ifx€K,g(x,y) = s (¥) * 1 = ¢s)(y) Vy € Nl Infact, W) = N having s(x) = 1 * s(x)
andsos(x) € B

- ifx &K, gxy) = ¢sx)(y) =T Vy € N.Infact, Wi,y = @ and so there cannot exist indices
V,zs.t.s(x) =y *z € Wy(y.S0,s(x) ¢ B
Is B r.e.? Yes, it is, considering a semicharacteristic function can be defined:
scg(x) = L(uw. (H(x, W)1, W)3) AH(x, W)z, (W)3) Ax = (W), * (W)3)

which is computable. So, B is r.e. and not recursive, so Bisnotr.e. (otherwise, they would be both
recursive) so B is not recursive.

Exercise (2021-02-25-solved.pdf)
Study the recursiveness of set A ={x e N | W, = _x}, i.e. establish if A and A are recursive/r.e.
Solution

We observe first A is saturated, considering it can be defined with the set of computable functions A =
{x € N|dom(f)\ cod(f)} forthesetA={x € N| ¢, € A}

Using Rice-Shapiro’s theorem, the following are not r.e and not recursive.
- Anotr.e.

To show this we define:

T, x=0
X, otherwise

e ={
Note f € A given dom(F) = {N}\ {0} and cod(f) = @ Problem is, there is no finite subfunction able

to compute this in the complement set, given dom(8) and cod(8) are finite and can’t be complement one
of the other, given that set would be infinite, but here is finite. For Rice-Shapiro, we conclude A is not r.e

Written by Gabriel R.

343 Computability simple (for real)

- Z notr.e.

In this case, we have that A = {x € N | ¢, & A}. We use the empty function @ € A, 0 = @ given

dom (f) # cod(f) = @ and they compute a different value, hence there exists a finite subfunction but
different from all the set values. So, for Rice-Shapiro, we conclude this is not r.e.

Exercise (2021-02-25-solved.pdf)

Study the recursiveness of set A = {x € N | W, \ E, finite}, i.e. establish if A and 4 are
recursive/recursively enumerable

Solution

Observe A is a saturated set given A = {x € N | ¢, € A} where A = {f | dom(f) \ cod(f)} is finite,
hence A = {f | dom(f) = cod(f)}. Using Rice-Shapiro’s theorem, both sets are not r.e.

- Anotr.e.

We use the constant function 1 € A4, given dom(1) \ cod(1) = N \ {1} is not finite and with the empty
function® € 1,0 € A, given dom(f) \ cod(f) = @ finite and by Rice-Shapiro, A is not r.e.

- K notr.e.

Again, the constant function 1 € A but no finite subfunction € 4, considering dom(8) and cod(6) are
finite and also dom(f) \ cod(f) is finite. Hence, by Rice-Shapiro, A is not r.e.

Exercise (2021-02-25-solved.pdf)

Study the recursiveness of set B = {x € N | 3y.(x < y < 2x Ay € W,)}, i.e. establish B and B are
recursive/r.e.

Solution

Let’s use a reduction for the halting set showing B is not recursive, arguing that K <,,, B and to prove this,
we know its semicharacteristic function is made by two arguments and is like:

1, x € Wy
T

scg(x) = g(x,y) = { otherwise

This function is computable and by the smn-theorem, there exists a total computable function s: N —
N's.t. s (¥) = g(x,¥) Vx,y € N and this is the reduction function. To argue this last one:

- ifx €K, then g(x,y) = ¢ps()(¥) = 1Vx € Nand forsurey € W, s.t.s(x) <y < 2s(x) fora
function y = s(x), sos(x) € B

- ifx € K, then g(x,y) = Psx) T Vy € N so Wy(,) = @ and there is no such function y =
2x s.t.s(x) <y < 2s(x)andsox & B.

Given these assumptions, the set B has a semicharacteristic function, which can be expressed by the
halting oracle H and the function S terminating in t steps. In this case, the rule is to respect the definition
of function inside x < y < 2x, s.t.:

scp(x) = 1(uw. (H(x, W1, W)2) A (x < (W); < 2x))

is computable. By the same assumption, there is no function able to express the complement and B is not
recursive.

Written by Gabriel R.

344 Computability simple (for real)

Exercise (2021-02-09-solved.pdf)

Study the recursiveness of set B = {x € N | 3x € E, }, i.e. establish if B and B are recursive/r.e.
Solution

The set B is not recursive since we can show by a reduction for the halting problem K <,,, B. In this case,
we consider g(x,y) =y if x € K and g(x,y) = scg(x) * y. By the smn-theorem, there is a total
computable function s: N = N s.t. ¢5(,)(¥) = g(x,y) and this can be shown to be the reduction function
of such problem:

- ifx €Ktheng(x,y) = ¢5)(¥) =y,Vy € Nthen Eg,) = Nand 3 * s(x) € E(y). So, s(x) €B

- ifx € Kthen g(x,y) = ¢5)(¥) T,Vy € N. In this case Es,) = @ and 3 * s(x) & E(y), 50 s(x) &
B

The set B is not recursive but it’s r.e., considering we can write its semicharacteristic function this way:
scp(x) = 1(uw. (S(x, (W), 3x, (W)2)

Given B is r.e. but not recursive, the complement by definition of its conditions is not r.e. either and also
not recursive.

Exercise (2022-01-19-solved)
Say that a function f : N — N is quasi-total if it is undcfined on a finite number of inputs,
i.c., dom(f) is finite. Classify the set A = {z € N | ¢, quasi-total} from the point of view
of recursiveness, i.c., establish whether A and A are recursive/recursively enumecrable.

Solution

Observe the set is saturated, given A = {x € N | ¢, € A} since A = {f | f quasi — total}. By Rice-
Shapiro’s theorem, A and A are not r.e. and thus not recursive, so let’s show:

- Aisr.e.

Consider the case of the identity function id € A VO < id, 0 finite, 0 & A given dom(0) is finite, the
codomain is undefined on a set of points, being quasi-total (this one is defined on all possible values) and

dom(8) is infinite.
- Aisnotr.e.

Consider the case of @ function, given 8 = @ € id and VO < id, 0 finite, 0 & A. Since dom(8) = @ and

thus m = N is infinite (this one is never defined).
Exercise (2023-07-04.pdf)
Classify the following set from the point of view of recursiveness
B={reN|dz+ 1€ E,},

i.e., establish if A and A are recursive/recursively enumerable.

We argue that a set B is not recursive considering K <,,, B. The reduction function can be defined as:

(x)_{4x+1, x €K
gxy) = 1, otherwise

Written by Gabriel R.

345 Computability simple (for real)

The function g(x, y) can be shown to be the correct reduction function using the smn-theorem via x: N -
Nst.Vx,y € N: g(x,y) = ¢psx)(¥)- Infact, if x € K, then ¢, (y) = g(x,y) =4x +Vy € Nandifx &
K, then g(x,y) =T, having no such y such that ¢, (y) = 4x + 1.

Furthermore, B is r.e., considering we can write the semicharacteristic function:
scg(x) = 1(pw. H(x, W), (W)3) AS(x, W)q, (W)2, W)3)1
which is computable. Therefore Ais not r.e., considering A is r.e. and non-recursive.

Exercise (2023-07-04)

_ o "
a. Provide the definition of a recursive set

> nde) 5 sy "
b. Provide the definition of a recursively enumerable (r.e.) set.
. Show that if - g
7 how !llflf il A.B< N are recursive then also ANB = {reN|ze A A 7¢ B }
1s recursive. Does this extend to r.e. sets, i.e., is it the case that if A and B are re.

. : ¥ . :
then also A\ Bisre? Provide a proof or a counterexample

? DerINITION 13.1. A set A € N is recursive if its characteristic function
Xa:N—-N
1 z€A
xa(z) = {0 vé A
is computable.
b)

DEFINITION 15.1 (Recursively enumerable set). We say that A € N is recursively
enumerable if the semi-characteristic function

scq(z) = {1 ved

T otherwise

is computable.

c) Assume A and B are recursive, hence we can write two characteristic functions as follows:

1, xX€EA
Xa(x) = {T, otherwise
and:
1, X €RB
xp(x) = {T, otherwise

Also, for A\ B = {x € A Ax & B} is recursive because we can define:

(x)—{l’ XxXEANXERB
Aa\\X) =11 otherwise

If this extends to r.e. sets, it means that both for A and B we are able to create semicharacteristic
functions. Infact, we can write:

sea(x) = {1, x€EA
AV, otherwise

Written by Gabriel R.

346 Computability simple (for real)

and:

1, X €B
scp(x) = {T, otherwise

Still, A \ B is not r.e. since we can consider for example 4 and B = 4 and in this case A \ B is equivalent to
ANA.IfAisr.e., also 4 is r.e. but the intersection gives the empty set, which is recursive, but not r.e.

Exercise (2019-01-24)

Study recursiveness of set B = {x | ¢, (x) { A ¢, (x) odd}, determining if B and B are r.e. or not.
Solution
Observe B is saturated, considering B = {x: ¢, (x) € B} where B ={f € C | f(x) { A f(x) odd}.

Bis r.e. given we can write

55 () = 1 (uw. (H (5 02,)2) A5 (5 + 1,0, W, <w)3))>

which is computable.

By Rice’s Theorem, B is not recursive, considering e, and e; indexes for id and @ so e; € B and e; & B not
recursive.

B ={f € C|f(x) LV f(x) odd}. By Rice-Shapiro, this is not r.e.; consider M = max{f(x) | x € N} and
considering @ is any finite function, then 8§ # @,y = M(dom(G)), 6 € B. Observe also, given the definition

of set, id & B (because, in words, the property is not satisfied for every natural number) and consider 8 €
id, 0 # @ with 8 € B.

Exercise

Study recursiveness of set A = {x € N; 3y € W,.3z € E,.x +y = z}, so establish if A and 4 are
recursive/r.e.

Solution
This is very similar to 8.32.
We show K <, 4 and so 4 is not recursive. Define:

_(z if yeW,soH(x,x,y)
90ey) = {T, otherwise

(we say the function terminates, given it outputs a value when whenever value + what we get from image,
so f(x), is z, so this allows the function to terminate).

The function is computable, since g(x,y) = z * yy(x, x,y).
By the smn-theorem, there exists a total computable function s:N - Ns.t.Vx,y € N, 5, (y) = g(x,).
The function s is shown to be a correct reduction function:

- ifx €K,Vy € N,H(x,x,y) holds as true and therefore ¢s,)(y) = g(x,y) = zVy € N.So s(x) €
A
- ifx € K,-H(x,x,y) and 50 ¢5)(y) =T, 50 W,y = 0. Sos(x) € A

Written by Gabriel R.

347 Computability simple (for real)

Set A is r.e. given we can write:
sca(x) = uw. (H(x, (W)1, W)z, W)z A W)y + (W), = x)

Given A4 is r.e. but not recursive, Aisnotr.e. (otherwise, they would be both recursive) and also not
recursive.

Exercise (16-09-2020)

Study recursiveness of set B = {x € N: W, U E,, = N}, so establish if B and B are recursive/r.e.
Solution
This is similar to 8.74 exercise.
Observe A is saturated because A = {x | ¢, € A} and A = {f | dom(f) U cod(f) = N}.
By Rice-Shapiro, we show that:
- Aisnotr.e.

This happens because id € A but no finite subfunction 8 C id can be in A, since dom(f), cod(f) are finite
and so cod(f) nimg(f) # N.

- Aisnotr.e.

This happens because id € A, but consider the always undefined function @ as a finite subfunction 6, so
we have 6 € A.

By Rice’s theorem, both sets are effectively not recursive, neither r.e. as we showed.
Exercise (2018-11-20-parziale.pdf)

Is there an index e € N and a total non-computable function f: N — N s.t. dom(f) and cod(f) (where
dom(f) ={x| f(x) {}and cod(f) = {y | Ax. f(x) = y}) thereis dom(f) = W, and cod(f) = E, Ve €
N?

Solution

Consider as index e the one of the identity function, so e = ¢, (id) and so W, = E, = N. Define the
function f: N — N as follows:

Fx) = {qu(x) +1, x €W,

0, otherwise

The function f is total, so dom(f) = N = W,. Also, dom(f) = N = E,. Infact, Vn € N if n = 0 then
considering an index x of the always undefined function, you have f(x) = 0.

If n > 0 consider whatever index x of the constant functionn — 1 andyou have f(x) = (n—1) + 1 =n.

For the second part, the answer is clearly no. Consider e € N s.t. ¢, is the always undefined function, every
f s.t.dom(f) = W, = @ coincides with ¢, and so it is computable.

Written by Gabriel R.

348 Computability simple (for real)

Exercise (2017-01-24)

Study from the point of view of recursiveness the set B = {x | 3k € N. kx € W,} so establish if B and B are
recursive/r.e.

Solution
B isr.e., given it can be defined as scg(x) = 1(uw. S(x, (W) * x, (W),, (W)3)).
We consider K <,,, B to show the set is not recursive:

x €K

1, ~
gluy) = {T, otherwise ~ K)

g is computable and by the smn-theorem there exists a total computable function s: N - N s.t. Vx, y we
have ¢g(,)(¥) = g(x,y). This is shown to be the correct reduction function:

- ifx €K, ¢ps0(¥) = g(x,y) =1Vy € N, W,y = Nandso 3k € N. k = f(x), f(x) € Wp(y), sO
s(x) EB

- ifx € K, g0 (y) = g(x,y) =TVy € N, W,y = @and so Ik € N. Ak = f(x), f(x) € Wy(y), SO
s(x)¢B

Exercise (16-09-2020)

Study from the point of view of recursiveness the set A = {x e N:Jy € W,,3z € E,.x = y + z} so

establish if A and A4 are recursive/r.e.
Solution

The set A is clearly saturated, since we can write A = {x| ¢, € A} where A = {x € N: 3y € dom(f),3Iz €
cod(f).x =y +z}

The set is not recursive, since K <,,, A to show the set is not recursive:

, x €K
glx,y) = {3;

. =yx*sce(x
) otherwise > k(%)

g is computable and by the smn-theorem there exists a total computable function s:N - N s.t. Vx,y we
have ¢g(x)(¥) = g(x,y). This is shown to be the correct reduction function:

- fx €K, ¢s500)(¥) =gx,y) =y Vy €N, W) =Nandso d)s(x)(s(x)) =¢sx) +tZEN,s0
s(x)e A

- fx €K, ¢s(y) =gx,y) =TVy €N, W) = 0 andso ¢S(x)(s(x)) =T with Egx) = W) = 0
andsos(x) ¢ A

The set is r.e. since we can write:
scu(x) =1 (uw. (H(x, X, V)AS(x,y+zx, t))) =1 (,uw. (H(x, x, (W) AS(x, (W), + (w)s, x, (W)4)))

Therefore, given A is r.e. but not recursive, also 4 is not r.e. and not recursive (otherwise both would be
recursive).

Written by Gabriel R.

349 Computability simple (for real)

Exercise

Let P = {2k | k € N} be the set of even numbers. Study recursiveness of set A = {x € N: |W, n P| > 2}, so
establish if A and A are recursive/r.e.

Solution
The set A is clearly saturated, since we can write A = {x| ¢, € A} where A = {x € N:| dom(f) n P > 2}.

We conjecture this set cannot be r.e. since this requirement would involve looking for every possible value
on the domain in case of infinite sets to consider.

Let’s use Rice-Shapiro to prove this set is not r.e. A function easily respecting the requirements would be
the identity, since [W, N IP| = N > 2 since the intersection with the even numbers set holds, so id € A.
Also, there exists a 6 finite, 0 & A since 8 = @ given |W, NIP| = @ * P = @ whichisno > 2.So A not r.e.

Consider the complement A = {x € N: |W, U P| < 2}

A function clearly respecting this property would be the constant function 0 which domain with even
numbers can be at least in the base case < 2. Conversely, the subfunction 8@ = @ ¢ A.

Hence, A and A are not r.e. and not recursive.

Written by Gabriel R.

350 Computability simple (for real)

22.9 SECOND RECURSION THEOREM

Note: This is fairly straightforward, given the theorem is pretty simple and basically says that you use a
function of two arguments which by the smn-theorem fixes x. This x is then replaced by the index used
inside the theorem to prove the statement. Other times, the set is not saturated and so by the theorem,
using the problem conditions, there will be two indices not computing the same thing.

Exercise 9.1. State and prove the second recursion theorem.

The second recursion theorem states that for each total computable function h: N — N there exists e € N
such that ¢, = Pp(e)-

There goes the proof:
Let f: N — N be total computable.
Observe x = ¢, (x) computable

|
l'ru 0‘,75)

x - f(¢p,(x)) computable

define
9 Y) = br(4,00) V) convention ¢y =1
=, (f(9(0).)
=Y, (f(Yy(x,x),y) computable

By the smn-theorem, there is s: N — N total and computable s.t. Vx, y
bsco) = 96 Y) = br(p,) @) ()

Since s is computable, thereism € N s.t.S = ¢,,.
Substituting in (*)

Ppm00 V) = (4,0) VXY
In particular, forx =m

Ppm(m)(V) = Bp () V) VY
Hence

Ppm) = Pr(pm(m)

If we let ey = ¢,,(m) 1 and replace in the previous equation, we conclude

bey = Preo)

(note that ¢,,, = s total, hence ¢,,,(m) !)

Written by Gabriel R.

351 Computability simple (for real)

Exercise 9.2. State the second recursion theorem and use it to prove that K is not is recursive.

The second recursion theorem states that for each total computable function h: N — N there existse € N
such that ¢, = ¢p(e)-

Consider this comes from the notes and (18.1) refers to the definition just given here.

PrROOF. Let k = {x | x € W} recursive for the sake of the argument. and let
eo, e1 be indexes s.t. ., = & and ., = Az . .

Define f : N - N

eg ¢ K

= e xk(z) +er - xg ()
If K were recursive, then yx and x i would be computable, thus f would be both

computable and total, then by (18.1), there would be e € N such that v, = ¢y,
but

f(w) = {eo re K

e ifec K, then £(e) = co, 50 #e(€) 1 950 (€) = Peale) 1
e ifee K, then f(e) = e1, 50 @e(€) 1# @r(e)(€) = e, (e) =€ |

which is absurd, so K cannot be recursive.

Exercise 9.3. State the Second Recursion Theorem and use it for proving that there exists x € N
such that ¢, (y) = y*, for each y € N.

The second recursion theorem states that for each total computable function h: N — N there exists e € N
such that ¢, = ¢p(e)-

As solved by an old tutor:

f(x,y) = 7)(COMPUTAB LE.

Sanf,n :

r?) d S '.N——>N Téﬁ#wm& ,51’ 7[()‘/7): f@@) = 7)(
T B

_:> 3 Xo GN- 51- kloxo = LFSOQ,) BECAUSE o TOUAL

1 67 Yy GA=7)

Written by Gabriel R.

352 Computability simple (for real)

Exercise 9.4. State the Second Recursion Theorem and use it for proving that there exists n e N
such that W,, = E, = {z-n:xze N}

(Same exercise as 9.18)

The second recursion theorem states that for each total computable function h: N — N there exists e € N
such that ¢, = Pp(e)-

Define a function of two arguments as follows:

(v ify=xxn
g(ny) = {T, otherwise

By the smn-theorem, there exists n € N s.t. g(x,y) = ¢px)(¥) and by the second recursion theorem,
there exists an index € N s.t. ¢y, = Pp(e) and ¢ (¥) = ¢ps)(y) = g(e,y) = e,Vy EN.

As solved by an old tutor:

Exercise 9.4. State the Second Recursion Theorem and use it for proving that there exists ne N
such that W, = E,, = {x -n:xe N}.

LT E
= G
i /[{h/ .) = § 7 dxelN yeen coMpycrb £

. % T
= 74_[(r4\>’c|y-xn') f___,_/
oM

=) [As NN e st fc[“/y):ﬁm(;)
T rec

T;ES& 3 y‘eéf\\’ ’S]L Y“o ke \JS(V\O) Dlom/"fxm»): lJS(V“’)
wno: EX"%)kéN} :Ew\a Wg(,\al{x&Nigxem/V)V(/-mj

_// = {xw@Nl ;lxe‘\\}l ok

7
ESCV\Q) :E%QNI :Z)/ GNV \i(%)(y)iz‘j

Ly N dyeN 6y G)zs)
Hy N et e a1 = Wty = Wi

Written by Gabriel R.

353 Computability simple (for real)

Exercise 9.5. State the Second Recursion Theorem and use it for proving that x € Nexists such
that v, (y) =z +y.

The second recursion theorem states that for each total computable function h: N — N there exists e € N
such that ¢, = Pp(e)-

Define a function of two arguments as follows:

_(x+y, x € W,
9(xy) = { 1 otherwise

By the smn-theorem, there exists n € N s.t. g(x,y) = ¢px)(¥) and by the second recursion theorem,

there exists anindex e € N s.t. ¢, = ¢p(e) and ¢ (¥) = ps)(y) = gle,y) =e+y,Vy EN.

Exercise 9.6. State the Second Recursion Theorem and use it for proving that there exists x € N
such that ¢, (y) =z —y.

The second recursion theorem states that for each total computable function h: N — N there existse € N
such that ¢, = Pp(e)-

Define a function of two arguments as follows:

x € W,

_xX=Y
90 y) = { 1, otherwise

By the smn-theorem, there exists n € N s.t. g(x,y) = ¢px)(¥) and by the second recursion theorem,
there exists an index e € N s.t. ¢, = ¢p(e) and ¢, (¥) = ps)(y) = gle,y) =e—yVy €N.

As solved by an old tutor:

f(k/) e - C o MPUMALE
SnN 7 \/

= 3 o N=N Qrzmsm&f_ ot Il(x/y) = fS(Y) (7) =K7
#

Exercise 9.7. State the second recursion theorem and use it for proving that there exists a n e N
such that ¢,, is total and |E,| = n.

The second recursion theorem states that for each total computable function h: N — N there exists e € N
such that ¢, = ¢p(,). Consider:

g =[O TxEW

This is computable since g(x,y) = Wy (x, x). By the smn-theorem, there exists a total computable function
s:N > Ns.t.Vx,y €N ¢s0 () = g(x,).

By the Second Recursion Theorem, there exists an index e € N s.t. ¢g(e) = ¢e and s0 Pe(y) = Pse) (V) =
¢e(e), Ve € N.In both casesof n # 0, whenn =0,e =0 € N,whenn # 0,E,, € Nandso |E,| =n

Written by Gabriel R.

354 Computability simple (for real)

Exercise 9.8. State the second recursion theorem and use it for proving that the function A :
N — N, defined by A(z) = min{y : ¢, # ¢, }, is not computable.

The second recursion theorem states that for each total computable function h: N — N there exists e € N
such that ¢, = ¢p(e)-

By the theorem, such function does not have a fixed point, given the function is total and if the fixpoint
existed, we would have ¢, = ¢, and so Pax) = Py, hence extending the index property over all set, which
is the practical definition of what the theorem says.

Here, instead, we have the exact opposite of a definition for the problem, hence A(x) is not computable.

Exercise 9.9. State the second recursion theorem and use it for proving that, if we indicate by
ep an index of the function always undefined ¢ and by e; an index of the identity function, the
function h : N — N, defined by

| eo if ¢, is total
h(z) = { e; otherwise

is not computable.

The second recursion theorem states that for each total computable function h: N — N there existse € N
such that ¢, = ¢p(e)-

The function is total but not computable by definition (uses diagonalization), hence ¢, # ¢p(x) Vx, since
¢y is total, but ¢y, is not. And so, by the second recursion theorem, there exists an index e € N s. t. ¢, #
®s(e) and so h cannot be computable.

Exercise 9.10. State the Second Recursion Theorem and use it for proving that there exists an

index x € M such that

2 e
| [y ifr<y<a+?
ez (y) { 1t otherwise

Solution: Consider the function

2 i, :
ey Hfrsysz+2
f(z,y) { 1t otherwise

This is clearly computable, hence, by the smn theorem there is a total computable function s :
N — N such that f(z,y) = ph.EJ_.)[y]. Applying the second recursion theorem to s we conclude. [

Written by Gabriel R.

355 Computability simple (for real)

Exercise 9.11. State the second recursion theorem and use it for proving that the set C' = {x :
2z € W, n E,} is not saturated.

The second recursion theorem states that for each total computable function h: N — N there exists e € N
such that ¢, = Pp(e)-

Let’s define a computable function of two arguments, like:

_ (2x, y =2x
90 y) = { 1, otherwise

which is a computable function and by the smn-theorem, the exists a total computable function s:N - N
st.Vx,y €N, (;bs(x)(Y) =g(xy).

By the Second Recursion Theorem, there exists an index e s.t. ;) = ¢ and so Pe(y) = 2e.
Therefore, we have Eg(,) = y,E, = {e},e € C.

To show that is not saturated, take and index e’ # e and it holds that Ve’ # e,e € E,» = E, andsoe & C.
Since for two different indices in the same set, they calculate different values (this is the textual-practical
explanation), the set C is not saturated. Infact consider 2e € W, N E, = W, N Ej,.

Exercise 9.12. State the second recursion theorem. Use it for proving that the set C' = {x e N |
x € E,} not saturated.

The second recursion theorem states that for each total computable function h: N — N there existse € N
such that ¢, = ¢p(e)-

Let’s define a computable function of two arguments, like:

gx,y)=x

which is a computable function and by the smn-theorem, the exists a total computable function s:N — N
stVX,y EN, psn(¥) = g(x,).

By the Second Recursion Theorem, there exists an index e s.t. o) = ¢ and so () = e.
Therefore, we have Eg(,) = y,E, = {e},e € C.

To show that is not saturated, take and index e’ # e and it holds that Ve’ # e,e € E,» = E, andsoe €& C.
Since for two different indices in the same set, they calculate different values (this is the textual-practical
explanation), the set C is not saturated.

Exercise 9.13. Let eg and ey be indices for the function always undefined ¢ and the constant 1,
respectively. State the Second Recursion Theorem and use it to prove that the function g : N - N
defined as below, is not computable:

{ eo @z total

g(x) = e; otherwise

The second recursion theorem states that for each total computable function h: N — N there exists e € N
such that ¢, = ¢p(e)-

The function is total, since ¢, total when e, € @ and e; € {1}. By definition, the function is not
computable, since if it were, for the Second Recursion Theorem, there would be e € N s.t. o = ¢g(e)- Bu
definition of g, we have that ¢, is total when ¢, is not since it holds Vx, ¢g(x) # Py

Written by Gabriel R.

356 Computability simple (for real)

Exercise 9.14. State the second recursion theorem. Prove that, given a function f : N — N total
computable injective, the set Cy = {x : f(x) € W,} is not saturated.

The second recursion theorem states that for each total computable function h: N — N there existse € N
such that ¢, = Pp(e)-

Define ,)
g(z,y) = { fly) ifz=f(y)

1 otherwise

By the smn theorem, we obtain a function s : N — N total computable, such that g(z,y) = @) (y)
and by the second recursion theorem there exists e € N such that ¢, = ¢(). Therefore:

fle) ifax=f(e)

w&ﬂ=%w@%w@@={¢ otherwise

Thus e € . Now, if we take a different index e such that ¢, = . we will have that, by injectivity
of f, it holds f(e') # f(e) and thus f(e’) ¢ Wer = W, = {f(e)}. Hence €’ ¢ C}. O

Exercise 9.15. State the second recursion theorem. Use it for proving that if C' is a set such that

C <, C, then C' is not saturated.

The second recursion theorem states that for each total computable function h: N — N there existse € N
such that ¢, = ¢p(e)-

Consider the reduction definition; if you let f be the reduction function, we consider f: N - N s.t.x €
Ciff f(x) €C (so, f(x) & C).

Since f is computable, by the second recursion theorem, there exists anindex e € N s.t. ¢, = () s0 it
holds ¢e = ¢f(e)-

Since C is saturated, we have that e’ s.t. ¢, = ¢, gives two different functions and programs on their
computations, so e € C and the reduction function cannot exist.

Exercise 9.16. State the Second Recursion Theorem and use it for proving that there is an
indexand € N such that

ouly) = y + e if y multiple ofe
PelY) = i otherwise

Solution: Define

x +y if y multiple of =
6(z,y) = { y ity multi — (& +5) Lzl vz — y)

1 otherwise

By smn theorem, g(z,y) = a,-';-s(m)(y) with s computable total. Then the II recursion theorem can
be used to conclude.]

Written by Gabriel R.

357 Computability simple (for real)

Exercise 9.17. State the second recursion theorem. Use it for proving that every function f which
is not total, but undefined only on a single point, i.e. dom(f) = N\{k} for some k € N, admits a
fixed point, i.e., there is x # k such that @, = @f(.).

Solution: Let h be such that) # ¢k and define

iy fle) fx#k
f(m}_{h ifrx=%k

Clearly f’ is computable (since f and the constant k are computable, and the predicate z = k
is decidable) and total. Therefore for the second recursion theorem there exists € N such that
Pf(z) = Pz- And by construction = # k, thus f'(z) = f(z). O

Exercise 9.18. State the Second Recursion Theorem and use it for proving that there is n € N
such that W,, = E, = {z . n: 2z € N}

Solution: Define

g(n,y) = { ?

ify=z-n
otherwise

The smn theorem and the second recursion theorem can then be used to conclude.

Exercise 9.19. Prove that there exists n € N such that ¢, = p,41 and also m € N such that
P 7 Pm+1-

The second recursion theorem states that for each total computable function h: N — N there existse € N
such that ¢, = ¢en)-

We must then show the existence of such a function, which can be successfully used with the second
recursion theorem.

On example could be given by using the successor function succ:N — N s.t.succ(n) =n+ 1Vn € N. This
can be extended to any computable function, considering by the smn-theorem, there exists a total
computable function s:N = N s.t. ¢,y = g(x,y) with

_ _(x+1, if ()1 _ —
gx,y) =f(x) = { 1 otherwise — % +1+5sg(uw.H(x,y,t) computable

We can conclude by using Second Recursion Theorem, saying there exists an index e such that ¢y = ¢,
and then:

. (x) = {e +1, if Pe(x)!

T, otherwise

Considering 3n € N's.t. ¢, = dsyccn) = Pn+1, this hold forany e’ # e s.t. Pen) = o1

For the second part, this essentially says all computable do not coincide for every possible index; so, the
first case says computable functions can coincide on an index (which happens, because the theorem refers
to a fixed point), this second one shows there is at least one where this does not hold.

Conversely from before, we can consider the predecessor function pred: N = N such that:

0, n=20
pred(n) = {n -1, otherwise

Written by Gabriel R.

358 Computability simple (for real)

This function is total and computable, by the second recursion theorem, there exists a program e such that
e = by (e)- Specifically, consider 3m € N s.t. ¢y, = Ppream) = Pm-1 F Gm+1, Proving what was present
above.

Exercise 9.20. State the second recursion theorem. Use it for proving that the set B = {z € N :
Jk e N. k-x e W,} is not saturated.

Solution: The Second Recursion Theorem states that given a total computable function b : N — N
there exists e € N such that gy = .

Concerning the question, we proceed similarly to the proof of the fact that K is not saturated
and find an index e such that ¢, = {(e,e)}. Also, we can assume that e # 0. In fact, define

B e ifz=e
gle,z) = 1 otherwise

Note that g is computable and therefore by the SMN theorem, we derive the existence of a total
computable function s : N — N such that for each e,z € N

Ps(e)(#) = gle,z)
By the II recursion theorem, there exists an index e such that ¢, = ¢, and then

() = e itr=e
Feltl T 1 otherwise

We can assume e # 0 because if it were e = 0, it would be sufficient to consider s’ such that
§'(0) = e (index of the function always undefined) and s'(2) = s(z) otherwise, and apply the
same reasoning again. The fixed point will certainly be # 0, since o # & = e, = Pf(0)-

Now, we have that

e cc B, sincee =1 -ande W, = {e};

e given any index ¢’ > e such that ¢, = ¢, (it certainly exists, since there are infinite indices
for a computable function) we have that ¢’ ¢ B, since there cannot be a k € N such that
k-e'e Wo =W, = {e'}. In fact, for k > 0 we have that k- ¢’ > e and for k = (0, we have
ke =0 +# e, by construction.

Thus B not saturated.)

Exercise 9.21. State the second recursion theorem. Use it for proving that the set € = {xr e N :
@, (x) = 22} is not saturated.

Solution: The Second Recursion Theorem states that given a total computable function i : N —
N, there exists e € N such that o) = @e-

Concerning the question, as in the case of the proof for K we can find an index e such that
¢e = {(e,€?)}. Then we have e € C, but any other index for the same function is not in C. O

Exercise 9.22. State the second recursion theorem and use it for proving that there is an index
k such that W, = {k#*1 | i e N}.

Solution: Consider the following function

0 if there exists i such that y = x %4

T otherwise = pilz-i—y

9(z,y) = {

It is computable, hence we can use the smn theorem and the second recursion theorem to conclude.

o

Written by Gabriel R.

359 Computability simple (for real)

Exercise 9.23. State the second recursion theorem. Use it for proving that the set C = {re N:
[0,2] € W} is not saturated.

Solution: The Second Recursion Theorem states that given a total computable function b : N — N
there exists e € N such that @) = we.

Concerning the question, as in the case of the proof for K we can find an index e such that
W, = [0, e] and we can assume that e # 0. In fact, let us define

e ifr<e
1 otherwise

gle,x) = {

This is computable and therefore by SMN theorem, we derive the existence of a computable total
function s : N — N such that for each e,z € N

By the II recursion theorem there exists an index e such that ¢,.) = e and then

() e ifz<e
welx) = .
re 1 otherwise

Given any index ¢’ > e such that ¢, = ¢, (it certainly exists since there are infinite indices for
a computable function) we have that e’ ¢ C, since[0,e’] € [0,e] = Wr.
Thus C is not saturated.]

Exercise 9.24. State the second recursion theorem and use it for proving that there is an index
n € N such that ¢,, = ¢,,, where p,, is the n-th prime number.

The second recursion theorem states that for each total computable function h: N — N there exists e € N
such that ¢, = ¢p(e)-

PO G

T, otherwise

For the smn-theorem, there exists a total computable function s:N = N s.t.Vx,y € N, ¢ () = g(x,y)

By the second recursion theorem, there exists an index e s.t. ¢5) = ¢, and so:

_ _[Per if Pele)l
P) =g(ey) = { 1, otherwise
Therefore, ¢, (¥) = ¢s(e)(¥) = P and so p — e is the e”* prime number € W, and also W, = N, so e € C.

Exercise 9.25. State the second recursion theorem. Use it for proving that there is an index z
such that W, = {kx | k € N}.

The second recursion theorem states that for each total computable function h: N — N there exists e € N
such that ¢, = ¢p()-

0, dzs.t.z=xx*xy _ .|z *x—y|
1, otherwise - KW Y

g9x,y) = {
For the smn-theorem, there exists a total computable function s: N = N s.t.Vx,y € N, ¢ (¥) = g(x,¥)

By the second recursion theorem, there exists an index e s.t. ¢g) = e

ifexyeW,

— = y’
be(y) = g(e,y) = {T, otherwise

Therefore, ¢, (¥) = ¢5)(y) = e and W, = N as intended.

Written by Gabriel R.

360 Computability simple (for real)

Exercise 9.26. State the second recursion theorem. Use it for prove that there is an index e e N
such that W, = {e" : n € N}.

Solution: The Second Recursion Theorem states that given a total computable function h : N — N
there exists e € N such that) = @e.
Concerning the question, define

log,, v if y = 2™ for somen
9(@,y) = { 1 otherwise =y -

It is a computable function and therefore by the smn theorem, we have that there is a total
computable function s : N — N such that for each z,y € N

‘—'1|

Ps(x)(y) = 9(2,y)
By the II recursion theorem there exists an index e such that ¢, = pe and then

o) — log, y it y = ™ for somen
Pl =11 otherwise

Therefore W, = {e™ | n € N}. O

Exercise 9.27. Use the second recursion theorem to prove that the following set is not saturated
C={z|W,=N r ¢,(0) =z}
This one is also present inside 2017-01-24 exam.

The second recursion theorem states that for each total computable function h: N — N there exists e € N
such that ¢, = ¢p(e)-

_ % if ¢x(x) 1
9tey) = {T, otherwise

For the smn-theorem, there exists a total computable function s:N = N s.t.Vx,y € N, ¢ (¥) = g(x,y)

By the second recursion theorem, there exists an index e s.t. ge) = e

ey ={3 TP

i otherwise

Therefore, ¢, (¥) = ¢s)(¥) = e and so ¢, (0) = e and also W, = N, so e € C. Consider any e’ #
es.t.¢, = ¢, and so W, = W, with ¢.(0) = ¢,.(0). Since it is not saturated, we have that this cannot
hold, so ¢, # ¢, andsoe & C.

Exercise (15-07-2020)

State the Second Recursion Theorem and use it to show that for all k > 0 there are two indices x,y €
Ns.t.x —y=kand ¢y = ¢,

Solution

The second recursion theorem states that for each total computable function h: N — N there exists e € N
such that ¢, = ¢e(n). Define:

gCon = {74 T IO) — 1w k= 0] = G =) = 1w k= Py)

Written by Gabriel R.

361 Computability simple (for real)

which is computable. By the smn-theorem, there exists a total computable function s:N - N s.t.g(x,y) =
®s(x)(¥)- By the second recursion theorem, there exists an index e € N s.t. g5y (¥) = ¢ (¥). So, we
define:

g(e'y):{e_y; lf¢e()’)¢

T, otherwise

Therefore, for any index e € E,, we have that ¢, = ¢,/ since ¢, = ¢,, given Py = Ps(y), Vk = 0.
Exercise (30-06-2020)

State the Second Recursion Theorem and use it to show that the set B = {x € N: |W,| = x + 1} is not
saturated.

Solution

The second recursion theorem states that for each total computable function h: N — N there existse € N
such that ¢, = Pp(e)-

Define:

_\y + 1, X € Wk
9Gy) = { 1, otherwise

By the smn-theorem, there exists a total computable function s: N — N s.t. g(x,y) = ¢s(x)(y). By the
second recursion theorem, there exists e € N s.t. o = (). Therefore:

B 3 _(e+1, x €W,
be) = boo) =glen) ={Ty ToNe

e € Cy, considering W, = {e}, e € C and by the Second Recursion Theorem, ¢, (y) = ¢5(x)(y) = h(e,y) =
e+1Vy€eN.

Exercise (2019-01-24)
State the Second Recursion Theorem and use it to show there exists x € N such that |[W,| = x
Solution

The second recursion theorem states that for each total computable function h: N — N there existse € N
such that ¢, = ¢p(e)-

Define:

(v, x €W,
0 {T, otherwise

By the smn-theorem, there exists a total computable function s: N - N s.t. g(x,y) = ¢, (). By the
second recursion theorem, there exists e € N s.t. ¢ = (). Therefore:

x €W,
otherwise

$e) = bsi) = g(e,) = {7

e € Cy, considering W, = {e}, e € C and by the Second Recursion Theorem, ¢, (y) = ¢5x)(y) = h(e,y) =
eVy € N.

Written by Gabriel R.

362 Computability simple (for real)

Exercise (2019-02-08)

State the Second Recursion Theorem and use it to show the set A = {x | W, € {x}} is not saturated.
Solution

The second recursion theorem states that for each total computable function h: N — N there exists e € N
such that ¢, = Pp(e)-

To answer this one, define:

_ (x, x € W,
9t0y) = {T, otherwise

which is computable and by the smn-theorem, there exists a total computable function s: N —
Ns.t.Vx,y € Nwe have ¢ (y) = g(x,y).

By the second recursion theorem, there exists an index e s.t. ¢g) = ¢, and so

B B B _ (e, eeW,
be = Pse) = Pey) = 9(e,y) = {T, otherwise

Therefore, we have W, € e € N. Consider any e’ # e s.t. ¢, = ¢, and so one would have e & W, = W,
and therefore e & 4, given ¢, (e) | # ¢,/ (e") L. Hence, A is not saturated.

Written by Gabriel R.

	1 Summary
	2 A Useful Introduction: Swiss Knife for Everything Needed
	2.1 How to do the exercises and FAQ
	2.1.1 How to prove implications for URM machines
	2.1.2 How to prove the primitive recursive exercises
	2.1.3 What are those ,𝑬-𝒙. and ,𝑾-𝒙. I see everywhere?
	2.1.4 What is exactly ,𝝋-𝒙. I see everywhere?
	2.1.5 Why the subtraction has a point on top?
	2.1.6 How to prove the smn-theorem exercises
	2.1.7 How to write non-computable functions
	2.1.8 How to use diagonalization
	2.1.9 How to prove decidability/semidecidability
	2.1.10 How to write computable functions
	2.1.11 What is that set 𝑲 I always see?
	2.1.12 How to use the minimalisation
	2.1.13 What are those ,,𝒘.-𝟏., ,,𝒘.-𝟐.… I see everywhere?
	2.1.14 What is that subscript 1 over function composition?
	2.1.15 What is the universal function and how to use it?
	2.1.16 What are those 𝑺 and 𝑯 functions I see everywhere?
	2.1.17 How to do recursive/r.e. exercises
	2.1.17.1 Rice-Shapiro
	2.1.17.2 Reduction

	2.1.18 How to write the negated sets
	2.1.19 How to do the Second Recursion Theorem exercises
	2.1.19.1 Show there exist an index s.t. function is total/computable
	2.1.19.2 Show there exist an index s.t. function is not computable
	2.1.19.3 Show that a set A is not saturated

	2.2 Swiss Knife of Practical Definitions
	2.2.1 Totality and diagonalization
	2.2.2 Minimalization
	2.2.3 Why do we need to focus this much on Ackermann Function?
	2.2.4 Recursiveness and types
	2.2.5 Recursively enumerable and enumeration
	2.2.6 Decidability and Semidecidability
	2.2.7 Functionals and Fixed Points

	2.3 Symbols and Acronyms
	2.3.1 URM Machines Symbols
	2.3.2 General Functions and Notation
	2.3.3 Sets, Predicates and Characteristic Functions
	2.3.4 All book notations

	2.4 Swiss Knife of Useful Theoretical Definitions
	2.4.1 Computable function
	2.4.2 URM-Machine
	2.4.3 URM-Computable function
	2.4.4 Reduction
	2.4.5 Recursive Set
	2.4.6 Recursively Enumerable Set
	2.4.7 Decidable Predicate
	2.4.8 Bounded Minimalisation
	2.4.9 Unbounded Minimalisation
	2.4.10 Semi-decidable predicate
	2.4.11 Partially recursive functions
	2.4.12 Primitive Recursive Functions
	2.4.13 Smn-Theorem
	2.4.14 Structure Theorem
	2.4.15 Projection Theorem
	2.4.16 Saturated set
	2.4.17 Rice’s Theorem
	2.4.18 Finite Function and Sub-function
	2.4.19 Rice-Shapiro’s Theorem
	2.4.20 Myhill-Shepherdson Theorem
	2.4.21 First Recursion Theorem
	2.4.22 Second Recursion Theorem

	3 Introduction to the course
	4 Algorithms, effective procedures, non-computable functions
	4.1 Existence of non-computable functions

	5 URM Computability
	5.1 URM-computable functions and examples
	5.2 Exercises

	6 Decidable predicates
	6.1 Computability on other domains

	7 Generation of computable functions
	7.1 Generalized composition
	7.2 Primitive recursion
	7.2.1 Functions defined by primitive recursion

	7.3 Bounded sum, bounded product and bounded quantification
	7.4 Bounded minimalisation
	7.5 Encoding in pairs
	7.6 Unbounded minimalisation

	8 Partial recursive functions
	9 Primitive recursive functions
	9.1 The Ackermann Function
	9.2 Partially Ordered/Well Founded Posets
	9.3 Complete/Well-founded Induction and Ackermann Proof

	10 Enumerating URM programs
	10.1 Exercises

	11 Cantor Diagonalization Technique
	11.1 Examples

	12 Parametrisation/smn-theorem
	12.1 smn-theorem
	12.2 Simplified smn-theorem
	12.3 Examples

	13 Universal Function
	13.1 Definition
	13.2 Related Exercises
	13.3 Effective operations of computable functions
	13.4 Other exercises solved in lessons

	14 Recursive sets
	14.1 Definition
	14.2 Reduction and Related Problems

	15 Saturated Sets and Rice’s Theorem
	15.1 Saturated Sets
	15.2 Rice’s theorem
	15.3 Examples

	16 Recursively Enumerable Sets
	16.1 Definition
	16.2 Existential quantification
	16.3 Structure Theorem
	16.4 Projection Theorem
	16.5 Other exercises from lessons
	16.6 Recursively Enumerable Sets and Reducibility

	17 Rice-Shapiro’s Theorem
	17.1 Definition
	17.2 Proof
	17.3 Examples

	18 First Recursion Theorem
	18.1 Recursive Functionals
	18.2 Myhill-Shepherdson’s theorem
	18.3 Definition

	19 Second Recursion Theorem
	19.1 Definition and Proof Idea
	19.2 Application Examples

	20 Ending Lessons – Exercises
	20.1 Exam of 19/01/2022
	20.2 Various Exercises Solved (1/2)
	20.3 Various Exercises Solved (2/2)
	20.4 Solution of the Exercise on Random Numbers

	21 Tutoring lessons 2023-2024
	21.1 Tutoring 1: Primitive Recursion Exercises
	21.2 Tutoring 2: Exercises on Diagonalization and Partial Recursive Functions
	21.3 Tutoring 3: smn-theorem exercises
	21.4 Tutoring 4: R.E. Sets
	21.5 Tutoring 5: R.E. Sets and Reduction
	21.6 Tutoring 6: R.e./Rice-Shapiro Exercises
	21.7 Tutoring 7: R.e. and Reductions
	21.8 Tutoring 8: All Kinds of Exercises

	22 Many solved exercises with full commentary
	22.1 URM Machines
	22.2 Primitive Recursive Functions
	22.3 smn-theorem
	22.4 Decidability and Semidecidability
	22.5 Numerability and Diagonalization
	22.6 Functions and Computability
	22.7 Reduction, Recursiveness and Recursive Enumerability
	22.8 Characterization of sets
	22.9 Second Recursion Theorem

