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Disclaimer 

This file is the result of months of work, on a subject which is on paper the most interesting, but it’s math 

all over again (oh no, Mario like) and a very formal one at that. The teacher is really good, but problem is: 

too much forced formal stuff and no real explanation on how to think and reason on the exercises, so you 

see stuff in front of your eyes which you never know where it comes from (because you were never told). 

Here, every single concept is explained in precision, trying to simplify as much as possible concepts without 

loss of formality and generality. You will hopefully get the grasp and you will also find a lot of exercises 

trying to be solved or that were solved like that by the teacher or tutors of this course. 

This subject is not for everybody; it is followable, but you have to reason in abstract and expect to be 

confused a lot. It’s totally normal, still. Apart from a few geniuses (which I am not - this is all hard work, 

would love to get things first time, yeah), you are not alone. That’s the reason of this file existence. 

Hopefully, given this course is unfollowable in class without having absolutely complete notes on it first 

(you just write, or you just listen), this is a resource for you have just that. Consider also this is a work by a 

single person; the notes present on Moodle were translated in LaTeX by three different people and the 

professor gave assistance. 

Here I did everything alone. Hope it will be useful; I was rarely thanked for works like this (I did many over 

the years, with the goal of being simple for real), but if at least I gave you some help, well, at least this 

makes something out of it. But I always do this for passion and never for any other goal rather than 

spreading knowledge and hopefully improve, making a change directly, in people. I believe in this (this is 

not slogan, it’s what I think) – it can be me or anyone else. The only thing I care is doing something nice. 

Learning can be fun, even with subjects like this. Humbly, this tries to display passion and careful precision 

over everything. Here, nothing is took for granted. Each notation, concept, function, is explained in words 

and tries to be understood in a simple and concrete way. 

On this course organization: 

- Consider the lessons are done until half of December, then the professor dedicates two/three 

lessons only for exercises 

- The tutoring lessons are done until the end of January; in the dedicated chapter for exercises, you 

find the link to find recordings of old tutorings and even the ones of this year’s file writing (23-24) 

- The course had a partial exam up until it was in Italian, almost up until 19/20; topics touched for 

those were just before universal function 

- In any case, the exam is written, oral is optional (if you are crazy enough to want “cum laude”) 

Consider also: 

- there is an entire chapter with subsections of solved exercises, both from “exercises.pdf” or exams 

(even Italian exercises absent from “exercises.pdf” of Moodle, which I translated) 

- for each exercises I try to give my take following Baldan notes as close as possible – I do not assume 

those to be correct, just consider them for your own idea and in case just for reference 

o given the file of this work for a single person, I think you should understand :-D 

We are computer scientists, yes. But we are also human beings, at least sometimes. 

So, help is needed and do not be afraid to leave feedback over this file, we can discuss it together. Also, to 

thank me, it doesn’t kill me that much.   
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2 A USEFUL INTRODUCTION: SWISS KNIFE FOR EVERYTHING NEEDED 

This chapter includes explanation for every possible thing: 

- an entire subsection dedicated first thing first to understand exercises (because that’s what we all 

want to know, given for most of the course everything is taken for granted and never explained 

everywhere in detail, yay!) 

- an entire subsection dedicated to make you get the grasp of the single concepts and understand 

everything in practice (so, it will be basically “get the idea”) 

- an entire subsection dedicated to symbols (which were never written comprehensively anywhere, 

yay again!) 

- an entire subsection dedicated to theory definitions (for proofs, just take the notes – these are 

both for the crazy ones of you who want to take the oral exam but also for us ordinary people to 

easily get the grasp on where to use stuff and we care about it) 

2.1 HOW TO DO THE EXERCISES AND FAQ 
 

This entire subsection represents what an introduction should be: something useful and mandatory in a 

logical way. We like to understand stuff, right? This is actually meant for that, no more and no less. This is 

the result of careful observation and putting puzzle pieces together of concepts never actually explained by 

anybody. Here you go then.   

2.1.1 How to prove implications for URM machines 

 

This type of exercise and kind of straightforward (and usually asked in partial exams, so not focusing so 

much on those, I’d say, but always be prepared).  

Usually here there is a language with more/different capabilities from the normal URM machine and there 

are two ways for this implication: 

- set which contains more/different capabilities contained inside normal set 

- normal set contained inside which contains more/different capabilities 

This can be done in two ways (alternative to each other): 

- Less formal proof showing how the new instruction can be encoded using a combination of 

“normal” instructions and a subroutine 

- More rigorous proof showing inductively on the number of steps, that the maximum of the values 

contained in the registers at any time is bounded by the maximum value in the initial configuration 

(see exercise 1.5 inside “exercises.pdf” for this one) 

This kind of exercises was mainly present only inside partial exams. More precisely: 

- The exercise gives us a variant of the normal URM model which these basic instructions: 

 

o zero 𝑍(𝑛), which sets the content of register 𝑅𝑛 to zero: 𝑟𝑛 ← 0 

o successor 𝑆(𝑛), which increments by 1 the content of register 𝑅𝑛: 𝑟𝑛 ← 𝑟𝑛 + 1 

o transfer 𝑇(𝑚, 𝑛), which transfers the content of register 𝑅𝑚 into 𝑅𝑛, which 𝑅𝑚 staying 

untouched: 𝑟𝑛 ← 𝑟𝑚 
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o conditional jump: 𝐽(𝑚, 𝑛, 𝑡), which compares the content of register 𝑅𝑚 and 𝑅𝑛, so: 

▪ if 𝑟𝑚 = 𝑟𝑛 then jumps to 𝐼𝑡 (jumps to 𝑡-th instruction) 

▪ otherwise, it will continue with the next instruction 

 

- We have to prove the inclusion of the computable sets in both ways 

o From modified URM to normal URM 

o From normal URM to modified URM 

 

- Define 𝒞 for URM-machine and 𝒞′ (for example) the set of the model you have to show  

 

- First step is showing 𝒞′ ⊆ 𝒞 

o Not necessarily the new machine is more powerful, infact it may be even less powerful 

 

o Informally, we simply can code the “new” instruction/s in normal URM machine using a 

routine of some existing instructions (jump/transfer/successor/jump) 

▪ This is typically done considering say 𝑖 the index of an unused register by the 

program and a subroutine 

 

o Formally, we prove 𝒞′ ⊆ 𝒞 showing that, for each number of arguments 𝑘 and for each 

program 𝑃 using both sets of instructions we can obtain a URM program 𝑃′ which 

computes the same function i.e. such that 𝑓𝑃′
′(𝑘) = 𝑓𝑃

(𝑘) 

 

o The proof goes on by induction on the number of instructions ℎ 

▪ (ℎ = 0), usually trivial, it’s already a URM program 

 

▪ (ℎ → ℎ + 1), basically I will describe the logic 

• Describe as 𝑗 for instance the index of instruction you want to replace and 

𝑙(𝑃) the length of computed program 

• We can build a program 𝑃′′ using a register not referenced in 𝑃, for 

instance 𝑞 = max{𝜌(𝑃), 𝑘} + 1 (𝜌 is the largest unused register) 

• Show that for the whole length of program, the jump to the subroutine can 

successfully replace the instruction wanted 

 

▪ The program 𝑃′′ is s.t. 𝑓𝑃′′
(𝑘) = 𝑓𝑃

(𝑘)
and it contains ℎ instructions. By inductive 

hypothesis, there exists a URM program 𝑃′ s.t. 𝑓𝑃′
(𝑘) = 𝑓𝑃

(𝑘)
, which is the desired 

program 

- Second step is showing 𝒞 ⊆ 𝒞′ 

o The usual question is if inclusion holds both ways or if it is strict 

o If this second part does not hold, then it is not strict 

 

- Usually, this is similar to the one before, but this time around, instructions of normal URM have to 

be encoded using only the new machine  

o This one follows, if formally, exactly the same steps as before 

Exercise to follow fairly complete on this: 1.5. 
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2.1.2 How to prove the primitive recursive exercises 

 

These basically follow an intuitive track: 

- We give the definition of 𝒫ℛ 

- We define a function inside the set of primitive recursive functions by cases, covering base case and 

inductive case 

o Assume these functions are primitive recursive 

- In case this function needs other functions to describe it, other can be combined via primitive 

recursion themselves, hence proving the first one 

- I suggest making a lot of practical exercises, for example also considering proofs here 

Exercise to follow complete on this: 2.4 from “exercises.pdf” 

2.1.3 What are those 𝑬𝒙 and 𝑾𝒙 I see everywhere? 

 

Hard to write it explicitly, hey? No worries because here will be specified multiple times, but having a 

dedicated subsection to this is crucial. 

- 𝑊𝑥: domain of function 

o “Where the function is allowed to hit” 

o All possible input values 

- 𝐸𝑥: codomain of function 

o “Where the function does hit” 

o All possible output values 

The image (or range) is a subset of codomain and are the values reached when you substitute 𝑥 to get 𝑦 on 

a subset (like the image you see); codomain are all the possible values reached.  

2.1.4 What is exactly 𝝋𝒙 I see everywhere? 

This is represented as “phi” as letter (many times here 𝜙) – in LaTeX it’s “/varphi” (so, 𝜑).  

The first time this term is introduced is inside diagonalization, meaning “the function computed by the 

program of index 𝒙” where we mean “index 0”, so 𝜑0, “index 1”, so 𝜙1, etc.  

Specifically, 𝜑𝑥 can be defined as the 𝑥-th partial computable function, where 𝑥 is the index of a Turing 

machine (or an equivalent formalism like the URM model) in some fixed effective enumeration. 

Later on, we can see 𝜑𝑥 is simply 𝑓(𝑥) given it is defined. Consider the following infact: 

 

 

 

Specifically, inside theory, when talking about programs enumeration, we have: 

• 𝜑𝑛
(𝑘): ℕ𝑘 → ℕ (as the function of 𝑘 arguments (𝑘-ary function) computed by the program 

𝑃𝑛 = 𝛾
(−1)(𝑛) can be seen as 𝜑𝑛

(𝑘) = 𝑓𝑃𝑛
(𝑘)) 

Consider this is justified by the universal function, which is always computable, and one can say 𝜑𝑥 is 

computable for program 𝑒: Ψ𝑈(𝑒, 𝑥⃗) = 𝜑𝑒
𝑘(𝑥⃗).  

So: 𝜙𝑥(𝑥) is 𝑓(𝑥), 𝜙𝑥(𝑦) is 𝑓(𝑦) 

https://proofwiki.org/wiki/Category:Primitive_Recursive_Functions
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2.1.5 Why the subtraction has a point on top? 

 

 

 

 

This represent a subtraction which will never give you negative results, so it’s always positive and well-

defined with no problems (if the subtraction gives say −1, the calculation will give 0, something like that). 

More precisely:  

- the subtraction with a point on top indicates something like a normal subtraction, it saturates to 

zero when we get a negative value (not like a normal subtraction but defined only for natural 

numbers). Examples: 

o 3 − 4 = −1 ∉ ℕ 

o 3 −.= 0 

- this is technically called “truncated subtraction”, as shown here  

 

 

 

You can see here it’s called monus (or also cut-off subtraction as evidenced by Cutland, p. 241). As you can 

see above, the function is primitive recursive and usually you put a point because you subtract from the 

highest value the lowest, so this ensures “it’s all good”.  

  

https://math.stackexchange.com/questions/328530/is-the-set-of-natural-numbers-closed-under-subtraction
https://en.wikipedia.org/wiki/Monus#:~:text=Truncated%20subtraction%20is%20usually%20defined,subtraction%203%20%E2%88%B8%205%20%3D%200.
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2.1.6 How to prove the smn-theorem exercises 

 

Here we have to prove there exists a total computable function which has a particular and defined 

domain/codomain or both of them. 

- In this case, simply define a function of two parameters which is the combination of other 

computable functions (so, it will probably use minimalization and things like sign functions) 

- Use the smn-theorem definition to prove there exist an index capable of computation 

- Use domain and codomain accordingly substituting the right indexes 

Specifically: 

- Give a function of two arguments 𝑔(𝑥, 𝑦) 

o Define a case for set definition 

o Define a case for otherwise 

- In this case, with smn-theorem exercises, it helps creating a function s.t. 

o the domain is where the values exist 

▪ so, the positive case condition is the domain or less than the domain and has to 

include that case inside condition 

o the codomain is the output we want to reach 

▪ after having written the cases, we see if the output/the computable function 

respects said condition 

- It is computable, since it is defined by cases 

- By the smn-theorem, there is 𝑠: ℕ → ℕ 𝑠. 𝑡. ∀𝑥, 𝑦 ∈ ℕ 

o Write 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) and rewrite the function defined initially again 

- As observed above 

o 𝑊𝑠(𝑥) = {𝑥 | 𝑔(𝑥, 𝑦) ↓} = prove you stay inside domain, getting the same value 

o 𝐸𝑠(𝑥) = {𝑔(𝑥, 𝑦) | 𝑥 ∈ ℕ} = prove you stay inside codomain, getting the same value 

In case you have 𝐸𝑘(𝑛) and 𝑊𝑘(𝑛) inside the function definition (just notation here, folks, the concept holds 

the same way, you simply have 𝑛 in place of 𝑥): 

- simply use a function 𝑓(𝑛, 𝑥) 

- by smn theorem, there is a total computable function 𝑘:ℕ → ℕ 𝑠. 𝑡. 𝜙𝑘(𝑛)(𝑥) = 𝑓(𝑛, 𝑥) ∀𝑛, 𝑥 ∈ ℕ 

- As observed above 

o 𝑊𝑠(𝑥) = {𝑥 | 𝑓(𝑛, 𝑥) ↓} = prove you stay inside domain, getting the same value 

o 𝐸𝑠(𝑥) = {𝑓(𝑛, 𝑥) | 𝑥 ∈ ℕ} = prove you stay inside codomain, getting the same value 
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2.1.7 How to write non-computable functions 

 

Consider this one to get the concrete idea. Such functions are always total, since they are always defined 

(basically, covered by all cases in function definition).  

We have different choices to follow: 

- diagonalization (subsection ahead) 

- use a known non computable function, like 𝜒𝐾 

o conditions are dependent on exercise, here reported just as an example 

𝑓(𝑥) = {
0, 𝑖𝑓 𝑥 ≤ 1 

𝜒𝐾(𝑥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

o the general structure would be using 𝜒𝐾 somewhere, it can be both on positive/otherwise 

case 

- sometimes, it happens that we use functions and subfunctions 

𝜃(𝑥) = {
𝑓(𝑥), 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑒. 𝑔. 𝑖𝑓 𝑥 < 𝑥0)

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑓(𝑥) = {
𝜃(𝑥), 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑒. 𝑔. 𝑖𝑓 𝑥 < 𝑥0)

𝑣𝑎𝑙𝑢𝑒 (𝑒. 𝑔. 0, 𝑘), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

- since the subfunction is finite, the function is too, and one can write it as a computable function 

2.1.8 How to use diagonalization 

 

This one is a direct consequence of the previous one. 

The idea of these exercises is to build a function which itself is built to be different from every single other 

function of the same family, otherwise it is undefined. 

Then, we have that the recursion of the function, say 𝜙𝑥(𝑥) ≠ 𝑓(𝑥), which happens because the domain is 

built to be different from every value. An example that puts this explicitly: 

 

 

 

 

 

 

 

- In this case, consider the function are total 

o So, they have to define and handle all cases by definition 

- In this case, there are notable total non-computable functions; the function is built to differ from its 

own values by recursion 

- We then say 𝑓(𝑥) ≠ 𝜙𝑥(𝑥) since this holds by construction (just use the problem conditions 

replacing 𝑓(𝑥) with 𝜙𝑥(𝑥)) 

  

https://cs.stackexchange.com/questions/11181/how-to-show-that-a-function-is-not-computable-how-to-show-a-language-is-not-com
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Consider (conditions are dependent on exercise, here reported just as an example): 

𝑔(𝑥) = {
𝜙𝑥(𝑥) + 1, 𝑥 ∈ 𝑊𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

More generally, it might be something like: 

𝑓(𝑥) = {
𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔 𝑖𝑛𝑣𝑜𝑙𝑣𝑖𝑛𝑔 𝜙𝑥 , 𝑥 ∈ 𝑊𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑠𝑜, 𝑥 ∉ 𝑊𝑥)
 

- Consider the following notable examples from the course: 

 

 

 

 

 

 

 

 

 

 

The book specifies the following over diagonalization: 

 

 

 

 

 

 

 

 

Keep in mind that if you consider this one (quantification), this is universal and if one component is 

computable, also the other one is, because it is decidable. 

TL; DR 

- use 𝐾 and 𝜒𝐾 

- use 𝜙𝑥(𝑥) in some form different by construction  
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2.1.9 How to prove decidability/semidecidability 

 

In this case, we follow the definition, and we try to build a characteristic/semicharacteristic function, and 

we know respectively something is decidable/semidecidable. This kind of exercises basically refers to 

projection/structure theorem and usually involves building predicates in between them and prove those 

definitions while respecting the meaning of giving characteristic/semicharacteristic functions. 

In such cases, projection theorem and structure theorem definitions and proofs come to help. Consider this 

correspondence (might seem obvious to you, but useful to know): 

- recursive = decidable 

- recursively enumerable = semidecidable 

Consider also: 

- structure says that starting from a semidecidable predicate, you build a semidecidable one such 

that it will terminate in a number of steps 𝑡 

- projection says that starting from a semidecidable predicate, then you can apply the previous one 

and encode another semidecidable predicate 

2.1.10 How to write computable functions 

 

This is kinda hard to answer because there's no truly generic way to do this, but there are a lot of common 

situations. 

For semicharacteristic functions the general approach is to write them as 1(𝜇𝑤. . . . ), and then you need to 

handle the ..., which you need to write as some sort of search where the condition is decidable/a total 

function. Writing such search/condition is the hardest part and also what the exercise is all about. 

Initially you can write this condition using predicates (for example =,>, that is not just functions) and 

introducing new variables whenever you have a condition in the form "there exists ..." (often this comes up 

with the number of steps, but not only in those cases). 

When you're done you can start bundling all the variables in the 𝑤, for example if you used the variables 𝑦, 

𝑡 and 𝑘 you can say that 𝑤 = (𝑦, 𝑡, 𝑘), then you can replace all the uses of those variables with (𝑤)𝑖 where 

𝑖 is the index of those variables in 𝑤 (in this case all the 𝑦`s become (𝑤)1`, all the 𝑡`s become (𝑤)2` and all 

the 𝑘`s become (𝑤)3`. 

What's important to remember here is to not duplicate variables (that is, each variable should be present in 

𝑤 only once, you should not have something like 𝑤 = (𝑦, 𝑡, 𝑦)) and that 𝑥 should not be listed in 𝑤 because 

it already exists as the function argument (it may also happen that you have a function with two 

parameters when using the SMN theorem, in that case you need to exclude both parameters from 𝑤). 

For the sign functions, I think the most "mechanical" way to do it is to: 

- replace every predicate with its characteristic function (𝐻 becomes 𝜒𝐻 for example). Remember 

that those are 1 when the predicate is true, 0 otherwise. Use the negated sign to make them 0 if 

true, 1 if false 

- 𝑎 = 𝑏 becomes 𝑠𝑔(|𝑎 − 𝑏|), which is 0 if true and 1 if false 

- 𝑎 > 𝑏 becomes 𝑠𝑔(𝑎 −  𝑏) 

- 𝑎 ≥ 𝑏 becomes 𝑠𝑔(𝑎 +  1 −  𝑏) 

- OR operations become multiplications 

- AND operations become additions 
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- NOT operations become negated signs 

In the end you get 0 if true and 1 if false, which is what you need to end the unbounded minimalization 

when the condition is true. 

Other things: 

- we use cut-off subtraction (or monus, as you can see here) to 

define values search and “something greater than something else”. 

 

- we use the sign function (or negated sign) whenever we have something which depends on 

“greater/lesser” like before, but also can be either 1 or 0 (if first 1, second case 0, use sign, 

otherwise use negated sign).  

 

Consider the examples of remainder function definition or bounded minimalisation: 

 

 

 

 

 

 

- decidable predicates have to be transformed into semicharacteristic functions, for example like: 

 

 

We define different cases: 

- constants will be multiplied by their expression 

 

- equalities become absolute values subtractions from 

right value to left value 

 

- “less than” becomes subtraction from bigger value to lesser value  
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Note that “less than” and not “less or equal then” (so, < instead of ≤) is expressed via (+1), as follows: 

 

- “greater than” becomes subtraction between bigger value and lesser one as cutoff subtraction 

 

 

 

- ∀ values smaller than another one require a minimum bound 

 

 

 

- we subtract 1 when we consider the effect of unbounded minimalisation, which can give 0 as you 

will see after these ones, considering predicates, like here, might be true (so give 1), we consider 

that in the writing 

 

 

2.1.11 What is that set 𝑲 I always see? 

 

That set is the halting set, so we are talking about this one specifically: 

 

The set is recursively enumerable, since it can be written with a semicharacteristic function, but it is not 

recursive and so not computable. 

We use this set with reduction from the set we have to this one; if proven correct, the set is not recursive. 

Its complement, instead, so 𝐾 is not r.e. and a reduction from this one proves your set is not r.e. 

2.1.12 How to use the minimalisation 

 

This is intended in words as: “I am looking for something”. This holds in two cases: 

- the “normal use”, because you use partially recursive functions, you use unbounded minimalisation 

- in the case of primitive recursive functions, you have to use the bounded minimalisation  

Look at the definition: 
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As you can see, the computation is always bounded, specifically in the range 0 ≤ 𝑥 ≤ 𝑓(𝑥⃗, 𝑧). Unlike 

unbounded minimization, the bounded version is guaranteed to halt due to the restriction on the search 

range. 

The unbounded minimalisation, instead, is similar to the last one but the search is not bounded, given the 

underlying function is not total, this operation is not guaranteed to halt for all inputs. Look at the following 

definition; the function might never halt and so might not never give the desired output. 

 

 

 

 

We often use these ones to guarantee the desired function will terminate for sure, depending on the 

nature of said functions and cases to consider.  

The broader class of partial recursive functions is defined by introducing an unbounded search operator. 

The use of this operator may result in a partial function, that is, a relation with at most one value for each 

argument but does not necessarily have any value for any argument. An equivalent definition states that a 

partial recursive function is one that can be computed by a Turing machine. A total recursive function is a 

partial recursive function that is defined for every input.  

Consider oftentimes we use a “fake” minimalization, which means we minimize on a variable not present 

inside our set (so, for instance 𝜇𝑧. (and z is not present) or 𝜇𝑤) or instead do a “real” one when we look for 

“the smallest 𝑦 compared to 𝑥” say for instance, so you have 𝜇𝑦. (𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑤𝑖𝑡ℎ y 𝑎𝑛𝑑 x) 

2.1.13 What are those (𝒘)𝟏, (𝒘)𝟐… I see everywhere? 

 

(𝑤)1, (𝑤)2 are meant to be encoding in pairs and represent basically tuples – they are used to correctly 

replace 𝑤, 𝑧, 𝑦 and variables like that inside minimalization operator. They exist basically because there is 

not a pair-minimizing operator. Nested minimalization doesn’t work either, because I would scroll the table 

first only on the columns and then only on the rows. 

Basically, they are used to map 𝑥, 𝑦 as projection elements to transform a predicate into a mathematical 

expression (coding a couple as an integer). Consider this example which extends what was written before; 

basically, we use this encoding to replace 𝑥, 𝑦, 𝑡 (example taken from exercise 8.26 – one of the very few to 

make us understand because the process is clearly written – would love it if was always like that): 

 

 

Usually, in other cases (but the encoding depends on the specific problem, remember): 

- (𝑤)1: 𝑦 

- (𝑤)2: 𝑡 (number of steps) 

The introduction of their variables is explained at the end of the Universal Function lesson; basically, when 

we talk about the inverse function to determine if it terminates over input 𝑥 in a defined number of steps, 

we might use the encoding in pairs 𝜋, but instead we use the exponent of the first prime number 1 and the 

exponent of the second prime number 2. So, we have: 



17   Computability simple (for real) 
 

Written by Gabriel R. 

 

 

 

 

 

Consider we do a minimalization on 𝑤 on these ones given we are using the encoding with 𝑤 letters. 

Important: 95% of the cases, you are forced to use 𝑤 encoding because you do not have 𝜋 (which is the 

encoding in pairs as just said). So, if the exercises gives you 𝜋(𝑥, 𝑦), use that instead. Check for reference 

exercise 8.52 (which can be used in 8.20) – both are using 𝜋.  

From here, the predicate over index 𝑒, on input 𝑥, produces 𝑦 in 𝑛 steps. When we found 𝑤, we get 𝑥 as 

first component. The encoding is not injective, but we don’t care about this: we only care it’s done in a 

defined number of steps, hence finitely described.  

 

 

 

 

 

2.1.14 What is that subscript 1 over function composition? 

 

I simply mean (… )1 . It simply means “get the first component of such composition/minimalization, etc.” 

This is often used in semicharacteristic functions writing, but often it’s simply forgot, because it’s often 

implied by the reasoning of said writing. 

For instance, the following are equivalent 

and Baldan is not strict if you don’t put that 1. 

2.1.15 What is the universal function and how to use it? 

 

Consider this is always computable and one can say 𝜙𝑥 is computable for program 𝑒: Ψ𝑈(𝑒, 𝑥⃗) = 𝜙𝑒
𝑘(𝑥⃗) 

From what I got looking at the exercises solutions, it is a very limited case: 

- basically, when you write semicharacteristic functions, so you are doing r.e./not r.e. exercises 

considering exercises with 𝜙𝑥(𝑥) inside the exercise definition, there is: 

o 𝑠𝑐𝐴(𝑥) = (…− 𝜙𝑥(𝑥)) 

- you simply replace 𝜙𝑥 with Ψ𝑈(𝑥, 𝑥) 

o 𝑠𝑐𝐴(𝑥) = (…− Ψ𝑈(𝑥, 𝑥)) 

Consider also (to make you understand how to write this): 

- 𝜙𝑥(𝑧) = Ψ𝑈(𝑥, 𝑧) 

- 𝜙𝑦(𝑧) = Ψ𝑈(𝑦, 𝑧) 
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2.1.16 What are those 𝑺 and 𝑯 functions I see everywhere? 

 

In this kind of exercises, there are also parts of proofs that use 𝑆 and 𝐻 function, never actually explained 

properly, apart from putting the puzzle pieces together, present but not in a straightforward way. 

General form of semicharacteristic function writing: 

𝐻(𝑥, 𝑦, 𝑡)  ∧  𝑆(𝑥, 𝑦, 𝑧, 𝑡) 

Syntax: 

• 𝑆 - function defined to stop in a defined number of steps 

o 𝑆(𝑥, 𝑦, 𝑧, 𝑡) is the usual form – constrain execution to 𝑥, depend on 𝑦 and 𝑧, terminate in 𝑡 

steps 

• When using the program code 𝜙𝑒 = 𝑓 you can write 

o 𝑆(𝑒, 𝑥, 𝑦, 𝑡) – constrain execution to 𝑒, depend on 𝑥 and 𝑦, terminate in 𝑡 steps 

▪ 𝑒 is the code, 𝑥 is the input, 𝑦 is the output, 𝑡 the number of steps 

o This is also written as 𝜒𝑆 when expressed as semicharacteristic function and often it’s 

better, when writing the semicharacteristic functions, to pass to this form instead (so, from 

𝑆 to 𝜒𝑆 to transform it from predicate to function) – Baldan it’s not strict on this one 

 

• 𝐻– this is the “halts” function, defining where the function will stop, specifically on which input and 

which output 

o 𝐻(𝑒, 𝑥, 𝑡) checks if 𝑒 on input 𝑥 terminates in 𝑡 steps 

▪ 𝑒 is the code, 𝑥 is the input, 𝑦 is the output, 𝑡 the number of steps 

o The usual form of this one is 𝐻(𝑥, 𝑥, 𝑦) used in the case of the halting set 

▪ 𝑥 is the code, 𝑥 is the input, 𝑦 the number of steps 

▪ It’s often used in the case of 𝐾 which means ¬𝐻(𝑥, 𝑥, 𝑦) holds (does not halt) 

o This is also written as 𝜒𝐻 when expressed as semicharacteristic function when expressed as 

semicharacteristic function and often it’s better – see above 

Nice explanation by this year tutor: 

- The 𝑆 function is almost the same as the 𝐻 function, except it has an additional argument (the 3rd 

one) that constrains the output of the program execution 

- That is, 𝐻(𝑒, 𝑥, 𝑡) only checks if the program with index 𝑒 on input x halts after t steps, while 

𝑆(𝑒, 𝑥, 𝑦, 𝑡) checks if the program with index e on input x halts with output y after t steps 

- You would use 𝐻 when you only care whether a program halts or not, and 𝑆 when you also care 

about its output 

o the usual example is the inverse of a function, where you want to know whether there 

exists an input 𝑥 such that 𝑓(𝑥) = 𝑦, in which case you do care that the output is 𝑦 

Found inside page 79 of notes their notation: 
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Also inside page 96 (a bit late I would say) – 𝑆 should be uppercase there: 

  

 

From what I investigated: 

- if you have to express the fact the program halts or not (or you care about the input/domain), use 

the function 𝐻 (useful especially when writing semicharacteristic functions) 

- if you care about halting and the output, use 𝑆 (so we are talking about the codomain - useful 

especially when writing semicharacteristic functions) 

2.1.17 How to do recursive/r.e. exercises 

 

For dummies: 

- start to see if set is saturated 

o usually if saturated, then not recursive, but can be r.e. 

- if it is saturated, see also if it is r.e. (so, you can write a semicharacteristic function) 

- if it is r.e., check if recursive 

o use Rice’s Theorem/halting set to prove it’s not 

o 98% of the times sets are not recursive – apart from exercise 8.58, usually “cool proof but 

not real case” exercise to consider for this 

- if it is not r.e. use Rice-Shapiro or negation of halting set 

o if not r.e. then it is not recursive 

Also consider all logical implications, written in detail later. 

Longer explanation; two macro-cases: 

- We use Rice-Shapiro (this usually happens with functions with definitions like 𝑊𝑥 or 𝐸𝑥) and show 

the set is saturated, then show both the set and its complement are not r.e. 

o Since they are not r.e., they are not recursive 

▪ Basically we have at the same time a function which is defined but a finite 

subfunction which is not defined 

▪ Conversely we have at the same time a function which is not defined but a finite 

subfunction which is defined 

▪ On this arises the contradiction given by Rice’s theorem 

o If we have a set r.e. (because we can write its semicharacteristic function) 

▪ Then we have to use Rice’s Theorem to understand if it’s recursive or not 

 

- We use the reduction (see also what was written here) from the halting set (this happens for more 

“practical” cases, which happens when we have definitions that do not include domain/codomain) 

o If a function can be reduced from 𝐾 it is not recursive 

▪ In this case, the function is assumed to terminate (so, you have 𝐻(𝑥, 𝑥, 𝑦) 

terminating) 

▪ Since the set is not recursive, the complement is not recursive or r.e. 

o If a function can be reduced from 𝐾 it is not r.e. 

▪ In this case, the function is assumed to not terminate (so, you have ¬𝐻(𝑥, 𝑥, 𝑦)) 

▪ Since the set is not r.e., it is not recursive and also the same holds from the normal 

set, so not recursive or r.e. 
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We know a set is not saturated if there is 𝑦 depending on 𝑥 or 𝑓(𝑥) ∈ 𝑊𝑥/𝐸𝑥 

Practical observations: 

- Exercises with only domain and codomain in the definition (so, 𝑊𝑥 and 𝐸𝑥) always require the use 

of Rice-Shapiro 

- Exercises with more normal definitions (like combination of 𝑦, 𝑥), something using 𝜙𝑥 or both of 

them, then it requires a reduction from 𝐾 (or its complement) 

How to use Rice-Shapiro correctly? Well, considering 𝑖𝑑 as the identity (always defined for every natural 

number) and ∅ as the always undefined function (so, always undefined for every natural number). 

- 𝐴 is not r.e. (the cases are alternative between each other – so, if one holds, the other does not) 

o We can have notable functions like 𝑖𝑑/∅ ∈ 𝒜 and a function 𝜃 ∉ 𝒜 

▪ Where the subfunction needs to be defined by cases 

▪ Other times we have 𝑓 ∈ 𝒜 (𝑓 is the original definition function) and 𝜃 ∉ 𝒜 

o We can have 𝑖𝑑/∅ ∉ 𝒜 and a function 𝜃 ∈ 𝒜  

▪ Same observation for finite subfunction 

▪ Other times we have 𝑓 ∉ 𝒜 and 𝜃 ∈ 𝒜 

 

- 𝐴 is not r.e. (the cases are alternative between each other) 

o We can have notable functions like 𝑖𝑑/∅ ∈ 𝒜 and a function 𝜃 ∉ 𝒜 

▪ Where the subfunction needs to be defined by cases 

▪ Other times we have 𝑓 ∈ 𝒜 (𝑓 is the original definition function) and 𝜃 ∉ 𝒜 

o We can have 𝑖𝑑/∅ ∉ 𝒜 and a function 𝜃 ∈ 𝒜  

▪ Same observation for finite subfunction 

▪ Other times we have 𝑓 ∉ 𝒜 and 𝜃 ∈ 𝒜 

A general schema coming from an old tutor: 
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2.1.17.1 Rice-Shapiro 

 

- We use this one if 𝐴 is saturated 

o This usually happens when the exercises gives 𝑊𝑥 , 𝐸𝑥 or both of them 

o 𝐴 = {𝑥 ∈ ℕ| 𝜙𝑥 ∈ 𝒜} and 𝒜 = {𝑓 | … } 

o You replace 𝑊𝑥 with 𝑑𝑜𝑚(𝑓) and 𝐸𝑥 with 𝑐𝑜𝑑(𝑓) 

 

- This way, we show 𝐴 and 𝐴 are not r.e. 

o This may not always be the case; sometimes a set is saturated, but the set is r.e. (it means 

you can write a semicharacteristic function 𝜒𝐴) 

▪ In this case, if 𝐴 is r.e. 𝐴 is not r.e (hence not recursive) 

▪ Conversely, if 𝐴 is r.e., 𝐴 not r.e. (hence not recursive) 

 

- Applying the definition it means either: 

o we have a function which is in the set but a finite subfunction not in the set 

o we have a function which is not in the set but a finite subfunction which is in the set 

 

- Usually, we use 𝑖𝑑 and ∅ 

o identity = defined for all natural numbers 

o always undefined function = undefined for all natural numbers 

- Sometimes, one can use the constant 𝟏 function 
 

- It usually works showing you have (as above, but replace 𝑓 with a logically correlated function to 

the exercise definition of specified set) 

o  𝑓 ∉ 𝐴, but ∃𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∈ 𝒜 

o 𝑓 ∈ 𝐴, but ∀𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∉ 𝒜 

- This usually holds for both sets 

o If both sets are not r.e. they are not recursive either 
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There are the following implications: 

- if 𝐴 is r.e. but not recursive, also 𝐴 is not r.e. (also not recursive, otherwise they would be both 

recursive)  

- if 𝐴 is recursive, then 𝜒𝐴 is computable. We have 𝐴 is r.e. and: 

o if 𝐾 ≤𝑚 𝐴, then 𝐴 is not recursive 

o if 𝜒𝐴 is computable then 𝐴 is recursive 

- If 𝐴 r.e., then 𝐴 is not – if 𝐴 is r.e., it means 𝑠𝑐𝐴 exists, but is not recursive 

- If 𝐴 r.e. then 𝐴 is not – if 𝐴 is r.e., it means 𝑠𝑐𝐴 exists, but is not recursive 

Side note (important): 

- One can show a set is not recursive by using Rice’s theorem 

o This occurs when the set is saturated and maybe is r.e. but we ask if it is recursive 

o Then, you use 𝑒0 ∈ 𝑖𝑑/𝟏 and 𝑒𝑖 ∈ ∅ to prove 𝑒0 ∈ 𝐴, 𝑒1 ∉ 𝐴 hence 𝐴 ≠ ∅,ℕ 

▪ for example 𝑒0 𝑠. 𝑡. 𝜙𝑒0 = 𝑖𝑑/𝟏 or 𝑒1𝑠. 𝑡. 𝜙𝑒1 = ∅ 

2.1.17.2 Reduction 

 

- We use this one if 𝐴 is not recursive (𝐾 ≤𝑚 𝐴) 

o usually something like 𝑔(𝑥, 𝑦) = {
𝑦 (𝑜𝑟 𝑣𝑎𝑙𝑢𝑒), 𝑥 ∈ 𝐾

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

o a variant with the same meaning is 𝑔(𝑥, 𝑦) = {
1 (𝑜𝑟 𝑣𝑎𝑙𝑢𝑒), 𝑥 ∈ 𝑊𝑥

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

o it is computable and thus, by the smn theorem, we deduce that there is a total computable 

function 𝑠: ℕ → ℕ such that, for each 𝑥, 𝑦 ∈ ℕ, 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) 

- It can be shown to be the correct reduction function 

o if 𝑥 ∈ 𝐾,𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝑦 (𝑜𝑟 𝑣𝑎𝑙𝑢𝑒) ∀𝑦 ∈ ℕ. Therefore 𝑠(𝑥) ∈ 𝑊𝑠(𝑥) = ℕ and 

𝜙𝑠(𝑥)(𝑠(𝑥)) = 𝑠(𝑥). Therefore, 𝑠(𝑥) ∈ 𝐴 

▪ the function here is the value; if we had 𝑦2 it would have been (𝑠(𝑥))
2

 

o if 𝑥 ∉ 𝐾, 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) ↑ ∀ 𝑦 ∈ 𝑁. Therefore 𝑠(𝑥) ∉ 𝑊𝑠(𝑥) = ∅ and so 𝑠(𝑥) ∉ 𝐴 

 

- We can also use the complement of the same set to show it is not r.e. (𝐾 ≤𝑚 𝐴) 

o usually something like 𝑔(𝑥, 𝑦) = {
𝑦 (𝑜𝑟 𝑣𝑎𝑙𝑢𝑒), ¬𝐻(𝑥, 𝑥, 𝑦)

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

o this starts from a computable function, like 𝑔(𝑥, 𝑦) = {
1 (𝑜𝑟 𝑣𝑎𝑙𝑢𝑒), 𝑥 ∈ 𝐾

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

o it is computable since we have 𝑔(𝑥, 𝑦) = 𝑣𝑎𝑙𝑢𝑒 ∗ 𝑠𝑐𝐾(𝑥) and thus, by the smn theorem, 

we deduce that there is a total computable function 𝑠:ℕ → ℕ such that, for each 𝑥, 𝑦 ∈ ℕ, 

𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) 

The problem is that the reduction may not work for cases 𝑥 ∉ 𝐾 => f(x) not in the set, since 𝑔(𝑥, 𝑦) may still 

have some values in the domain/codomain before it starts to always diverge, and those may be enough to 

satisfy the set’s requirements. 

- It can be shown to be the correct reduction function 

o if 𝑥 ∈ 𝐾,𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝑦 (𝑜𝑟 𝑣𝑎𝑙𝑢𝑒) ∀𝑦 ∈ ℕ. Also, we can say 𝐻(𝑥, 𝑥, 𝑦) is false 

∀𝑦 ∈ ℕ. Therefore 𝑠(𝑥) ∈ 𝑊𝑠(𝑥) = ℕ and 𝜙𝑠(𝑥)(𝑠(𝑥)) = 𝑠(𝑥). Therefore, 𝑠(𝑥) ∈ 𝐴 

o if 𝑥 ∉ 𝐾, 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) ↑ ∀ 𝑦 ∈ 𝑁. Also, we can say 𝐻(𝑥, 𝑥, 𝑦) is true ∀𝑦 ∈ ℕ 

Therefore 𝑠(𝑥) ∉ 𝑊𝑠(𝑥) = ∅ and so 𝑠(𝑥) ∉ 𝐴 
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- If this reduction from complement holds, 𝐴 is not r.e. 

 

- It can also happen 𝐾 ≤𝑚 𝐴 and so 𝐴 is not r.e. 

- If both are valid (so 𝐾 ≤𝑚 𝐴 and 𝐾 ≤𝑚 𝐴), both sets (𝐴, 𝐴) are not r.e.  

Some logical implications I had also written in another subsection: 

- Any recursive set is also recursively enumerable 

- A set is recursive iff the set and its complement are r.e.  

- If a set is not r.e. then is not recursive 

- A set is not recursive when a reduction from the halting set (𝐾) works 

- A set is r.e. if one can write the semicharacteristic function, which is computable 

- A set can be shown to be not r.e. using a reduction from halting set complement (𝐾) or via Rice-

Shapiro 

- Usually, if a set is r.e., the complement is not r.e. (this depends on the problem conditions) hence 

not recursive (otherwise, they would be both recursive hence r.e.) 

- If a set is saturated, then it is not recursive (can be shown via Rice’s theorem) 

- If a function does not terminate, we argue ¬𝐻(𝑥, 𝑥, 𝑦) otherwise it terminates so 𝐻(𝑥, 𝑥, 𝑦) 

Some from reading the book: 

- An infinite set is recursive iff it is the range of a total increasing computable function i.e. if it can be 

recursively enumerated in increasing order 

2.1.18 How to write the negated sets 

 

In Rice-Shapiro exercises, it’s useful to write the negated sets to actually understand the track to follow. 

Remember the following rules (they come from logic, so consider this and De Morgan laws to be precise): 

- ∃ becomes ∀ 

- ∀ becomes ∃ 

- ∧ becomes → 

All other obvious ones regard: = becomes ≠, > becomes < etc. Consider as examples: 
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2.1.19 How to do the Second Recursion Theorem exercises 

 

The process here is fairly simple: 

- you state the theorem 
- you define a function of two arguments which is computable 
- by the smn-theorem, this works (simply write its definition) 
- by the second recursion theorem, there exists only a single index on which this holds 
- use the second recursion theorem definition substituting 𝑒 inside the function definition 

Here you have two cases: 

- use the theorem to prove there exist a single index respecting a problem definition 

- use the theorem to prove a function is not computable 

- use the theorem to prove a function is total 

- use the theorem to prove the set is not saturated 

In all three cases previously written, just to what was written above and 

- if the function was not computable or total to begin with, with the second recursion theorem, any 

possible index won’t be inside the domain or just will not be defined 

- if the function is total or there exists a single index, simply substitute 𝑒 in place of 𝑥 inside the 

function definition and call it a day 

For the fourth case (set not saturated): 

- everything is the same, just change the conclusions 

o Given any 𝑒′ ≠ 𝑒 and such 𝜙𝑒
′ = 𝜙𝑒, we have that 𝑓(𝑒′) ≠ 𝑓(𝑒) and so (after proving that 

on the exercise definition), 𝑒′ ∉ 𝐴/𝒞 

▪ where 𝐴 is the set, other times there is calligraphic 𝒞 to represent the class of 

computable functions 

2.1.19.1 Show there exist an index s.t. function is total/computable 

- Give the theorem definition 

- Give a function of two arguments 𝑔(𝑥, 𝑦) for instance defined by cases  

o case for the normal condition 

o case for otherwise 

- Since it is defined by cases, it's computable (since it is total, holds) 

- By the smn-theorem, there exists a total computable function 𝑠: ℕ → ℕ 𝑠. 𝑡. 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) 

- By the Second Recursion Theorem, there exists 𝑒 ∈ ℕ such that 𝜙𝑒 = 𝜙𝑠(𝑒)  

- You use the function previously defined and replace 𝑔(𝑥, 𝑦) with 𝜙𝑒(𝑦) = 𝜙𝑠(𝑒)(𝑦) =  𝑔(𝑒, 𝑦) 

o inside the function, replace 𝑥 with 𝑒 

- You conclude since you fixed the point in which all the condition you posed hold 
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2.1.19.2 Show there exist an index s.t. function is not computable 

 

- Give the theorem definition 

- Note the function is computable but it is usually total, so you have say 𝜙𝑥 ≠ 𝜙ℎ(𝑥) 

- By the Second Recursion Theorem, there exists 𝑒 ∈ ℕ such that 𝜙𝑒 ≠ 𝜙𝑠(𝑒)  

- So, the original function cannot be computable  

2.1.19.3 Show that a set A is not saturated 

 

- Give the theorem definition 

- Give a function of two arguments 𝑔(𝑥, 𝑦) for instance defined by cases  

o case for the normal condition 

o case for otherwise 

- Since it is defined by cases, it's computable 

- By the smn-theorem, there exists a total computable function 𝑠: ℕ → ℕ 𝑠. 𝑡. 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) 

- By the Second Recursion Theorem, there exists 𝑒 such that 𝜙𝑒 = 𝜙𝑠(𝑒)  

- You use the function previously defined and replace 𝑔(𝑥, 𝑦) with 𝜙𝑒(𝑦) = 𝜙𝑠(𝑒)(𝑦) =  𝑔(𝑒, 𝑦) 

o inside the function, replace 𝑥 with 𝑒 

- Now, just take 𝑒′ ≠ 𝑒 such that 𝜙𝑒
′ = 𝜙𝑒 (which exists since there are infinitely many indices for the 

same computable function) 

- So, we have 𝑒 in 𝐴 and 𝑒′ ∉ 𝐴 So, 𝐴 is not saturated 
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2.2 SWISS KNIFE OF PRACTICAL DEFINITIONS 
 

2.2.1 Totality and diagonalization 

 

Total = defined for all natural numbers (all set), assigning a unique element to each output from input 

- A function is total if it’s defined for cases and returns an output for every single possible input 

(covers all possibilities, in other terms) – so, a function by cases is total by construction  

- Technically, a function is total when 𝑓 is defined for every input on set 𝑋 

- Diagonalization here is a powerful tool 

o We can use diagonalization to make a partial computable function that differs from every 

total computable function 

o It states that there are sets where you can’t list all of their members sequentially. It 

assumes to have an infinite list of elements, which can’t be because the underlying thing is 

total 

▪ If a list of a set of these strings exists… 

▪ …then there also exists a string that is not in the list 

o Given it does not happen, there is the contradiction: the function is total, but you find a 

value which is not on the list, while being defined for all values 

o Tl;dr – use 𝜙𝑥(𝑥) as this section specifies 

Partial: defined only on a subset of a specified set. Consider a partial function from 𝑥 to 𝑦, this will assign at 

most one element of 𝑦 to every element of 𝑥 

Computable = when referred to a specific model of computation (usually Turing Machines, here also URM 

machines). Recall the definition given here: 

o A computable problem/function is one where the steps of computation are precisely defined and 

execution of the algorithm will always terminate in a finite number of steps, yielding a well-defined 

output.  

 

o Examples of computable problems include addition, multiplication, exponentiation for integer 

inputs, as well as problems like determining if a number is prime or solving linear equations - all of 

which can be solved by unambiguous, terminating algorithms. 

 

o In contrast, problems like the halting problem are not computable as there is no single algorithm 

that can correctly determine the behavior of all programs in a finite number of steps.  

2.2.2 Minimalization 

 

Minimalization is the process of finding the smallest value that satisfies a given property within a certain 

range or domain. In the context of computability theory, minimization often involves searching for the 

smallest input that makes a specific function output. Integrate this section with this one. 

We use the so called 𝜇-operator, denotes as 𝜇𝑦, can be either unbounded or bounded. In the unbounded 

form, it searches for the least natural number 𝑦 such that a given predicate 𝑅(𝑦, 𝑥1, . . . , 𝑥𝑘) holds. The 

bounded form, as described by Kleene, involves finding the least 𝑦 < 𝑧 𝑠. 𝑡. 𝑅(𝑦) with appropriate 

conditions. 

Let’s clarify the differences between bounded and unbounded minimalization. 
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- unbounded  

The unbounded minimization of a partial computable function 𝜙(𝑥, 𝑦) with respect to 𝑦 searches for the 

smallest 𝑦 s.t. 𝜙(𝑥, 𝑦) = 0 (0 in the context of this example, keep in mind). If such 𝑦 exists, the function 

returns that value, otherwise it doesn’t halt. 

In formula: 𝜇𝑦[𝜙(𝑥, 𝑦) = 0] 

- bounded 

The bounded minimization of a partial computable function 𝜙(𝑥, 𝑦) with respect to 𝑦 searches for the 

smallest 𝑦 less than or equal to 𝑘 s.t. 𝜙(𝑥, 𝑦) = 0. If such 𝑦 exists, the function returns that value, 

otherwise it doesn’t halt. 

In formula: 𝜇𝑦 ≤ 𝑘[𝜙(𝑥, 𝑦)] = 0 

2.2.3 Why do we need to focus this much on Ackermann Function? 

 

It is never required inside the exercises, but it’s fundamental for many things: 

- we need an order of elements, at least partial 

- by induction, this can be proven to be defined on more elements respecting a specific property, 

becoming well-founded 

- for loops (bounded minimalization/PR definitions) cannot be general, given there are also non total 

functions and there while loops (unbounded minimalization) is needed 

At the end of the day: 

- To be able to define all total functions you also need minimalization: otherwise, some functions 

might be too powerful to express traditionally, like happens here. 

Consider this one: 

- We can't do unbounded loops with only composition and primitive recursion b/c composition is 

necessarily finite and primitive recursion "counts down" as it were, to the base case.  

- In other words, when we use primitive recursion we must specify a base case (usually when 𝑦 =

 0) and a "demoting case", that is, a case that starts with 𝑦′ and ends with 𝑦 (when 𝑦 ! =  0). 

- This clearly describes a bounded loop - yet in order to compute all the functions that Turing 

machines can compute, we must be allowed to execute unbounded loops 

- in a sense, we need to be able to ask questions that may or may not have any answer (we need to 

be able to run our program forever, since we know not where the answer lies – 

𝑓(0), 𝑓(1), 𝑓(2), 𝑓(3), etc..) 

- This is what minimization seems to get us - since it asks the question - "At what point does the 

function 𝑓 return 0 for some inputs 𝑥1, . . . , 𝑥𝑛?" - even though the function may never return 0 for 

that input. 

- The quintessential example of a function which is not definable without minimization is the 

Ackermann function  

https://groups.google.com/g/computability-and-logic/c/KSgLny20KLc
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2.2.4 Recursiveness and types 

 

- recursive: A set is recursive if it can be computed in a finite amount of time/number of steps  

o Concretely, it means the characteristic function (gives 1 or 0) is computable 

o In function terms, it simply means we have a function giving 1 or 0 with letter “chi” (𝜒) 

𝜒𝐴 = {
1, 𝑥 ∈ 𝐴
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

o Consider recursive is a subset of recursively enumerable, which means that recursive first 

depends on the fact the set is r.e. or not (so check that first) 

 

- primitive recursive: A function is primitive recursive if it can be obtained from basic initial functions 

through a finite number of applications of certain predefined recursion schemes. 

o According to a useful practical definition here: 

▪ any function you can write where the only loops are those of the form  

• "𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛 𝑑𝑜 . .." 

o Here 𝑛 is fixed in advance (before the loop starts), and you cannot (explicitly) 

change 𝑖 nor 𝑛 inside the loop. So the number of times the loop executes is determined in 

advance. These conditions make infinite loops impossible. 

 

- In other terms: 

o A simplified answer is that primitive recursive functions are those which are defined in 

terms of other primitive recursive functions, and recursion on the structure of natural 

numbers. 

o Primitive recursive functions are a (mathematician's) natural response to the halting 

problem, by stripping away the power to do arbitrary unbounded self-recursion (because 

you can define a function recursively going only on function you decide yourself, not out of 

all the possible ones present out there) – this reasoning and phrasing comes from here 

A good enough distinction from here: 

- Primitive recursive functions are those that can be computed (from the trivial initial functions) by 

using for loops as the basic programming structure. 

There are bounded loops [we know as we enter how many cycles to execute]. We can, though, nest them 

one inside the other, and chain together such nested loops. 'For loops' correspond to definitions by 

primitive recursion. 

- Recursive functions are those that can be computed (from the trivial initial functions) by using for 

loops and/or do until loops. 

'Do until' loops involve unbounded searches until some condition is satisfied [as we enter the loop, we don't 

know how many times we will need to cycle around], so correspond to definitions by minimization. 

- partial recursive: A function is partial recursive is if it can be built up in finitely many steps from the 

basic functions by use of the operations of composition, primitive recursion and minimization. 

o In other words, the function might be undefined (or "partial") for certain inputs. The set of 

partial recursive functions includes both recursive and primitive recursive functions 

o Again: this one include minimalisation, while primitive recursive functions do not. 

  

https://math.stackexchange.com/questions/75296/what-is-the-difference-between-total-recursive-and-primitive-recursive-functions
https://stackoverflow.com/questions/1712237/how-does-primitive-recursion-differ-from-normal-recursion
https://math.stackexchange.com/questions/276479/representing-recursion-and-primitive-recursion-diagrammatically
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2.2.5 Recursively enumerable and enumeration 

 

- enumeration: An enumeration is a listing or indexing of elements of a set in some order. It provides 

a way to iterate through all elements of the set one by one.  

 

- recursively enumerable: A set is recursively enumerable if we can enumerate recursively the 

number of steps (which means “sometimes” we find a function terminating/TMs accepting the 

language) 

o Concretely, it means its semicharacteristic function is computable (so, it’s a superset of 

recursive) and mean 

o The semicharacteristic function is a partial function that indicates membership in the set 

for certain elements but may not provide information for others. 

o Usually we write: 

𝑠𝑐𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Quoting Wikipedia, “for these sets, it is only required that there is an algorithm that correctly decides when 

a number is in the set; the algorithm may give no answer (but not the wrong answer) for numbers not in 

the set”. So you see that: 

- we can list the elements, so we are able to describe recursively a set 

- but not always this set ends 

o it may happen on a finite set of indices and not for the other – meaning of saturated 

Precisely, on the recursive/r.e. nature some logical implications: 

- Any recursive set is also recursively enumerable 

- A set is recursive iff the set and its complement are r.e.  

- If a set is not r.e. then is not recursive 

- A set is not recursive when a reduction from the halting set (𝐾) works 

- A set is r.e. if one can write the semicharacteristic function, which is computable 

- A set can be shown to be not r.e. using a reduction from halting set complement (𝐾) or via Rice-

Shapiro 

- Usually, if a set is r.e., the complement is not r.e. (this depends on the problem conditions) hence 

not recursive (otherwise, they would be both recursive hence r.e.) 

- If a set is saturated, then it is not recursive (can be shown via Rice’s theorem) 

- If a function does not terminate, we argue ¬𝐻(𝑥, 𝑥, 𝑦) otherwise it terminates so 𝐻(𝑥, 𝑥, 𝑦) 

Some from reading the book: 

- An infinite set is recursive iff it is the range of a total increasing computable function i.e. if it can be 

recursively enumerated in increasing order 
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2.2.6 Decidability and Semidecidability 

 

- decidable: A predicate is decidable if its characteristic function is (URM) computable (and so it is 

total) 

o Concretely, it means there is a characteristic function like the following for a predicate: 

 

 

o If you look better at this, you will see it’s something like the recursive set case 

 

- semidecidable: A predicate is semidecidable if and only if the predicate is r.e. – so there is a 

semicharacteristic function for that 

o In other words, a set is recursively enumerable if there is an algorithm that can list its 

elements, though this algorithm might not halt for elements not in the set 

o Concretely, you will see this is similar to the recursively enumerable case 

 

 

Of a set, such that there is a deterministic algorithm such that if an element is a member of the set, the 

algorithm halts with the result "positive", and if an element is not a member of the set, the algorithm does 

not halt, or if it does, then with the result "negative". 

- saturated: A subset 𝐴 ⊆ ℕ is considered saturated or extensional if for every pair of natural 

numbers 𝑚 and 𝑛, if 𝑚 belongs to 𝐴 and the functions represented by the programs 𝜙𝑚 and 𝜙𝑛 are 

equal, then 𝑛 must also belong to 𝐴. 

o In simpler terms, this definition asserts that if a program with a specific property is part of 

the set, then all programs that compute the same function must also be part of the set.  

o This notion is essential to try to use Rice-Shapiro 

2.2.7 Functionals and Fixed Points 

 

- functional: A functional (also called “operator”) is a total function Φ: 𝐹(ℕ𝑘) → 𝐹(ℕℎ) (considering 

𝐹 is the set of all the functions and the others are the arguments and the indices of the 𝑘 

arguments) 

o A functional has to be effective, given both input and output can be infinite 

o They calculate in finite time using only a finite part of the input function (according to 

Cutland book definition) 

o In general, a functional type, in which a function takes in input a function of same type and 

gives as output another function of same type 

 

- To do this, we introduce the concept of recursive functionals 

o A functional 𝛷: 𝐹(ℕ𝑘) → 𝐹(ℕℎ) is recursive if there is a total computable function 

𝜙:ℕℎ+1 → ℕ 𝑠. 𝑡. ∀ 𝑓 ∈ 𝐹(ℕ𝑘)  

∀𝑥⃗ ∈ ℕℎ  

Φ(𝑓)(𝑥⃗) = 𝑦       𝑖𝑓𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝜃 ⊆ 𝑓 𝑠. 𝑡. 𝜙(𝜃̃, 𝑥⃗) = 𝑦  

 

o In simpler terms, recursive functionals essentially produce outputs of the same type as a 

finite part of the input function, acting as both input and output themselves. 



31   Computability simple (for real) 
 

Written by Gabriel R. 

 

- fixed point: A function is a fixed point/fixpoint of a functional Φ (a function which is not changed 

from the transformation and is an element mapped to itself by the function) , i.e. 𝑓:ℕ →

ℕ 𝑠. 𝑡. Φ(𝑓) = 𝑓. 

o Looking here, a fixed point 𝑥 in a set 𝑋 s.t. 𝑥 ∈ 𝑋 is a fixed point with a map to itself such 

that 𝑓(𝑥) = 𝑥. 

2.3 SYMBOLS AND ACRONYMS 
 

First thing first: 

- Inside “notes.pdf” on Moodle, you will often find the subtraction with a point, something like −. 

What does this mean (because never explicitly told, not even by the book)? This represent a subtraction 

which will never give you negative results, so it’s always positive and well-defined with no problems (if the 

subtraction gives say −1, the calculation will give 0, something like that). More precisely:  

- the subtraction with a point on top indicates something like a normal subtraction, it saturates to 

zero when we get a negative value (not like a normal subtraction but defined only for natural 

numbers). Examples: 

o 3 − 4 = −1 ∉ ℕ 

o 3 −.= 0 

- this is technically called “truncated subtraction”, as shown here  

 

 

 

You can see here it’s called monus (or also cut-off subtraction as evidenced by Cutland, p. 241) 

Just to pinpoint in grammar: 

- according to the English language, minimalization, better minimization, it’s the right term. Here, 

both the book and the notes use the “s” writing (minimalisation), which is less correct in English. 

Both are used here, mainly the first one being more correct (at least from what I found myself). 

  

https://www.karlin.mff.cuni.cz/~prazak/vyuka/101/Literatura/vittorino-FP.pdf
https://math.stackexchange.com/questions/328530/is-the-set-of-natural-numbers-closed-under-subtraction
https://en.wikipedia.org/wiki/Monus#:~:text=Truncated%20subtraction%20is%20usually%20defined,subtraction%203%20%E2%88%B8%205%20%3D%200.
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Continuing with other explanations: 

- (… )1: when you see an expression like this, with a 1 as a subscript (it doesn’t matter what’s inside), 

means “projection on the first component of the computation”, which in other words means “take 

the output from the first register” and will always hold as such for the other ones given it is 

defined. 

 

- ↑ (does not terminate/halt) 

 

- ↓ (terminates/halts) 

The symbol specifies the end of a proof. 

Moving on: 

- ∈ = inside a set 

 

- ∉ = not inside a set 

 

- 𝑠. 𝑡. or the pipe sign | = such that (“tale che” in italiano) 

 

- ≡ = congruent to 

 

- ∑ = sum of all things / ∏ = product of all things 

 

- ¬ = negation 

 

- ∘ = composition  

 

- ≤𝑚 = reduction (simplification hence usage of smn-theorem for parametrize) of function of left of 

the symbol to the one on the right 

 

- ⊆ = For a given set B, the set A is a subset of B if every element that is in A is also in B. This is 

denoted by A ⊆ B 

 

- 𝑥⃗ = vector of inputs for a given function (which means we take them all and apply projection), so 

we have all of the inputs on a possible computation 

 

- 𝛾: effective bijective enumeration of set of all programs 

 

- 𝜋: encoding in pairs of natural numbers (n-tuples defined by recursion) 

Just to clarify: 

- Set Intersection (∩): 

The intersection of two sets A and B, denoted A ∩ B, contains only the elements that are common to both 

sets A and B. 

It "filters out" elements that are not in both sets. 
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Examples: 

{1, 2, 3} ∩ {2, 3, 4} = {2, 3} 

{a, b} ∩ {b, c} = {b} 

- Set Union (∪): 

The union of two sets A and B, denoted A ∪ B, contains all elements that are in either set A or set B or both. 

It combines the elements of both sets without removing any. 

Examples: 

{1, 2, 3} ∪ {2, 3, 4} = {1, 2, 3, 4} 

{a, b} ∪ {b, c} = {a, b, c}  

So we can describe in symbols: 

- ∨ = or 

 

- ∧ = and 

Continuing with other symbols: 

- ↦ = maps to 

2.3.1 URM Machines Symbols 

 

- zero 𝑍(𝑛), which sets the content of register 𝑅𝑛 to zero: 𝑟𝑛 ← 0 

 

- successor 𝑆(𝑛), which increments by 1 the content of register 𝑅𝑛: 𝑟𝑛 ← 𝑟𝑛 + 1 

 

- transfer 𝑇(𝑚, 𝑛), which transfers the content of register 𝑅𝑚 into 𝑅𝑛, which 𝑅𝑚 staying untouched: 

𝑟𝑛 ← 𝑟𝑚 

 

- conditional jump: 𝐽(𝑚, 𝑛, 𝑡), which compares the content of register 𝑅𝑚 and 𝑅𝑛, so: 

o if 𝑟𝑚 = 𝑟𝑛 then jumps to 𝐼𝑡 (jumps to 𝑡-th instruction) 

o otherwise, it will continue with the next instruction 

 

- 𝑈𝑖
𝑘: projection  

The jump actually does many things: 

- 𝐽(1,1, 𝑆𝑈𝐵) = it’s a jump on a subroutine, which you can define, to encode further instructions of a 

machine 

- 𝐽(1,1, 𝐸𝑁𝐷) = jumps to the end of program 

Other ones to note (considering a URM program 𝑃): 

- 𝑙(𝑃) = program length/number of instructions 

 

- 𝜌(𝑃) = largest register index (the letter is “rho”) 
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2.3.2 General Functions and Notation 

 

- 𝜇: minimalization (there is a “point” (.) between 𝜇 and bounded function) 

o It uses a random 𝑤 to only prove the minimalization argument for which the expression is 

less than 𝑤 thanks to 𝜇 

 

- 𝑠𝑔: sign function (used to represent a binary condition, usually something you don’t want to 

become zero) 

 

- 𝑠𝑔 (negative sign function, same for binary, opposite of the last one) 

The two “sign functions” are often used to properly represent all the possible combinations of computation 

when dealing with a defined function. It means we usually consider “binarily” the cases we have; if we have 

two cases, for example, we use sign or negated sign “to represent 𝑓(𝑥) subtracted from the other case in 

the expression”, hence representing it is computable otherwise. Often it is used with minimalization.  

- 𝑞𝑡: quotient function) 

 

- 𝜙𝑥 : primitive recursive 𝑘 − 𝑎𝑟𝑦 function given by the 𝑥 − 𝑡ℎ step of enumeration, so it can be 

different from the function (so, subinputs over following computations of a function). Usually, this 

is useful for diagonalization arguments, which is different from 𝑓(𝑥) 

 

- 𝑟𝑚: remainder, will give 1 if the division does not have an null remainder, 0 otherwise) 

Many times you will find these ones, not so often explicitly told: 

- 𝑊𝑥: function domain 

o Letter 𝑊 probably stands for writable, so it is possible to write down all the inputs for 

which the function is defined) 

 

- 𝐸𝑥 : image of a function (aka, all the function outputs or the values in the codomain – the first 

definition is less math-like and more human-like, I’d say, but let’s try to be precise) 

o remember the codomain is also written as 𝑐𝑜𝑑(𝑓), where 𝑓 is a function 

o remember also the image can be written as 𝑖𝑚𝑔(𝑓) 

o Letter 𝐸 probably stands for enumerable because it is possible to enumerate all the outputs 

that the function can produce. 

Specifically, we can precise that: 

- image, codomain is always 𝑁 if we use the classical convention 

- codomain = target set and image = set of images of domain elements 

- 𝐸 is the image while the codomain is 𝑁 

Other notable ones: 

- 𝜋(𝑥, 𝑦): a pairing function 

 

- 𝛾: program coding 

  



35   Computability simple (for real) 
 

Written by Gabriel R. 

One thing important to remember is that (may seem confusing, but all cases are listed thoroughly): 

- If you have computable functions and perform computable operations (addition, multiplication, 

composition of computable functions), the result is always computable.  

 

- If you have computable elements but perform operations that involve non-computable functions, 

the result may be non-computable.  

 

- If you have non-computable elements but perform computable operations, the result can be either 

computable or non-computable, depending on the specific nature of the non-computable 

elements. 

o In the specific case of functions, if you combine a computable function with a non-

computable function through a computable operation, the result is computable.  

o However, if you combine a computable function with a non-computable function through a 

non-computable operation, the result may be non-computable. 

 

- If both elements and operations involved are non-computable, the result is typically non-

computable. Non-computability tends to propagate, and complex interactions may lead to 

undecidable or incomputable outcomes.  

2.3.3 Sets, Predicates and Characteristic Functions 

 

- 𝒫ℛ = set of primitive recursive functions (useful in the dedicated exercises and with specific 

properties specified here) 

 

- 𝐾 = halting function set (we can have its complement 𝐾) 

o if a set reduces to 𝐾 is r.e. (but not recursive) 

o if a set reduces to 𝐾 is not r.e. (also not recursive) 

 

 

- 𝐴 = decidable predicate (many other times, simply a set, which can also be 𝐵) 

o consider many times we need to write the negated set, useful for recursiveness exercises 

Other notable sets: ℙ - set of even numbers, 𝑃𝑟 set of prime numbers 

- 𝑄(𝑥1, … 𝑥𝑘): 𝑘-ary predicate 

 

- Sometimes you will find 𝒜 which is the set of computable functions (called “calligraphic A”) 

o many times in this file, will be written as 𝐴 and the normal set as 𝐴 

o this was because I discovered late the solution of calligraphic 𝐴 (bear with me, given the 

quality of file) 

 

- Similarly, you will find 𝒞 (definable normally as “calligraphic C”) which represents the class of 

computable functions 

 

- Similarly, you will find ℱ (definable normally as “calligraphic F”) which represents the set of all 

functions (possibly not computable) 
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- 𝜒𝐾: characteristic function of the halting set, which is 1 if input halts (𝑛 ∈ 𝐾), 0 otherwise) - Greek 

letter here is “chi” (the strange X here) 

 

- 𝜒𝐴: characteristic function of set 𝐴 which is 1 if input ∈ 𝐴), 0 otherwise) 

 

- 𝑠𝑐𝐴: semi-characteristic function (0/1 cases) of a predicate 

o if the semicharacteristic function is decidable, the function is semidecidable 

 

- Ψ𝑈: universal function (Greek letter is “Psi”) 

o it is usually of two arguments: 𝑒 (program) and 𝑥⃗ (input arguments) 

o it is generally used when there is a fixed index for the function or a fixed input  

o in many cases, it simply substitutes 𝜙𝑥(𝑥) as Ψ𝑈(𝑥, 𝑥) (as written here) 

 

- 𝟏: characteristic function, seen also in LaTeX as \mathbb{1} (for your reference) 

o both in Moodle notes and here is used the bold notation, for easiness of use 

o Over functions, you will see many times combinations of binary function which are trying to 

express the binary conditions, as you can see by the following example. In this case, it can 

be read as “all the possible combinations thanks to which in can be either 1 or 0” 

 

- 𝜃: finite subfunction 

o used in Rice-Shapiro context to show there is at least one part which has properties the 

rest of the considered set does not have 

 

- 𝑒: index of computation for functions (also called many times simply “program”) 

o 𝜙𝑒 = partial recursion over the specific index 

o usually, it is used inside the Second Recursion Theorem exercises or simply to compose 

function by compositions (so, 𝑓 = 𝜙𝑒  and then you write 𝑓(𝑥) as the combination of tuples 

with 𝑒 as index) 

In Rice-Shapiro exercises, the following functions are often used: 

- 𝑖𝑑 (identity function) 

o it used usually for the normal version of set to show for every natural number the finite 

subfunction does not respect the conditions of the specified set and is not inside of it 

o this holds because it is defined for every natural number 

o it has finite indices hence finite programs calculating it 

o a subvariant sometimes used is 𝑖𝑑(𝑥), so you can define a subfunction, like constant 1 or 

constant 0 

 

- ∅ (always undefined function – same symbol as empty set) 

o it is used usually inside the complement of set to show the finite subfunction does not 

respect the conditions of the complement and is not inside the set 

o it has infinite indices hence infinite programs calculating it 

o this holds because it is not defined for any natural number 

Inside last part of notes, there is: 

- Φ (uppercase phi), which represents a functional 

 

- 𝑓Φ, which represents a least fixed point 
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2.3.4 All book notations 

 

Just because I am a good person, I compiled every notation here stole by courtesy of Cutland book. 
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39   Computability simple (for real) 
 

Written by Gabriel R. 

2.4 SWISS KNIFE OF USEFUL THEORETICAL DEFINITIONS 
You don’t need all the definitions to know here – e.g. computable function, URM machine/URM-

Computable/Myhill theorem/First Recursion theorem/finite function one are here for clarification. The 

other ones actually came out in exercises or exams. Each one will be clarified concretely and by the point of 

view of the specific exercise in which it is used.  

2.4.1 Computable function 

 

 

2.4.2 URM-Machine 

 

A URM-machine formalizes the notion of computable function by using an abstract machine called URM-

machine (Unlimited Register Machine) which computes instructions effectively and finitarily thanks to the 

Church-Turing thesis. It has: 

- unbounded memory that consists of an infinite sequence of registers, each of which can store a 

natural number 

- a computing agent capable of executing an URM program 

- a URM program, i.e. a finite sequence of instructions that can “locally” alter the configuration of 

the URM 

It has different instructions: 

- zero 𝑍(𝑛), which sets the content of register 𝑅𝑛 to zero: 𝑟𝑛 ← 0 

- successor 𝑆(𝑛), which increments by 1 the content of register 𝑅𝑛: 𝑟𝑛 ← 𝑟𝑛 + 1 

- transfer 𝑇(𝑚, 𝑛), which transfers the content of register 𝑅𝑚 into 𝑅𝑛, which 𝑅𝑚 staying untouched: 

𝑟𝑛 ← 𝑟𝑚 

- conditional jump: 𝐽(𝑚, 𝑛, 𝑡), which compares the content of register 𝑅𝑚 and 𝑅𝑛, so: 

o if 𝑟𝑚 = 𝑟𝑛 then jumps to 𝐼𝑡 (jumps to 𝑡-th instruction) 

o otherwise, it will continue with the next instruction 

2.4.3 URM-Computable function 

 

  

 

 

2.4.4 Reduction 

 

 

 

 

More concisely:  
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Usually, we use these reductions: 

- 𝐾 ≤𝑚 𝐴: to prove a set is not recursive 

- 𝐾 ≤𝑚 𝐴: to prove a set is not r.e. 

Why do we care? 

Usually, we use 𝐾 (also, respectively 𝐾) which is not a recursive set (respectively not r.e.), and we show 𝐴 is 

not recursive (respectively not r.e) 

How to use it 

We write a function of two arguments which basically goes on like this: 

- if 𝑥 ∈ 𝐾, it means there is a function of two arguments defined by cases 

o its positive case will be 𝑥 ∈ 𝐾 or 𝐻(𝑥, 𝑥, 𝑦) (meaning it halts) 

o its negative case will be otherwise 

The function is computable, given it can be written as the composition of computable functions or just the 

product/composition of 𝑠𝑐𝐾 (semicharacteristic function which gives 1 or 0) and 𝑓. 

Use the smn-theorem proving there exists 𝑠: ℕ → ℕ total and computable s.t. 𝑓(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) ∀𝑥, 𝑦 ∈ ℕ 

and so 𝐾 ≤𝑚 𝐴. 

- if 𝑥 ∈ 𝐾, we will have the positive case, so the domain will usually be the natural set and 

conditions/indices will be respected, hence 𝑠(𝑥) ∈ 𝐴 

- if 𝑥 ∉ 𝐾 we will have ↑ and the domain will be the empty set, so indices/conditions will not be 

define, hence 𝑠(𝑥) ∉ 𝐴 

2.4.5 Recursive Set 

 

 

 

 

 

Also, remember, in words: 

- A set is recursive if it can be expressed finitely and totally by cases and holds a trivial property 

o if the property is not trivial, it's not recursive 

- Specifically, a set is recursive because it is finite 

2.4.6 Recursively Enumerable Set 
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Specifically: 

- A set is r.e. if I can check a property on a finite number of points 

- A set is not r.e. if I have to check the property on an infinite number of points 

If I am able to determine the property finitely because there are values “which I can search and find”, then I 

use and write a semicharacteristic function.  

2.4.7 Decidable Predicate 

 

 

 

 

The correspondence for functions is the recursive case.  

2.4.8 Bounded Minimalisation 

 

 

 

2.4.9 Unbounded Minimalisation 

 

 

 

 

2.4.10 Semi-decidable predicate 

 

 

 

 

Again: 

- If I am able to determine the property finitely because there are values “which I can search and 

find”, then I use and write a semicharacteristic function 

The correspondence for functions is the recursively enumerable (r.e.) case.  
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2.4.11 Partially recursive functions 

 

 

 

 

 

 

2.4.12 Primitive Recursive Functions 

  

Definition 

The general one is: 

 

 

 

 

 

 

The one to use in the exam is: 

 

 

 

 

 

 

 

 

A shorter one from an exam (I don’t exactly know how precise you should be, this here is just for logical 

reference, given it was as said inside of one):  
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2.4.13 Smn-Theorem 

 

Definition 

Given 𝑚, 𝑛 ≥ 1 there is a total computable function 𝑠𝑚,𝑛: ℕ
𝑚+1 → ℕ such that ∀𝑥⃗ ∈ ℕ𝑚, ∀𝑦⃗ ∈ ℕ𝑛, ∀𝑒 ∈ ℕ 

𝜙𝑒
(𝑚+𝑛)(𝑥⃗, 𝑦⃗) = 𝜙

𝑠𝑚,𝑛(𝑒,𝑥)
(𝑛)

(𝑦)⃗⃗⃗⃗⃗ 

What does it mean 

It means that, whatever the exercise and the argument, we are parametrizing the function “to get where 

we want”. Concretely, this uses a function of two parameters thanks to which we are proving some 

conditions. Consider this as an intermediate to get to other things and it’s used everywhere. 

The smn-theorem states that given a function 𝑔(𝑥, 𝑦) which is computable, there exists a total and 

computable function 𝑠 such that 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦), basically "fixing" the first argument of 𝑔 – usually, we 

fix 𝑥 in favor of 𝑦. It's like partially applying an argument to a function. This is generalized over 𝑚, 𝑛 tuples 

for 𝑥, 𝑦. 

Usually, you use it to create a reduction function by first finding an appropriate 𝑔(𝑥, 𝑦) and then using the 

smn-theorem to say that there exists the previously cited function 𝑠, which is also the reduction function. 

The difficult part is finding the appropriate function 𝑔(𝑥, 𝑦), then the application of the smn-theorem is 

always the same (so, finding a “mapping function” computable, then parametrize and showing it is).  

Note there is the simplified version of said theorem here (we refer to the definition present above anyway) 

The Cutland book says: “The smn theorem is often useful in reducing 𝑥 ∈ 𝑊𝑥  to other problems”.  
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2.4.14 Structure Theorem 

 

Definition 

Let 𝑃(𝑥⃗) ⊆ ℕ𝑘 a predicate. Then 𝑃(𝑥⃗) is semidecidable iff there is a dedicable predicate 𝑄(𝑡, 𝑥⃗) ⊆ ℕ𝑘+1 

s.t. 𝑃(𝑥⃗) = ∃𝑡. 𝑄(𝑡, 𝑥⃗) 

 

 

 

Note: in the “notes.pdf” the predicate is written as “decidable”, but prof. says it’s semidecidable like 

written here. Keep this in mind.  

Why do we care 

It’s often asked in the oral exam; you need this theorem to show the second one (projection).  

This reasoning is useful inside theoretical exercises about decidability/semidecidability because it’s literally 

the same reasoning, reported here for the sake of completeness. 

 

 

 

 

 

 

 

The converse does not hold, for example 𝑃(𝑥⃗, 𝑦) ≡ (𝑥 ∈ 𝑊𝑥)  ∃𝑥. 𝑃(𝑥, 𝑦⃗) 

Alternatively: 

- 𝑃(𝑥, 𝑦) ≡ (𝑦 = 1) ∧ (𝑥 ∉ 𝑊𝑥)𝑄(𝑦) ≡ ∃𝑥. 𝑃(𝑥, 𝑦) ≡ (𝑦 = 1) 

 

- Suppose 𝑃(𝑥, 𝑦) holds if ϕ𝑥(𝑥) ↑, 𝑃(𝑥, 𝑦) non-semi-decidable, otherwise 𝐾 would be r.e.. We know 

there are programs inside 𝐾, e.g. the ones calculating the always undefined function, but then 

∃𝑥. 𝑃(𝑥⃗, 𝑦) always holds and so it would always be inevitably undecidable 
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2.4.15 Projection Theorem 

 

Definition 

 

 

 

Why do we care 

It’s often asked in the oral exam.  

This reasoning is useful inside theoretical exercises about decidability/semidecidability because it’s literally 

the same reasoning, reported here for the sake of completeness. 

Proof 

Let 𝑃(𝑥, 𝑦⃗) ⊆ ℕ𝑘+1 semi-decidable. Hence, by the structure theorem, there is 𝑄(𝑡, 𝑥, 𝑦⃗) ⊆ ℕ𝑘+2 decidable 

s.t. 𝑃(𝑥, 𝑦⃗) ≡ ∃𝑡. 𝑄(𝑡, 𝑥, 𝑦⃗).  

Now 𝑅(𝑦⃗) ≡ ∃𝑥. 𝑃(𝑥, 𝑦⃗) ≡ ∃𝑥. ∃𝑡. 𝑄(𝑡, 𝑥, 𝑦⃗) ≡ ∃𝑤.𝑄((𝑤)1, (𝑤)2, 𝑦⃗) is decidable. 

Hence, 𝑅 is the existential quantification of a decidable predicate and by the structure theorem is semi-

decidable.  

2.4.16 Saturated set 

 

 

 

- A set is saturated if it describes non trivial properties or if it contains/regards properties of 

functions – it means that, taking two indices of a computation, not always they would have to 

compute the same property, so it is non-trivial (I think in words this gives you the idea, thank me 

later) 

- Conversely, is not saturated if it does not regard a property of a function 

2.4.17 Rice’s Theorem 

 

Definition 

 

 

What does it mean in practice? 

It’s used to show that a set is not recursive – usually, it’s more of an help when we know the set is 

saturated, but we don’t want to use the reduction from 𝐾 (much longer). 

Consider you usually need to know the idea of the proof of this one, because it allows you to say 𝜙𝑒 = 𝑓 (so 

you use 𝑒 as the index of computation to prove some properties over a defined number of steps). 

How to use it 
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You need to prove the conditions above hold, particularly using the fact the set is saturated. 

Remember a set 𝐴 ⊆ ℕ is considered saturated or extensional if for every pair of natural numbers 𝑚 and 𝑛, 

if 𝑚 belongs to 𝐴 and the functions represented by the programs 𝜙𝑚 and 𝜙𝑛 are equal, then 𝑛 must also 

belong to 𝐴.  

There are a few examples of usage inside the exercises on Moodle or in this section. 

Basically, if you used Rice-Shapiro for proving set is not r.e., just use Rice Theorem conditions to prove is 

not recursive, which is basically an extension and it’s way shorter than doing a reduction. 

2.4.18 Finite Function and Sub-function 

 

 

Also, we define the subfunction this way: 

 

This concept might appear obvious, but it’s not. It’s used in the following one, so Rice-Shapiro.  

2.4.19 Rice-Shapiro’s Theorem 

Definition 

Let 𝒜 ⊆ 𝒞 be a set of computable functions. Then if set 𝐴 = {𝑥 | 𝜙𝑥 ∈ 𝒜} is r.e. then 

∀𝑓 (𝑓 ∈ 𝒜 ⇔ ∃𝜃 ⊆ 𝑓, 𝜃 finite s.t. 𝜃 ∈ 𝒜) 

What does it mean in practice? 

It’s used to show that sets are not r.e. – alternatively (in a few cases), it can be shown a set is not r.e. using 

a reduction from the complement of the halting set 𝐾. Usually, it’s the easiest way. If a set is not r.e., then  

it is also not recursive (given r.e. it’s a superset of recursive).  

How to use it 

Generally, it can be used in two ways: 

- ∃𝑓 ∈ 𝒞. 𝑓 ∉ 𝒜 ∧ ∃𝜃 ⊆ 𝑓 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∈ 𝒜 ⇒ 𝐴 𝑛𝑜𝑡 𝑟. 𝑒. 

- ∃𝑓 ∈ 𝒞. 𝑓 ∈ 𝒜 ∧ ∀𝜃 ⊆ 𝑓 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∉ 𝒜 ⇒ 𝐴 𝑛𝑜𝑡 𝑟. 𝑒. 

First, the set has to be saturated (which means there is a set of computable functions holding the exercise 

property, just writing 𝑑𝑜𝑚/𝑐𝑜𝑑 in place of 𝑊/𝐸). We can use here functions like: 

- 𝑖𝑑, which is the identity function, always defined for every natural number 
o This one is usually used to show 𝑖𝑑 ∈ 𝒜 and ∃𝜃 ∉ 𝒜 (or viceversa) is not r.e.  

o So, this is a function and also requires the use of subfunctions  

- ∅, which is not the empty set, but a function with empty domain, called “always undefined 

function” 
o This one is usually used as a subfunction (so first you need to have a function, such as the 

identity or something), so like 𝑓 ∈ 𝒜 𝑏𝑢𝑡 ∅ ∉ 𝒜 (or viceversa) so 𝐴 is not r.e. 

- Other times, constant functions fit the bill (like 𝟎, 𝟏) or just create custom functions/subfunctions 

Not always a set and its complement are not r.e. – infact, sometimes a semicharacteristic function can be 

written and the set is r.e. Just consider the problem conditions and see if you can find such a function – 

often, it is just not recursive and not r.e. but don’t go autopilot.  
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You can start from either the function or the subfunction - just prove that 𝑓 is outside. Technically it is 

enough to find a pair of functions (𝑓, 𝜃) where theta is finite subfunction of 𝑓, theta is in the set and f is not 

in the set, this is because both are under an existential quantifier (𝑓 exists... and 𝜃 exists...). Thus there is 

no order between the two, it is just that introducing f first is generally preferable. 

Why it’s used 

Because it makes recursiveness proofs much shorter than using a reduction. If you don’t believe me, you 

will understand overtime and prove me right.  

2.4.20 Myhill-Shepherdson Theorem 

 

Definition 

(1) Let Φ: 𝐹(ℕ𝑘) → 𝐹(ℕ𝑖) be a recursive function. Then, there exists a total computable function ℎΦ: ℕ →

ℕ 𝑠. 𝑡. ∀𝑒 ∈ ℕ,Φ(𝜙𝑒
(𝑘)
) = 𝜙ℎ(Φ)(𝑒)

(𝑖)
 and ℎΦ is extensional. 

(2) Let ℎ:ℕ → ℕ be a total computable function and ℎ extensional.  

Then, there is a unique recursive functional Φ: 𝐹(ℕ𝑘) → 𝐹(ℕ𝑖) s.t. for all 𝑒 ∈ ℕ (possible programs) 

Φ(𝜙𝑒
(𝑘)
) = 𝜙ℎ(𝑒)

(𝑖)
 

What does it mean 

Myhill-Shepherdson's theorem establishes a significant relationship between recursive functions and total 

computable functions. In the first part, it states that for any recursive function Φ mapping functions from 

ℕ𝑘 → ℕ𝑖, there exists a total computable function ℎ𝜙: ℕ → ℕ that captures the behavior of Φ on 

computable functions. This means that the actions of the recursive functional on computable functions can 

be entirely represented by a total extensional function operating on the indices of those functions. 

In the second part, the theorem addresses the reverse scenario. Given a total computable and extensional 

function ℎ: ℕ → ℕ, there exists a unique recursive functional Φ such that, for all possible programs 

𝑒, Φ (𝜙𝑒
(𝑘)) = 𝜙ℎ(𝑒)

(𝑖) . This implies that computable extensional functions uniquely identify computable 

functions through program transformations. 

Why do we care 

This is basically a bridge for the two recursion theorems, and it is essential to understand the true meaning 

of the second one, which is quite powerful given the general result it holds. 

In particular, if you look at the definition of it, you see that we’re actually using this theorem every time we 

plug an index inside of Second Recursion Theorem, describing a property holds extensionally because there 

is at least one fixed point to consider.   



48   Computability simple (for real) 
 

Written by Gabriel R. 

2.4.21 First Recursion Theorem 

 

Definition 

 

 

 

 

 

What does it mean 

Prerequisites: the definitions of functionals and fixed points given here. 

This is also called “Kleene’s First Recursion Theorem” or Fixed-point theorem (of recursion theory). The 

Cutland Computability book specifies it is used to give “meaning” to programs, computing a recursive 

program, ensuring implementing the program will be defined rigorously over its inputs in a correct way. 

The theorem above implies the closure of the set of computable functions with respect to extremely 

general forms of recursion. 

Why do we care 

This theorem allows us to characterize a program, considering a fixed point, with a single index. This index 

succinctly represents the entire set through a computable function. In practical terms, this means having a 

single program that encapsulates the entire problem definition or a specific exercise. 

The function recursively defined are always computable as a consequence of this one.  

How to use it 

While the practical application might not be directly evident, the theoretical understanding gained from 

this theorem is foundational. It serves as a crucial tool in proving the existence of a single program that 

precisely defines an entire problem or exercise. This program is not just a static solution but is defined 

recursively on itself, making it computable. 

In essence, understanding and applying Kleene's First Recursion Theorem is fundamental for asserting that 

"there exists a single program that clearly defines the whole problem definition" and that "it is defined 

recursively on itself," thus ensuring its computability. 

This is used only as a theoretical result to understand the following theorem. No more, no less. 
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2.4.22 Second Recursion Theorem 

 

Definition 

 

 

What does it mean 

Imagine you have a total computable function, let's call it 𝑓, which takes natural numbers as inputs and 

produces natural numbers as outputs. The theorem asserts that there exists a program, denoted as 𝑒0, such 

that when this program is applied to its own code, it computes the same function as 𝑓. 

In other words, there's a program that, when executed, transforms itself into another program (denoted as 

𝜙𝑒0) that computes the exact same function as the original function 𝑓. The key here is that the program is 

changed during this transformation, but the function it computes remains the same. 

The theorem emphasizes that this transformation is not just about making an identical copy of the original 

program. Even if two programs compute the same thing (they have the same input-output behavior), the 

Second Recursion Theorem tells us that they can be transformed into each other while still computing the 

same function. This property holds true even when the function 𝑓 is not extensional, meaning it doesn't 

depend on the specific representations of its programs. 

How to use it 

There is a dedicated category of exercises on this explained fairly well what do precisely here.  

Basically, we use a single index to prove there is a fixed point and the whole set will respect on that 

function the overall definition. I think intuitively is just this. 
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3 INTRODUCTION TO THE COURSE 

Course reference page: http://www.math.unipd.it/~baldan/Computability 

(This lesson is based on the only set of slides of the course, available as “Intro-en.pdf”) 

We start by a simple reflection; can we give the enumeration of all numbers and store them efficiently? A 

suggestion might be, “rather than the phone number itself, you might store a program that generates the 

number”. So, instead of 0123456789…. We can write 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 39 𝑑𝑜 𝑝𝑟𝑖𝑛𝑡 (𝑖 𝑚𝑜𝑑 10) 

It isn’t convenient; there are numbers 𝑛 such that, for all program P generating n, 𝑠𝑖𝑧𝑒(𝑛) ≤ 𝑠𝑖𝑧𝑒 (𝑃). 

These are defined as random numbers; we observe there are an infinite number of them. There is no 

program capable of determining whether a number is random or not, because such a program does not 

exist. 

Exercise (coming from the 8th slide – solution of this exercise made at the end of the course and present 

here; in any case, see it after having at least a grasp of everything, like 100% completion of the course):  

1) Prove that there are infinitely many random numbers 

2) Prove there is no program able whether a number is random or not 

Notes on the previous: 

What we do know is that not all problems are not solvable by a computer, because of power constraints 

and limitations of machines, e.g. the halting problem and the program correctness (it’s impossible for even 

simple specifications). A natural question we naturally ask: “Which problems can we solve by a computer / 

by an effective procedure?”. Some problems are intrinsically theoretical, so they are completely 

independent from the underlying computation model.  

Other specific questions: 

- What is an effective procedure? 

o Maybe the simple program can do the job, but we must prove it formally 

- What does it mean that a problem is solved by an effective procedure? 

- Characterize the problems that can and those that cannot be solved 

o Problems that are not always binary 

- Relating unsolvable problem (degree of unsolvability) 

We tend to classify solvable/unsolvable problems without limitations on the use of resources (memory and 

time). For example, the complexity theory, considering the resources and classifying solvable problems in 

an hierarchy according to their “difficulty”.  

  

http://www.math.unipd.it/~baldan/Computability
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Computability theory is a branch of computer science and mathematics that explores the theoretical limits 

of computation, this well before its proper birth. It revolves around the concept of decidability and 

undecidability, focusing on what can and cannot be computed algorithmically.  

So, computer science may be described as “the ability of building and using tools, according to some 

(codified) procedure, is a distinctive feature of human beings”. It depends on “how we use the tools and 

what we find out when we do”, according to Dijkstra. 

We don’t tend to think meaningfully always, but to think according to patterns, because there is a general 

combinatoric procedure to find all truths, reasoning and deriving consequences from a set of premises.  

Thing is, it doesn’t depend on the language, but we can try to represent things abstractly as a set of 

customized symbols (creating laws or languages), compute them logically (arithmetically) without 

contradiction and evaluating problems with procedures, to avoid controversies of decidability and 

solvability as criteria (Leibniz, Boole, Lullus and others) using logic as the main foundation. 

Others posed the need of an artificial language, formally with syntactic and manipulation rules that can be 

programmed via variables and statements.  

Using cases like Russell’s paradox, we can use the same tools we already have to contradict ourselves and 

pushing further, even finding new meanings, possibly having a consistent system, where it proves itself as 

correct solidly (Hilbert). Many times, this observation led to creation of special-purpose machines, able to 

compute a specific class of problems. 

We might try to take problems considering a small set of rules, which may not be always complete or prove 

the consistency of the theory (Godel). There may be a machine which computes a problem given a 

computable function and the same language, given a specific input and an output (Turing).  

We may express a universal machine to make any kind of calculation, storing the result of operations 

(memory) and solving problem discretely (Von Neumann).  

Other things: 

- On Moodle there are unofficial notes 

- There are the exercises with solutions 

o note for the reader: the exercises, sadly, are not in order of difficulty 

- There will be tutoring activities for this course 

o thank God, you will see more later why :D 

o in this section, you can also find some recordings of tutorings 
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4 ALGORITHMS, EFFECTIVE PROCEDURES, NON-COMPUTABLE FUNCTIONS 

An effective procedure it’s just a sequence of elementary steps which are describing a procedure intended 

to solve a problem (reaching some objective mechanically), transforming some input into some output.  

We can see an algorithm as a black box of sort: 

 

 

 

If this is deterministic, we can mathematically describe a function 𝑓: {𝑖𝑛𝑝𝑢𝑡𝑠} → {𝑜𝑢𝑡𝑝𝑢𝑡𝑠}, where each 

possible input will uniquely determine the corresponding output (we will see later this happens on partial 

functions, so maps between two sets 𝑋 and 𝑌 that may not be defined on the entire set 𝑋; an example 

might be the square root, where not all real numbers have real square roots so we can compute it but not 

always solve it). 

A function 𝑓 is computable if there exists an algorithm such that the induced function is 𝑓 (so 𝑓 is the 

function computed if 𝑓 is effectively computable). It’s important to note the algorithm that computer 𝑓 

must exist. 

We informally expect some functions to be computable, given the definition above, such as: 

- 𝐺𝐶𝐷(𝑥, 𝑦) = 𝑔𝑟𝑒𝑎𝑡𝑒𝑠𝑡 𝑐𝑜𝑚𝑚𝑜𝑛 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 (𝐸𝑢𝑐𝑙𝑖𝑑′𝑠 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚) 

- 𝑓(𝑛) = {
1, 𝑛 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

- 𝑔(𝑛) = 𝑝𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑝𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛
𝑡ℎ 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 (eventually an n-th prime will be found) 

- ℎ(𝑛) = 𝑛𝑡ℎ𝑑𝑖𝑔𝑖𝑡 𝑖𝑛 𝜋 

o this is a series that converge to 𝜋 and we work with techniques to allow rounding the error, 

such as truncating the series or rounding the computation 

Let’s give an interesting example: 

- 𝑓(𝑛) = {
1, 𝑖𝑓 𝑖𝑛 𝜋 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑛 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 5′𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

o 𝑒𝑥𝑎𝑚𝑝𝑙𝑒: 𝑖𝑓 𝜋 = 3.14… . 755552… 

o 𝑓(4) = 1 

o More generally, it can be written, for example as 𝑔(3) = 1 𝑖𝑓𝑓 𝜋 = 3.14… 𝑖555𝑗… 𝑖, 𝑗 ≠ 5 

▪ (where iff means “if and only if”) 

The naïve idea of this last one is: 

- compute all the digits of 𝜋 

- check if there are 𝑛 digits of 5 in a row  

This, however, is not an algorithm, because we can’t exclude entirely the generation on 𝑛 5′𝑠 at some 

point.  

Since 𝜋’s decimal expansion is non-repeating and doesn't follow a simple pattern, we cannot guarantee 

that the algorithm won't eventually find the desired sequence of 𝑛 5's (given 𝜋 is an irrational number), so 

we may run it indefinitely and will eventually become infeasible, because we have no way of returning 0. 
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Is this function computable? In the case of this one, we don't have an effective procedure known to us to 

determine whether it's computable or not (hence, it’s not an effective procedure). The fact that we can't 

exclude the existence of an effective procedure doesn't mean the function is computable, but it also 

doesn't definitively prove that it is computable. 

Let’s consider now a slightly different example, for a function 𝑔:𝑁 → 𝑁: 

- 𝑔(𝑛) = {
1,  𝑖𝑓 𝜋 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑛 𝑑𝑖𝑔𝑖𝑡𝑠 5 𝑖𝑛 𝑎 𝑟𝑜𝑤
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

o 𝑖𝑓 𝜋 = 3.14…755552… 

o We deduce that, somehow, we will reach 1 as constant substituting the values 

▪ 𝑔(4) = 1, 𝑔(3) = 1, 𝑔(2) = 1, 𝑔(1) = 1, 𝑔(0) = 0 

o More generally: 

▪ 𝑖𝑓 𝑔(𝑛) = 1 𝑡ℎ𝑒𝑛 𝑔(𝑚) = 1, ∀𝑚 ≤ 𝑛,  

Consider 𝐾 = sup{𝑛 | 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑛 𝑑𝑖𝑔𝑖𝑡𝑠 5 𝑖𝑛 𝑎 𝑟𝑜𝑤 𝑖𝑛 𝜋} 

We then have two possibilities (with plot of the functions reported here, given its quite simple shape): 

- 𝐾 𝑓𝑖𝑛𝑖𝑡𝑒, 𝑠𝑜 𝑔(𝑛) = {
1,  𝑖𝑓 𝑛 ≤ 𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

 

- 𝐾 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒, 𝑠𝑜 𝑔(𝑛) = 1, ∀𝑛 ∈ 𝑁 

 

 

 

 

This implies the function is computable, because it behaves regularly (step function, so either 1 or 0, or just 

a constant function, so they can be computed by simple programs). Even though we won’t know the exact 

shape of the function, this way we proved it’s computable (the function shape is irrelevant in knowing 

which program will compute the function, but if finite, they can be a simple tool to see it). 

Can we use the same argument for 𝑓? 

𝑓(𝑛) = {
1,  𝑖𝑓 𝑖𝑛 𝜋 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑛 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 5′𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Let 𝐴 = {𝑛 | 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑛 𝑑𝑖𝑔𝑖𝑡𝑠 5 𝑖𝑛 𝑎 𝑟𝑜𝑤 𝑖𝑛 𝜋} 

and take: 
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Problem is, 𝑓(𝑛) is not computable in the slightest, because the set 𝐴 is possibly infinite and there is no 

such a thing as a finite representation for it (in the notes, it’s also present an example of a function 𝐺:𝑁 →

𝑁 which is 1 𝑖𝑓 𝑃 = 𝑁𝑃, 0 otherwise; since the condition does not depend on the variable, it can have 

either way 1 or 0 as value, so the function 𝐺 remains computable, but if posed inside the set 𝐴 would be 

equally incomputable). 

4.1 EXISTENCE OF NON-COMPUTABLE FUNCTIONS 
 

This poses the question for the existence of non-computable functions, because it suggests 𝑓(𝑛) is 

computable, because the set is possibly infinite, so we can’t provide a finite representation. 

A good algorithm should satisfy the following characteristics which can be ideally implemented in a 

theoretical machine we call computational model, this way being considered effective: 

- it has a finite length 

- there exists a computing agent able to execute the algorithm instructions 

o this agent has a memory to store the input, results and steps and it is unbounded 

▪ even if the algorithm will be finite, we assume it is unbounded for the sake of 

analyzing if it’s computable or not (large, but never using the full space) 

▪ this way, we will be able to define algorithms working on any possible input and 

there is no limit on the memory that can be used 

o the computation consists in discrete steps, not probabilistic or not-deterministic 

o finite limit to number of instructions and the power of their complexity 

▪ this way representing a finite machine 

- the computation can  

o terminate in a finite yet unbounded number of steps → output 

o diverge (never terminate) → no output 

Let’s recall the math notation needed to understand the subsequent inference of non-computable 

functions for every “effective” computational model.  

- ℕ = {0,1,2… } set of natural numbers (so finite and always with a successor) 

- 𝐴 𝑥 𝐵 = {(𝑎, 𝑏) | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} as Cartesian product (combine two sets to create an ordered one) 

o We will write, having 𝐴 set, 𝐴𝑛 = 𝐴 𝑥 𝐴 𝑥 𝐴…𝑥 𝐴 (𝑛 𝑡𝑖𝑚𝑒𝑠) 

 

- binary relation or predicate as 𝑟 ⊆ 𝐴 𝑥 𝐵 

 

 

- 𝑓 ∶ 𝐴 → 𝐵, the partial function, special relation 𝑓 ⊆ 𝐴 𝑥 𝐵 such that  

∀𝑎 ∈ 𝐴, ∀𝑏, 𝑏′ ∈ 𝐵, (𝑎, 𝑏), (𝑎, 𝑏′) ∈ 𝑓 → 𝑏 = 𝑏′ 

 

 

 

o 𝑑𝑜𝑚(𝑓) = {𝑎 |∃𝑏 ∈ 𝐵, (𝑎, 𝑏) ∈ 𝐹} 

o We write 𝑓(𝑎) ↓ 𝑓𝑜𝑟 𝑎 ∈ 𝑑𝑜𝑚(𝐹) 𝑎𝑛𝑑 𝑓(𝑎) ↑ 𝑓𝑜𝑟 𝑎 ∉ 𝑑𝑜𝑚(𝑓) 
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- In words, we essentially say it’s a mathematical relationship that associates elements from a set 

𝐴 to elements in a set 𝐵, but it may not be defined for all elements in 𝐴 (for example, not all pairs) 

 

- When you apply the partial function to an element 𝑎 in its domain, you write 𝑓(𝑎) ↓ to indicate 

that the function is defined and yields a result. Conversely, if you try to apply the function to an 

element 𝑎 outside its domain, you write 𝑓(𝑎) ↑ to signify that the function is undefined for that 

input. 

Given a set 𝐴, we indicate with |𝐴| the cardinality (number of elements), then we define, for sets 𝐴 and 𝐵: 

- |𝐴| = |𝐵| 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑓: 𝐴 → 𝐵 bijective (unique and complete mapping) 

 

 

 

 

- |𝐴| ≤ 𝐵 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑓: 𝐴 → 𝐵 injective (no two different inputs map to the same output) 

 

 

 

- equivalently, if there is a surjection 𝑔: 𝐵 → 𝐴 (covering the entire codomain – all possible outputs)  

 

 

 

Observe also that if 𝐴 ⊆ 𝐵, |𝐴| ≤ |𝐵|, having injectivity in between. 

- 𝐴 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒 (𝑑𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑏𝑙𝑒), |𝐴| ≤ ℕ, ℎ𝑎𝑣𝑖𝑛𝑔 𝑎 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓:ℕ → 𝐴 (listing all the 

elements one after the other) 

 

 

- 𝐼𝑓 𝐴, 𝐵 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒 → 𝐴 𝑥 𝐵 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒 

- A countable union of countable sets is countable: 𝐴0, 𝐴1, 𝐴2 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒 𝑠𝑒𝑡𝑠 → ⋃ 𝐴𝑖 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒𝑖∈𝑁  
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Idea (just to visualize the whole thing, place the elements in a matrix and enumerate them in diagonals): 

 

 

 

 

 

 

 

 

 

This so called “dove tail enumeration” means systematically listing all functions from 𝐴 to 𝐵: 

• Begin by listing the element at position (0, 0) in the matrix, which is the function that maps 𝑎0 

to 𝑏0. 

• Then, move along the diagonals of the matrix, listing the elements in order  

Let’s come back to the existence of non-computable functions: we focus on unary function over the natural 

numbers (function that takes a single argument or input variable and produces a single output):  

ℱ = {𝑓 | 𝑓: ℕ → ℕ}   𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑢𝑛𝑎𝑟𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 ℕ 

We then fix a model of computation, which then induces a set of algorithms, for example a set 𝐴 of all 

algorithms inside of it. Given an algorithm 𝐴 ∈ 𝒜, we compute a function 𝑓𝐴 ∶ ℕ → ℕ, which is said to be 

computable in our model if there exists an algorithm that computes it. 

Hence, we define functions computable in 𝐴 like:  

ℱ𝒜 = {𝑓 | 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝐴 ∈ 𝒜 𝑠. 𝑡. 𝐹𝐴 = ℱ} = {𝐹𝐴 | 𝐴 ∈ 𝒜} 

Clearly we have ℱ𝒜 ⊆ ℱ. Is this inclusion strict? (so,                        , which means (is there a non-computable 

function?) 

The answer is yes, because the algorithms are too few to compute all the functions, so they must be 

countable in some way, hence by logical closure computable.  

By assumption, an algorithm is a finite sequence of instructions from an instruction set 𝐼, which we assume 

finite. We can interpret all of this as a big union of finite algorithms. 

𝒜 = 𝐼 ∪ 𝐼 𝑥 𝐼 ∪ 𝐼 𝑥 𝐼 𝑥 𝐼 ∪ … = ⋃ 𝐼𝑛𝑖≥1,𝑖∈𝑁  (countable union of countable sets → countable) 

Given |𝒜| ≤ ℕ and since we have 𝒜 → ℱ𝒜 , 𝒜 → 𝐹𝐴 (which means it is surjective be definition), we have: 

|𝐹𝐴| ≤ |𝐴| ≤ |ℕ| 

What we say in words is this: the set of all algorithms 𝒜 in our fixed computational model and 𝐹𝐴, the set 

of computable functions are as many as the natural numbers. 
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On the other hand, the set of all functions 𝐹 is not countable. Why? Assume for the sake of contradiction 

that it is so: 

|𝐹| ≤ |𝑁| 

We can list the elements of 𝐹 like we did before (taking, with diagonalization, the main diagonal, then 

systematically changing diagonal values): 

 

 

 

 

 

 

then build a function on that, like this one: 

 

 

 

 

𝑑 is a function which is total (so, defined for every natural number) in 𝐹 so there is 𝑛 ∈ ℕ 𝑠. 𝑡.  𝑑 = 𝑓𝑛 

- 𝑖𝑓 𝑓𝑛(𝑛) ↓  𝑡ℎ𝑒𝑛 𝑑(𝑛) ↑ ≠ 𝑓𝑛(𝑛) (meaning 𝑑 is not defined at 𝑛, since 𝑓(𝑛) = 𝑓𝑛(𝑛) + 1 ≠ 𝑓𝑛(𝑛) 

and it means we are not enumerating the current function inside the natural numbers, which we 

assume we can always do since is countable; so there is the contradiction) 

- 𝑖𝑓 𝑓𝑛(𝑛) ↑  𝑡ℎ𝑒𝑛 𝑑(𝑛) = 0 ≠ 𝑓𝑛(𝑛) (again, 𝑑 not defined in 𝑛 and we do not enumerate the 

function assuming we can, hence another contradiction) 

Since 𝑑 is distinct from all the functions in the enumeration, it demonstrates that the set of all functions 𝐹 

is uncountable, because it cannot be put in one-to-one correspondence with the set of natural numbers 𝑁. 

Summing up in math notation (there are more function than natural numbers, even though finite 

algorithms are as many as natural numbers): 

ℱ 𝑛𝑜𝑡 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒, |ℱ| > |ℕ| 

ℱ𝐴 ⊆ ℱ 

|ℱ𝐴| ≤ |ℕ| ≤ |ℱ| → ℱ𝑎 ⊈ ℱ  

Note that we can’t count non-computable functions, so: 

|ℱ\ ℱ𝐴| > |ℕ| 

We conclude that: 

- no computational model can compute all functions 

- there are more non-computable than computable functions 
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5 URM COMPUTABILITY 

To give a good notion of computability, we must choose a good model of computation, inducing a class of 

algorithms and computable functions. There can be: 

- Turing Machines (finite-state control, reading, writing, initial/final configuration) 

- 𝜆-calculus (a design of programming where one designs/applies functions based on primitives) 

- Partial recursive functions (functions calculated with specific function that build partially) 

- Canonical deduction systems (system used to create proofs logically via connectives and trees)  

- URM (Unlimited Register Machines) 

Whatever the model, we may concern if a specific theory may be valid for the specific model. 

According to the Church-Turing thesis, a function is computable by an effective procedure if and only if it’s 

computable by a Turing machine (we resort to this to shorten the proof that a certain function is 

computable and it’s used informally as notion of effectiveness, then must be supported by evidence). This 

says that a function if computationally robust and we can choose whatever model one likes. 

The notion of computable function will be formalized by using the URM-machine, abstraction based on the 

Von Neumann’s model. It has many characteristics: 

- memory is unbounded, using an infinite number of registers storing each a natural number (where a 

sequence of registers is called configuration); 

 

 

 

 

- it executes a program, based on a finite list of instructions (and a computing agent able to execute 

it); 

 

 

- it has arithmetic instructions, characterized by the fact that the instruction to be executed in the 

next step is the one following the current instruction in the program. They are: 

o zero 𝑍(𝑛), which sets the content of register 𝑅𝑛 to zero: 𝑟𝑛 ← 0 

o successor 𝑆(𝑛), which increments by 1 the content of register 𝑅𝑛: 𝑟𝑛 ← 𝑟𝑛 + 1 

o transfer 𝑇(𝑚, 𝑛), which transfers the content of register 𝑅𝑚 into 𝑅𝑛, which 𝑅𝑚 staying 

untouched: 𝑟𝑛 ← 𝑟𝑚 

o conditional jump: 𝐽(𝑚, 𝑛, 𝑡), which compares the content of register 𝑅𝑚 and 𝑅𝑛, so: 

▪ if 𝑟𝑚 = 𝑟𝑛 then jumps to 𝐼𝑡 (jumps to 𝑡-th instruction) 

▪ otherwise, it will continue with the next instruction 
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The computation: 

- starts from an initial configuration of registers and executes 𝐼1 

- terminates if 

o the instruction to be executed does not exist 

o it’s the last instruction 

o you jump out of the program yourself 

An example might be the following one: 

 

 

 

 

 

 

In LaTeX form, to not kill your eyes that much, coming from the notes: 

 

As we’re using the Church-Turing thesis, we’re defining a machine, so we must describe which states it has: 

there is a register configuration 𝑐, taking the register content and index the next instruction via a program 

counter 𝑡. Also, operational semantics can be defined via < 𝑐, 𝑡 >. 

A computation can possibly diverge (not terminate); consider for instance this program: 

𝐼1: 𝑆(1) 

 𝐼2: 𝐽(1,1,1) 

 

Let 𝑃 be an 𝑈𝑅𝑀 program. Given a sequence of natural numbers 𝑎1, 𝑎2, … . ∈ ℕ, 𝑃(𝑎1, 𝑎2, … ) indicates the 

computation of 𝑃 from (𝑎1, 𝑎2, … ): 

 

 

- 𝑃(𝑎1, 𝑎2, … ) ↓ if the computation eventually terminates (halts) 

- 𝑃(𝑎1, 𝑎2, … ) ↑ if the computation diverges (never halts) 

We work on computations that start from an initial configuration where only a finite number of registers 

contain a non-zero value. So, given 𝑎1, … 𝑎𝑘 ∈ ℕ, 𝑃(𝑎1, … 𝑎𝑘) denotes 𝑃(𝑎1, … 𝑎𝑘) for 𝑃(𝑎1, … 𝑎𝑘 , 0, … . 0). 
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The notation then extends to the previous ones, stating that at the end of a program we will have a valid 

value → 𝑃(𝑎1, … 𝑎𝑘) ↓ 𝑎 for 𝑃(𝑎1, , … 𝑎𝑘) ↓ 𝑎 and in final configuration 𝑟1 = 𝑎. 

5.1 URM-COMPUTABLE FUNCTIONS AND EXAMPLES 
 

For URM-computable functions, given a function 𝑓:ℕ𝑘 → ℕ (possibly partial), we say is URM-computable if 

there is a 𝑈𝑅𝑀 program 𝑃 such that, ∀(𝑎1, . . 𝑎𝑘) ∈ ℕ
𝑘  , ∀𝑎 ∈ ℕ, 𝑃(𝑎1, … 𝑎𝑘) ↓ 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 (𝑎1, … 𝑎𝑘) ∈

𝑑𝑜𝑚(𝑓) and 𝑓(𝑎1, … 𝑎𝑘) = 𝑎.  

In words, for any input tuple of natural numbers, if you run the URM program on this input it will eventually 

have a result equal to the output of the function for input. This way, 𝑃 computes 𝑓. 

We then define, 𝒞𝑘 = {𝑓 |𝑓: ℕ𝑘 → ℕ 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 (𝑈𝑅𝑀)} as the classes of computable functions. 

Therefore 𝒞 = ⋃ 𝐶𝑘𝑘≥1  is the union of all of them.   

We next list some examples of URM-computable functions, providing the corresponding programs: 

 

 

Idea: Incrementing 𝑅1 and 𝑅3 until 𝑅2 𝑎𝑛𝑑 𝑅3 contain the same value, resulting in adding to 𝑅1 the content 

of 𝑅2. Specifically: 

 

 

 

 

 

Now, let's analyze how this program works: 

• If 𝑥 = 0, it will jump to instruction 8, which presumably indicates the end of the program. 

• If 𝑥 = 1, it will go through instructions 2, 3, and 7, effectively setting 𝑅1(𝑥) to 0. 

• If 𝑥 > 1, it will go through instructions 2, 3, 4, 5, 6, and 7, effectively setting 𝑅1(𝑥) to 𝑥 −  1. 
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The core concept behind this program is to continually subtract from the input value, considering the 

partial nature of the function. This means that the program might not always terminate, even if the 

function is computable, or it might terminate when the function is not computable. 

In this specific example, the program checks if two values are equal; if they are, it jumps to a different 

instruction. If they are not equal, it subtracts one from the value. This subtraction continues until there is 

memory available for further operations. 

Courtesy of notes (slightly different, but same example): 

 

Let’s consider a different function: 

 

  



62   Computability simple (for real) 
 

Written by Gabriel R. 

The function behaves as follows: 

• If the input number 𝑥 is even, the function returns half of 𝑥 (store an increasing even number in 𝑅2 

then storing its’ half in 𝑅3) 

• If the input number 𝑥 is odd, the function does not terminate (indicated by the symbol ↑). 

The program continues executing these instructions in a loop. If the initial input 𝑥 is even, it will eventually 

reach a point where 𝑅1(𝑥) equals the even number in 𝑅2, and it will jump to instruction 6, halving the input 

𝑥. If 𝑥 is initially odd, the program keeps increasing the even number in 𝑅2, and it never reaches the halting 

condition, resulting in a non-termination, as indicated by ↑ . 

 

 

 

 

 

Given a program 𝑃, for some fixed number of parameters 𝑘 ≥ 1, there exists a unique function computed 

by 𝑃 that we denote as follows as 𝑓𝑝
𝑘: ℕ𝑘 → ℕ. More precisely: 

 

 

In words: given a fixed number of parameters, the program halts if there is a final character of 

computation, otherwise the function will terminate when the program terminates. Remember: 

- a program terminates or not, a function is defined or not. A function is not computing, only the 

program does (they are correlated, of course).  

- the same function can be computed via different algorithms, which means different problems 

Question: given 𝑓:ℕ𝑘 → ℕ how many computing are there computing 𝐹? 

Answer: We can have infinitely many if and the only if the function is computable; so, 0 or infinitely many 

5.2 EXERCISES 
 

Exercise 

Consider 𝑈𝑅𝑀−, class of URM machines without transfer instructions (so, no 𝑇(𝑚, 𝑛)). We indicate 𝐶− the 

class of URM computable functions. How does 𝐶− compare to 𝐶? (in math notation, 𝐶 = 𝐶−) 

(Thoughts) 

We can use 𝑇(𝑚, 𝑛) as we can zero in and increment the register 𝑚 until it reaches 𝑛. 

The idea is: 

𝑍(𝑛)   

𝐿𝑂𝑂𝑃: 𝐽(𝑚, 𝑛, 𝐷𝑂𝑁𝐸) (if the registers are equal, it exits the loop) 

𝑆(𝑛)  
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𝐽(1,1, 𝐿𝑂𝑂𝑃) (back the program to the loop beginning) 

In plain terms, this program aims to achieve a similar effect as the transfer instruction 𝑇(𝑚, 𝑛) by 

repeatedly incrementing the value in register 𝑅𝑛 until it matches the value in register 𝑅𝑚. Once they are 

equal, it exits the loop. 

Proof 

We show that 𝐶− = 𝐶. Let 𝑓:ℕ𝑘 → ℕ computable in 𝑈𝑅𝑀− 𝑓 ∈ 𝐶− i.e. there is 𝑃 in 𝑈𝑅𝑀−. Just observe 

that 𝑃 is also a 𝑈𝑅𝑀 program →  𝑓 ∈ 𝐶. As said in thoughts, ideally we replace the transfer instruction 

𝑇(𝑚, 𝑛) as the 𝑡 − 𝑡ℎ step with the previous subroutine: 

 

 

 

Let then 𝑓 ∈ 𝐶, 𝑓:ℕ𝑘 → ℕ. Hence there is a URM program 𝑃 such that 𝑓 = 𝑓𝑝
𝑘.  

We show there exists 𝑃− 𝑈𝑅𝑀− machine such that 𝑓𝑝′
𝑘 = 𝑓𝑝

𝑘.  

Remember: We’re assuming 𝑃 is well formed: if it terminates, it will at instruction 𝑛 + 1. 

We proceed by induction on ℎ, which is the number of transfer instructions 𝑇(𝑚, 𝑛) in 𝑃. We can assume, 

without loss of generality, that when a program halts it does so at the index of the last instruction plus one 

(induction logic at its core, in words). 

- ℎ = 0: trivial, as 𝑃 with no transfer instructions is already a 𝑈𝑅𝑀− program, hence 𝑃− = 𝑃 

- ℎ → ℎ + 1: let 𝑃 be the URM program with ℎ + 1 transfer instructions. Hence, we replace 𝑇 with a 

jump to the subroutine: 

 

 

 

 

 

 

 

 

 

We call this program 𝑃′′ which has ℎ transfer instructions and 𝑓𝑝
𝑘 = 𝑓𝑝′′

𝑘 . By inductive hypothesis there is a  

𝑃′ 𝑈𝑅𝑀− program such that 𝑓𝑝′
𝑘 = 𝑓𝑝′′

𝑘 . Putting things together:  

𝑓𝑝
𝑘 = 𝑓𝑝′′

𝑘 = 𝑓𝑝′
𝑘        𝑤𝑖𝑡ℎ 𝑃′ 𝑈𝑅𝑀− 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 

Note: for any URM-program 𝑃 there is a well-formed program 𝑃′ computing the same function. In fact: 

𝐼1, … 𝐼𝑆,   𝐽(𝑚, 𝑛, 𝑡), 𝑖𝑓 𝑡 > 𝑆, 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑖𝑡 𝑤𝑖𝑡ℎ 𝐽(𝑚, 𝑛, 𝑆 + 1) 
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In words: 

For any URM program 𝑃, you can create an equivalent well-formed program 𝑃′ that computes the same 

function. To do this, you replace any conditional jump instruction 𝐽(𝑚, 𝑛, 𝑡) where 𝑡 is greater than the 

total number of instructions (𝑆) with 𝐽(𝑚, 𝑛, 𝑆 +  1). This ensures that the program always jumps to a valid 

instruction and remains well-formed while achieving the same computational result as the original 

program. 

Exercise 

Variant 𝑈𝑅𝑀𝑠 machine where there are no traditional transfer instructions such that 𝑇(𝑚, 𝑛), but 

𝑇𝑠(𝑚, 𝑛) (swap instructions) like 𝑟𝑚 ⇔ 𝑟𝑛 to exchange context of registers.  

How does 𝐶𝑠 compare to 𝐶? (is 𝐶𝑠 = 𝐶? )  

My take on the proof 

Let us prove 𝐶𝑠 ⊆ 𝐶. We can replace the swap instructions with a few transfer instructions, formalizing 

how 𝑇𝑠(𝑚, 𝑛) can be encoded in means of the routine. We can explain this in terms of how a swap 

instruction works in programming: we allocate a new register/new variable, we assign the variable to save 

to the new variable, then the new variable will get assigned to the second variable.  

So, we create something like: 

𝑇(𝑛, 𝑛𝑒𝑤) 

𝑇(𝑚, 𝑛) 

𝐽(𝑛𝑒𝑤,𝑚) 

Formally, having a function 𝑓 ∈ 𝐶𝑆, 𝑓: ℕ → ℕ, we have a program 𝑃 as a 𝑈𝑅𝑀𝑆 program such that 𝑓𝑝′
𝑘 =

𝑓𝑝
𝑘. Proceeding by induction: 

- ℎ = 0, the program is already a URM program and 𝑃′ = 𝑃 (such as before) 

- ℎ → ℎ + 1, where the program, by injection, must have at least some transfer instructions to 

realize how a swap works. So, if 𝑓𝑝′
𝑘 = 𝑓𝑝

𝑘 only if this program uses both 𝑈𝑅𝑀 and 𝑈𝑅𝑀𝑆 

instructions (the swap can’t be explained otherwise, and we need this statement to make this work 

correctly).  

o This way we can prove that with the (ℎ + 1)𝑡ℎ swap, will have at least ℎ swap instructions, 

given the swap will be given via a jump instruction reaching the transfer instructions, hence 

creating the swap. 

o Inductively, there exists a 𝑈𝑅𝑀 program 𝑃1 𝑠. 𝑡. 𝑓𝑝1
𝑘 = 𝑓𝑝

𝑘 for 𝑃1 and 𝑃2, concluding 𝑓𝑝1
𝑘 =

𝑓𝑝
𝑘 for 𝑃1 having ℎ + 1 swaps recursively 
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Exercise 

Consider 𝑈𝑅𝑀−− without jump (where the apex indicates “minus minus”). How does 𝐶−− compare with 𝐶? 

(is 𝐶−− = 𝐶?). [To note: it’s difficult, but one can start characterizing the shape of the functions in 𝐶−−] 

My take on the proof 

Let us prove 𝐶−− ⊆ 𝐶. As said from the hint, we can characterize the shape of functions inside of it. We 

first observe that 𝐶−−  is strictly contained in C, since there are total computable functions in C that cannot 

be computed by a 𝑈𝑅𝑀−− machine due to the lack of jumps. 

If we try to think logically, we have zero, transfer, successor as the available functions. This means this 

function is strictly linear and can only perform execution as a fixed sequence of inputs, potentially up until a 

constant number of operations. This says they always terminate, so we can have: 

𝑓(𝑥) = 𝑐 

Or also (having 𝑐 as the constant we were discussing above, which will be inside 𝑁): 

𝑓(𝑥) = 𝑥 + 𝑐 

This can be proven by induction, but operating with something that makes the computation possible. In this 

case, it should be something with a number, just to prove 𝑥 can come out of it. So, recursively it must 

recreate the shape of 𝑥 + 𝑐. We will use a register 𝑟1 describing the execution of a given number of steps, 

say 𝑠, so (𝑠, 𝑥) is equal to 𝑥 + 𝑐. 

- ℎ = 0, we have 𝑟1(0, 𝑥) = 𝑥, fine because with 𝑐 = 0 the base case is trivial, having already 𝑓(𝑥) =

𝑐 or 𝑓(𝑥) + 𝑐 which will turn it 0 as 𝑓(𝑥) alone 

 

- ℎ → ℎ + 1, so in this case the only thing this can do is the other three functions: 

 

o 𝑍(𝑛), concluding trivially because the next step, 𝑟1(𝑠 + 1, 𝑥) = 𝑟1(ℎ, 𝑥) having 𝑥 = 0 fr 𝑛 =

1 and we conclude we’re inside and this is hence respected. When 𝑛 = 1, infact, the 

operation resets to 0 and the function will keep its form 

 

o 𝑆(𝑛), so 𝑟1(𝑠 + 1, 𝑥) will allow us to get the sum of the instruction, given 𝑟1(𝑠 + 1, 𝑥) =

𝑟1(𝑠 + 𝑥), again concluding by inductive hypothesis. This way the function will have its 

expanded form 𝑓(𝑥) = 𝑥 + 𝑐, because we continuously sum  

 

o 𝑇(𝑚, 𝑛); this is uncertain because the function depends on two values this time around, 

𝑚, 𝑛; when they are different from each other, the result way be unknown (one can be 1, 

the other we can’t know for sure, making the underlying function assume shapes 

unknown.) 

 

▪ When 𝑛 > 1 (or 𝑛,𝑚 equal) we will know 𝑟1(𝑠 + 1, 𝑥) = 𝑟1(𝑠, 𝑥) will do exactly the 

transfer of 𝑥 steps; otherwise, if 𝑚 > 1, we won’t know what happen for sure, it 

can jump many instructions 

 

▪ The proof goes well if we assume we have exactly 𝑠 steps, so the function for 𝑐 or 

even 𝑐 + 𝑥 can go exactly linearly assuming we will execute exactly only that 

number of steps. This happens because we will keep inside the function 

𝑓(𝑥) = 𝑥 + 𝑐 
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Let’s give the official solution to the previous exercises: 

- 𝑈𝑅𝑀𝑠, where we replace the transfer instruction (𝑇(𝑚, 𝑛)) with the swap one (𝑇𝑠(𝑚, 𝑛)). 

Proof 

We want to prove the two sets are equal. 

- (Case 𝐶 ⊆ 𝐶𝑠) 

Given 𝑓 ∈ 𝐶, 𝑓:𝑁𝑘 → 𝑁, 𝑠𝑜 𝑓 ∈ 𝐶𝑠. 

If 𝑓 ∈ 𝐶 then there is a program 𝑃 𝑈𝑅𝑀 program 𝑠. 𝑡. 𝑓𝑝
𝑘 = 𝑓. We know that there is 𝑃′ 𝑈𝑅𝑀 program 

without 𝑇 instructions 𝑠. 𝑡. 𝑓𝑝′
𝑘 = 𝑓𝑝

𝑘. But 𝑃′ is also a 𝑈𝑅𝑀𝑠-machine program. 

In this case, so 𝑓𝑝
′𝑘 = 𝑓𝑝

𝑘 = 𝑓 ∈ 𝐶𝑠. 

- (Case 𝐶𝑠 ⊆ 𝐶) 

Take 𝑓:𝑁𝑘 → 𝑁, 𝑓 ∈ 𝐶𝑠 and let 𝑃 a 𝑈𝑅𝑀𝑠 program 𝑠. 𝑡. 𝑓 = 𝑓𝑝
𝑘. We want to “transform” 𝑃 into a 𝑈𝑅𝑀 

program 𝑃′𝑠. 𝑡. 𝑓𝑝
′𝑘 = 𝑓𝑝

𝑘. 

So, the instruction 𝑇𝑠(𝑚, 𝑛) can be encoded in a new subroutine, using 𝑖 which is something new and not 

used by the program. So: 

 

 

 

𝑇𝑠(𝑚, 𝑛) is replaced with: 

1. 𝑇(𝑚, 𝑖): This moves the value at location 𝑚 to a new, unused location 𝑖. 

2. 𝑇(𝑛,𝑚): This swaps the value at location 𝑛 with the value at location 𝑚, performing the swap. 

3. 𝑇(𝑖,𝑚): Finally, it restores the original value at location m to the new location 𝑖. 

A 𝑈𝑅𝑀𝑠 program 𝑃 can be transformed into a 𝑈𝑅𝑀-program 𝑃′ 𝑠. 𝑡. 𝑓𝑝
𝑘 = 𝑓𝑝

′𝑘. We proceed by induction 

on ℎ, which is the number of 𝑇𝑠 instructions in 𝑃. 

- (ℎ = 0) → 𝑃 is already a 𝑈𝑅𝑀 program, take 𝑃′ = 𝑃 

 

- (ℎ → ℎ + 1) → Let 𝑃 has (ℎ + 1) 𝑇𝑠 instructions. The program can be seen as: 
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To complete the proof, we need: 

- 𝑃 always terminates (if it does) at time 𝑠 + 1 

- 𝑖 = max ({𝑛 |𝑅𝑛 is used in 𝑃} ∪ {𝑘}) + 1 

o This equation calculates the maximum of two sets: the set of registers used in program 𝑃 

and the set 𝑘. The purpose of this is to ensure that the value of 𝑖 is chosen to be greater 

than any register used in the program 𝑃. 

Then, 𝑓𝑝
′𝑘 = 𝑓𝑝

𝑘 and 𝑃′′ has ℎ 𝑇𝑠 instructions (hence, they compute the same instruction). Hence, by 

inductive hypothesis, there is a 𝑈𝑅𝑀 program 𝑃′𝑠. 𝑡. 𝑓𝑝
′𝑘 = 𝑓𝑝

′′𝑘. Thus, 𝑓 = 𝑓𝑝
𝑘 = 𝑓𝑝

′′𝑘 = 𝑓𝑝
′𝑘, 𝑖. 𝑒. 𝑓 ∈ 𝐶 

The proof is wrong: we’re using the inductive hypothesis on 𝑃′′ which is not a 𝑈𝑅𝑀𝑠-program (it contains 

both 𝑇 and 𝑇𝑠). You can make it work by proving a stronger assertion, specifically: 

“Every program 𝑃 which uses all instructions, including 𝑇 and 𝑇𝑠 can be transformed in a 𝑈𝑅𝑀-program 

𝑃′𝑠. 𝑡. 𝑓𝑝
𝑘 = 𝑓𝑝

′𝑘.” This way, using all we already know up until now, we can conclude the proof solidly (so, if 

it works for all values in induction, we can safely conclude). 

- Consider 𝑈𝑅𝑀−− without jump instructions. 𝐶−− ⊈ 𝐶 

Proof 

A 𝑈𝑅𝑀−− program has this structure, and we know it terminates after 𝑙(𝑝) = # 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑃 steps: 

 

 

 

All functions in 𝐶−− are total (defined for all possible input values from its domain), so 𝐶−− ⊈ 𝐶, e.g. 

𝑓:𝑁 → 𝑁, 𝑓(𝑥) ↑ ∀𝑥 ∈ 𝑁 (meaning it diverges for all values, because “program without jump always 

terminate”) 

𝑓 ∈ 𝐶      𝐽(1,1,1) 

𝑓 ∉ 𝐶−− 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑖𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑜𝑡𝑎𝑙 

(not sufficient to say “it uses jump” 𝐽(1,1,2) computes 𝑓(𝑥) = 𝑥 ∈ 𝐶−−; we’re basically saying this does not 

hold inside 𝐶−− because not in all cases can terminate if there’s a jump it doesn’t terminate and diverges). 

Let’s restrict the program executing to unary functions (which take one argument or input); since there is 

no jump and it was the only way to alter the control independently from the input, we will always do the 

same thing 

 

 

The shape of the functions will be either 𝑓(𝑥) = 𝑐 or 𝑓(𝑥) = 𝑥 + 𝑐, for a 𝑐 suitable constant.  

Denote 𝑟1(𝑥, 𝑘) = content of 𝑅1 after 𝑘 − 𝑠𝑡𝑒𝑝 of computation starting from 
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We prove by induction on 𝑘 that 𝑟1(𝑥, 𝑘) = 𝑐 or 𝑟1(𝑥, 𝑘) = 𝑥 + 𝑐 

- (𝑘 = 0) → 𝑟1(𝑥, 0) = 𝑥 = 𝑥 + 0, 𝑠𝑜 𝑐 = 0 → OK 

 

- (𝑘 → 𝑘 + 1) → By inductive hypothesis 𝑟1(𝑥 + 𝑘) = 𝑐 or 𝑟1(𝑥, 𝑘) = 𝑥 + 𝑐 𝑓𝑜𝑟 𝑐 ∈ ℕ 

In this case we will have only three possibilities (given the fact that we can’t jump): 

 

 

 

 

As said, three cases, so: 

1) 𝐼𝑘+1 = 𝑍(𝑛), then we have two subcases (ind. hypoth.): 

- 𝑛 = 1, 𝑟1(𝑥, 𝑘 + 1) = 0 (base case) 

- 𝑛 > 1, 𝑟1(𝑥, 𝑘 + 1) = 𝑟1(𝑥, 𝑘) → OK, by inductive hypothesis, we have zeroed correctly 

2) 𝐼𝑘+1 = 𝑆(𝑛), again two subcases: 

- 𝑛 = 1, 𝑟1(𝑥, 𝑘 + 1) = 𝑟(𝑥, 𝑘) + 1 → OK, by inductive hypothesis (successor zero and all good) 

- 𝑛 > 1, 𝑟1(𝑥, 𝑘 + 1) = 𝑟(𝑥, 𝑘) → OK, by inductive hypothesis (proceeding inductively works) 

3) 𝐼𝑘+1 = 𝑇(𝑚, 𝑛), again two subcases: 

- 𝑛 > 1 𝑜𝑟 𝑚 = 1, 𝑟1(𝑥, 𝑘 + 1) = 𝑟1(𝑥, 𝑘) → OK by inductive hypothesis 

- 𝑛 = 1 𝑎𝑛𝑑 𝑚 > 1 

In this subcase we’re lost, because transfer instructions can cause issues when trying to maintain a specific 

structure for unary functions, particularly when the transfer instructions lead to values that cannot be 

effectively controlled within the defined structure of unary functions (in other case, as seen inductively, we 

know which instruction comes next, here we don’t know it for sure). 

 

 

 

So, how do we proceed? 

Idea 1: 𝑇(𝑚, 𝑛) is “useless”. Ok, but this observation requires the jump to make it work. 

The key observation is that the same property holds for all registers: 

𝑟1(𝑥, 𝑘) = content of 𝑅𝑛 after 𝑘 steps of computation, starting from 

Show by induction on 𝑘 that for all 𝑘 
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The proof goes smoothly in this case (exercise here, so we get one input plus the constant for the specific 

function). For ℎ − 𝑎𝑟𝑦  functions: 

 

 

 

Solution (made by me, to take with a grain of salt): 

Given all these values, let’s try to solve this inductively in cases as seen until now. We have the function 

here, which will be used to compute all values and 𝑟𝑗 will store the intermediate computation value. We 

will express such function, for 𝑓(𝑥1, … 𝑥𝑛) with a new function 𝑔 that computes ℎ + 1 steps as: 

𝑓(𝑥1, … 𝑥𝑛) = 𝑔(𝑟1(𝑥𝑘), 𝑟2(𝑥𝑘),… 𝑟𝑛(𝑥𝑘)) 

where this function operates on its arguments. Let’s show this inductively: 

- 𝑘 = 0 → 𝑟𝑗(𝑥𝑗, 0) = 0 + 𝑐 = 𝑐 𝑜𝑟 𝑟𝑗(𝑥𝑗 , 0) = 𝑥𝑗 + 𝑐 

 

- 𝑘 → 𝑘 + 1, assuming that for step k, 𝑟𝑗(𝑥, 𝑘) =  𝑐 or 𝑟𝑗(𝑥, 𝑘)  =  𝑥 + 𝑐, we will now show how this 

assumption extends to step k+1. 𝑟𝑗(𝑥, 𝑘) = 𝑐 𝑜𝑟 𝑟𝑗(𝑥, 𝑘) = 𝑥 + 𝑐, we will assume 𝑟𝑗(𝑥, 𝑘 + 1) =

𝑐 𝑜𝑟 𝑟𝑗(𝑥, 𝑘 + 1) = 𝑥 + 𝑐 

 

o We introduce the function 𝑔 as  𝑓(𝑥1, . . . 𝑥𝑛)  =  𝑔(𝑟1(𝑥𝑘), 𝑟2(𝑥𝑘), . . . , 𝑟𝑛(𝑥𝑘) to represent 

the inductive computation. We will consider all the subcases as before, given the 

instruction 𝐼𝑘+1 for 𝑔 and for a suitable constant 𝑐: 

 

▪ 𝑍(𝑛) 

• 𝑛 = 1, 𝑟𝑗(𝑥, 𝑘 + 1) = 0, 𝑔(𝑟1(𝑥)) → 𝑂𝐾 

• 𝑛 > 1, 𝑟𝑗(𝑥, 𝑘 + 1) = 𝑟𝑗(𝑥, 𝑘), 𝑔(𝑟1(𝑥, 𝑘)) → 𝑂𝐾 

▪ 𝑆(𝑛) 

• 𝑛 = 1, 𝑟𝑗(𝑥, 𝑘 + 1) = 𝑟𝑗(𝑥, 𝑘) + 1, 𝑔(𝑟1(𝑥, 𝑘 + 1) → 𝑂𝐾 

• 𝑛 > 1, 𝑟𝑗(𝑥, 𝑘 + 1) = 𝑟𝑗(𝑥, 𝑘), 𝑔(𝑟1(𝑥, 𝑘) → 𝑂𝐾 

▪ 𝑇(𝑚, 𝑛) 

• 𝑛 > 1 𝑜𝑟 𝑚 = 1, 𝑟𝑗(𝑥, 𝑘 + 1) = 𝑟𝑗(𝑥 + 𝑘) 

• 𝑛 = 1 𝑎𝑛𝑑 𝑚 > 1, here it will hold for each instruction before given the 

property can be seen as transfer of data so 𝑟𝑗(ℎ + 1, 𝑥) is given by 

𝑔(𝑟1(𝑥𝑘), 𝑟2(𝑥𝑘)… 𝑟𝑗−1(𝑥𝑘) given it’s defined linearly for all the function 

before 

After examining the inductive step, we have shown that the properties we assumed for 𝑟𝑗(𝑥, 𝑘), namely 

𝑟𝑗(𝑥, 𝑘) = 𝑐 𝑜𝑟 𝑟𝑗(𝑥, 𝑘) = 𝑥 + 𝑐, extend to step 𝑘 + 1. This extension has been demonstrated through the 

function 𝑔, which operates on the intermediate values 𝑟1(𝑥𝑘), 𝑟2(𝑥𝑘), . . . , 𝑟𝑛(𝑥𝑘) to represent the inductive 

computation for 𝑓(𝑥1, . . . 𝑥𝑛). 

In summary, we have successfully established that for all steps k, the properties for 𝑟𝑗(𝑥, 𝑘) hold, and by 

extension, the computed function 𝑓(𝑥1, . . . 𝑥𝑛) is of the desired form: 

𝑓(𝑥1, . . . 𝑥𝑛) = 𝑐 𝑜𝑟 𝑓(𝑥1, . . . 𝑥𝑛) = 𝑥𝑗 + 𝑐 

This completes the inductive proof, confirming that the functions adhere to the specified structure.  
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6 DECIDABLE PREDICATES 

In mathematics, we often want to express properties. Consider as mathematical property the divisor: 

𝑑𝑖𝑣(𝑥, 𝑦) = x divides y, 𝑑𝑖𝑣 ⊆ ℕ 𝑥 ℕ 

𝑑𝑖𝑣 = {(𝑛,𝑚 ∗ 𝑘) | 𝑛, 𝑘 ∈ ℕ} 

As computer scientists, we can also see the divisor as a function: 

𝑑𝑖𝑣: ℕ 𝑥 ℕ → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} 

 

 

In the context of computability and formal logic, we introduce the concept of a predicate, which is a 

statement or function that takes one or more inputs and evaluates to either true or false, typically based on 

some condition or relationship. 

The 𝑘 − 𝑎𝑟𝑦 predicate on ℕ indicates the property 𝑄(𝑥1, … 𝑥𝑘) can be true or false for a set of values, 

formally describing: 

- a function 𝑄 ∶ ℕ𝑘 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} (note that we represent 0 =  𝑡𝑟𝑢𝑒, 1 =  𝑓𝑎𝑙𝑠𝑒 as values) 

- a set 𝑄 ⊆ ℕ𝑘 

We write 𝑄(𝑥1, … 𝑥𝑘) to denote (𝑥1, … 𝑥𝑘) ∈ 𝑄 or 𝑄(𝑥1, … 𝑥𝑘) = 𝑡𝑟𝑢𝑒. This means 𝑄 will be computable if 

there exists a 𝑘-tuple (𝑥1, … 𝑥𝑘) returning 𝑡𝑟𝑢𝑒 if 𝑄(𝑥1, … 𝑥𝑘), 𝑓𝑎𝑙𝑠𝑒 otherwise. 

Then, given 𝑄(𝑥1, 𝑥𝑘) ⊆ ℕ
𝑘. We say it’s decidable if the characteristic function (also called indicator 

function, used to represent a specific property or set membership in a binary way) is like: 

𝑥𝑄: ℕ
𝑘 → ℕ 

𝑥𝑄(𝑥1, 𝑥𝑘) = {
1 𝑖𝑓 𝑄(𝑥1, … , 𝑥𝑘) 𝑖𝑠 𝑈𝑅𝑀 − 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

Remember also 𝑥𝑄 is a total function (again, defined for all possible input values from its domain and 

decidability of predicates involves only total functions in the process).  

Let’s give some examples of decidable predicates: 

1) Equality 

𝑄(𝑥1, 𝑥2) ⊆ ℕ
2 

𝑄(𝑥1, 𝑥2) =  𝑥1 = 𝑥2  𝑑𝑒𝑐𝑖𝑑𝑎𝑏𝑙𝑒 

𝑥𝑄: ℕ
2 → ℕ 

𝑥𝑄(𝑥1, 𝑥2) = {
1   𝑖𝑓 𝑥1 = 𝑥2
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 
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This function essentially encodes the result of applying the predicate 𝑄(𝑥1, 𝑥2) to a pair of natural 

numbers. It returns 1 if the numbers are equal (satisfying the predicate 𝑄) and 0 if they are not. 

Now, let's see how this program works to compute 𝑥𝑄(𝑥1, 𝑥2): 

• If 𝑥1 = 𝑥2, the program executes the jump in instruction 1, which sends it to instruction 3. It then 

increments register 3, making it 1, and transfers this value to register 1 (𝑥1). 

• If 𝑥1 ≠ 𝑥2, the program keeps looping at instruction 2 (the self-jump) without changing the value of 

register 3. Therefore, register 1 (𝑥1) remains 0. 

So, after the execution of this program, register 1 will contain either 1 (if 𝑥1 = 𝑥2) or 0 (if 𝑥1 ≠ 𝑥2), which 

corresponds to the value of 𝑥𝑄(𝑥1, 𝑥2). 

2) Parity of a number 

𝑄(𝑥) = "𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛"  𝑑𝑒𝑐𝑖𝑑𝑎𝑏𝑙𝑒 

 

 

 

 

 

 

The program essentially starts with 𝑘 at 0 and checks whether 𝑥 is equal to 𝑘. If 𝑥 is equal to 𝑘, it means 

that 𝑥 is even, so it increments the result 𝑟. If 𝑥 is not equal to 𝑘, the program increments 𝑘 and repeats 

the process. This continues until 𝑥 is equal to 𝑘, at which point 𝑟 is set to 1, indicating that x is even.  

In memory, there is the following situation: 

 

The program employs a simple iterative approach to determine if a given number 𝑥 is even, and it does so 

by incrementing 𝑘 until it matches 𝑥. If the program exits with 𝑟 equal to 1, it means that 𝑥 is even. This 

program effectively computes the characteristic function for the predicate "𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛," making it a 

decidable problem. 

Let’s make a digression, using computability not only confined to a specific model, but resorting to the 

notion of effective encoding (used to map elements from one set [the domain] to elements in another set, 

typically inside natural numbers) in a way that is algorithmically or effectively computable.  

6.1 COMPUTABILITY ON OTHER DOMAINS 
 

This allows us to extend the concept to other domains, defining then the computability on other domains. 

Consider we’re interested in computability of a domain 𝐷 of objects, which is countable (so one-to-one 

correspondence with natural numbers), and: 

𝛼:𝐷 → ℕ, 𝑏𝑖𝑗𝑒𝑐𝑡𝑖𝑣𝑒 "effective" 
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Let’s specify each notation verbally: 

- bijective means “establishing a one-to-one correspondence (bijective mapping) between elements 

in the domain and the set of natural numbers”. 

- effective means “the process of encoding an element from the domain to a natural number should 

be algorithmically computable” 

- there exists an inverse function, which should map natural numbers back to elements in the 

domain effectively (so 𝛼 𝑎𝑛𝑑 𝑎−1 are effective) 

- once an effective encoding is established (𝛼: 𝐷 → ℕ), it can be employed to define computability 

on the domain 𝐷. This means that functions and predicates over 𝐷 can be represented using 

natural numbers through the encoding. 

Consider for example the strings domain Σ, where its size is smaller than real numbers set and it’s 

countable or other sets like 𝐴𝜔 (infinite sequences of elements from a given set, also called streams), 𝑄, 𝑍.  

Let’s define a computable function on a generic domain; given 𝑓:𝐷 → 𝐷 function we say is computable if: 

 

 

 

 

is URM-computable (the symbol ∘ means the composition of functions) 

In words: if 𝑓 is defined, if 𝛼 and its inverse are effective, 𝑓∗ is computable (you can see the mapping). 

Practically, if we act on domains unrelated to that of natural numbers and want to check whether such a 

function is computable, it will be sufficient if its respective encoded function is. 

Let’s see this more concretely, shall we? Suppose we want to pose computability on the integer numbers 

(over 𝑍). We the need an encoding 𝛼: 𝑍 → ℕ, given the following encoding: 

 

 

 

 

 

which is an effective function with inverse: 

𝛼−1(𝑛) = {

𝑛

2
, 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

−(𝑛 + 1)

2
,   𝑛 𝑖𝑠 𝑜𝑑𝑑

 

Consider then the absolute value function: 

𝑓(𝑧) = |𝑧| 

Is this one computable? In this encoding, it is. 
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In the final part where 𝑓(𝑛) is expressed for even and odd cases, it shows how the composition of functions 

and the encoding function α results in a computable function (for all cases). Specifically: 

1. If 𝑛 is even: In this case, 𝑓(𝑛) is computed as 𝛼(|𝑛|), which simplifies to 𝛼(𝑛). This means that 

when 𝑛 is even, the absolute value of 𝑛 is the same as 𝑛 itself, and the composition function 𝑓 is 

equal to 𝛼(𝑛). 

 

2. If 𝑛 is odd: In this case, 𝑓(𝑛) is computed as 𝛼(|𝑛|), which simplifies to `𝛼(𝑛 + 1)`. When 𝑛 is odd, 

the absolute value of 𝑛 is 𝑛 + 1 because the negative of an odd integer is one more than its 

absolute value. Therefore, the composition function 𝑓 is equal to 𝛼(𝑛 + 1) when 𝑛 is odd. 

The expressions show how 𝑓(𝑛) behaves for even and odd values of 𝑛 in terms of the encoding function α. 

The goal of these expressions is to demonstrate that 𝑓 is URM-computable for all cases, making the 

function 𝑓(𝑧) = |𝑧| computable on the integers 𝑍 by encoding and decoding integers using 𝛼 and its 

inverse 𝛼⁻¹. 
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7 GENERATION OF COMPUTABLE FUNCTIONS 

A function will be computable if it can be obtained from a set of basic operations that are known to be 

computable. Essentially, we show that having two functions 𝑓1, 𝑓2 we produce an operation inside 

𝑜𝑝(𝑓1, 𝑓2) in a way that composing them (for example, via 𝑜𝑝(𝑓1, 𝑓2)) is still in 𝒞. 

The class 𝒞 will be closed under: 

- (generalized) composition 

- primitive recursion 

- unbounded minimalisation 

 

 

 

 

 

 

 

The basic functions following are URM-computable: 

1) Constant zero 

𝑍:ℕ𝑘 → ℕ, 𝑍(𝑥⃗) = 0, (𝑥1, … 𝑥𝑘) ↦ 0, ∀𝑥⃗ ∈ ℕ𝑘 

2) Successor 

𝑆: ℕ → ℕ, 𝑆(𝑥) = 𝑥 + 1, ∀𝑥 ∈ ℕ 

3) Projection 

𝑈𝑗
𝑘 , 𝑈𝑗

𝑘(𝑥⃗) = 𝑥𝑗 , (𝑥1, … 𝑥𝑘) ↦ 𝑥𝑖, ∀𝑥 ∈ ℕ
𝑘 

They are in 𝐶 as they are computed respectively by: 

1) 𝑧 computed by 𝑍(1) 

2) 𝑠 computed by 𝑆(1) 

3) 𝑈𝑖
𝑘computed by 𝑇(𝑖, 1) 

Consider also, as a side note, identity is a special projection, basically over all natural numbers. 

To prove the closure properties we will need to “combine” programs so we need some notation that we 

will give now. Given a 𝑈𝑅𝑀 program 𝑃, we define: 

- 𝜌(𝑃) = max{𝑛 | 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 𝑅𝑛 𝑖𝑠 𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑖𝑛 𝑃} [aka largest register index] 

- 𝑙(𝑃) = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑃 [aka number of instructions in 𝑃] 

- 𝑃 if in standard form if, whenever it terminates, it does so at an instruction 𝑙(𝑃) + 1 

o for each 𝐽(𝑚, 𝑛, 𝑡) instruction, 𝑡 ≤ 𝑙(𝑃) + 1 (stopping at instruction 𝑙(𝑃) + 1 as just said) 

  

To prove a function 𝑓 is computable, we can write a 

URM program of use the closure theorems of 𝐶 

choosing the operations carefully (the ones listed 

above). 
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We can define concatenation of programs: given 𝑃, 𝑄 programs (from now on we assume they are 

standard), we combine programs in such a way that is computable.  

So, starting from 𝑃, 𝑄, their concatenation is obtained by considering 𝑃 followed by the instructions of 𝑄 

and updating instructions properly: 

 

 

 

 

- Given 𝑃 a program we write 𝑃[𝑖1, … 𝑖𝑘 → 𝑖] program taking the input from 𝑅𝑖1 , … , 𝑅𝑖𝑘  and outputs 

in 𝑅𝑖 without assuming registers different from the input are set to 0. We do this by using transfer 

and reset operations, executing up until 𝜌, so last instruction given the whole register space. 

o More precisely, it we express 𝑃[𝑖1, … 𝑖𝑘 → 𝑖] as follows: 

 

 

 

 

 

 

 

 

 

 

Exercise: Write (*) properly in this case 

Solution: We write the program as 𝑇(2,1), 𝑍(2), 𝑃, 𝑇(1,1), so we just transfer a value from the output 

register, do a reset operation and transfer the value back again inside the original register, considering the 

problem structure.  

7.1 GENERALIZED COMPOSITION 
 

We define the composition, given 𝑓: ℕ𝑘 → ℕ,𝑔1, …𝑔𝑘: ℕ
𝑛 → ℕ you define ℎ: ℕ𝑛 → ℕ 𝑓𝑜𝑟 𝑥⃗ ∈ ℕ𝑛 

 

 

(In words: the composition function will be made on all the subfunctions if they all halt) 
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For example, consider: 

𝑧(𝑥) = 0, ∀𝑥 

∅(𝑥) ↑ ∀𝑥    𝑧(∅(𝑥)) ↑ ∀𝑥 

(In words: we use the empty set function, so the emptying on all values is defined for all 𝑥 and subdomains) 

Another example: 

𝑈1
2(𝑥, 𝑦) = 𝑥     𝑈1

2(𝑥, ∅(𝑦)) ↑   ∀𝑥, 𝑦 

(In words: composition holds for both values inside functions and if value is not zero, it will output the first, 

otherwise it just diverges) 

Now, we argue 𝐶 is closed under generalized composition. 

Proof 

Given 𝑓:ℕ𝑘 → ℕ,𝑔1, … 𝑔𝑘: ℕ
𝑛 → ℕ 𝑖𝑛 𝐶 and consider ℎ:ℕ → ℕ, ℎ(𝑥⃗) = 𝑓(𝑔1(𝑥⃗),…𝑔𝑘(𝑥⃗)) is in 𝐶.  

Let 𝐹, 𝐺1, …𝐺𝑘 be programs (in standard form) for 𝑓, 𝑔1, …𝑔𝑘. The program for ℎ can be: 

 

 

It is important to note that the registers from 𝑚 + 1 onwards can be used freely without the risk of 

interferences. Let us consider here the largest possible register, so 𝑚 = {max (𝜌(𝐹), 𝜌(𝐺1), . . 𝜌(𝐺𝑘), 𝑘, 𝑛}.  

The program ℎ for composition then is: 

 

We then conclude that ℎ ∈ 𝒞 

Let’s give another example: 𝑓(𝑥1, 𝑥𝑛) = 𝑥1 + 𝑥2 known to be in 𝐶. We define 𝑔:ℕ2 → ℕ with 

𝑔(𝑥1, 𝑥2, 𝑥3) = 𝑥1 + 𝑥2 + 𝑥3 = 𝑓(𝑓(𝑥1, 𝑥2), 𝑥3). Are we really doing generalized composition? Yes, but we 

can use projection. 

We define such projection on 𝑓(𝑓(𝑥1, 𝑥2), 𝑥3) as 𝑈1
3(𝑥⃗), ℕ3 → ℕ (we use projection on 𝑥1) and then 𝑥2 as 

𝑈2
3(𝑥), ℕ3 → ℕ (again, projection on 𝑥2). This way, we will have a function of three arguments correctly 

using generalized composition, having finally: 

  

  

In words, the composition program provides inputs using additional 

registers and auxiliary input, then applying transfer operation on 

each following register and finally computing the result. 

Because the following registers can compute the result, if it was 

defined before, the property continues to hold. 



77   Computability simple (for real) 
 

Written by Gabriel R. 

Basically, in drawing form: 

 

 

 

 

 

 

 

 

 

Another example: let 𝐹:ℕ → ℕ computable, 𝑄𝑓(𝑥, 𝑦) = "𝑓(𝑥) = 𝑦" decidable? 

𝜒𝑄𝑓(𝑥, 𝑦) = {1 𝑖𝑓 𝑓(𝑥) = 𝑦, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} computable? 

𝜒𝑄𝑓(𝑥, 𝑦) = {
1, 𝑖𝑓 𝑓(𝑥) = 𝑦
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

We know that 𝜒𝐸𝑞: ℕ
2 → ℕ, 𝜒𝐸𝑞(𝑥, 𝑦) = {

1, 𝑖𝑓 𝑓(𝑥) = 𝑦
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 is computable. We then obtain the computable 

result via composition (𝜒𝐸𝑞 means equality and we know it’s computable).  

 

 

There is a big problem: we’re not considering the case of 𝐹 undefined (we assumed 𝐹 was total, but that 

seems not to be the case, because the function is partial, so we map some values). To have it correct, 

change the definition of the predicate putting: “let 𝐹: ℕ → ℕ computable and total”, thus it will work.  

7.2 PRIMITIVE RECURSION 
 

Recursion is a familiar concept to us computer scientists: it allows to define a function specifying its values 

in terms of other values of the same function (while other functions are possibly already defined). 

Two classic examples of those: 

(1) the factorial (the product of all positive integers less than or equal to a given positive integer) 

 

(2) Fibonacci (a sequence in which each number is the sum of the two preceding ones) 
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In our case we define a very basic and “controlled” version of recursion (also from domains, you can see 

they are recursively defined). Let’s give a proper definition then.  

Given 𝑓:ℕ𝑘 → ℕ and 𝑔:ℕ𝑘+2 → ℕ functions, define ℎ:ℕ𝑘+1 → ℕ by primitive recursion as follows: 

 

The function ℎ exists or that it is unique, and circularity of the definition is avoided by thinking of the values 

for ℎ(𝑥, 𝑦). Unless 𝑓, 𝑔 are total, then ℎ may not be total. 

We define a set of functions over the natural numbers, an operator for computing the recursive formula, a 

function of fixed points (definition of this given here – will become useful later on) where there is always an 

upper bound which allows us to do operation in the continuous (so, always inductively defined).  

This can be drawn as: 

 

 

 

We just say here: there might be problems given the recursive nature of computation if it doesn’t match 

our requirements. Even more concisely: it’s possible to show this is defined for every natural number “on 

the same function”, given there are fixed points involved and it’s continuous (always holds). 

Let’s give other examples. 

Consider the sum function: 

ℎ: ℕ2 → ℕ, ℎ(𝑥, 𝑦) = 𝑥 + 𝑦 

  

 

Then we define the product function: 

ℎ′: ℕ2 → ℕ, ℎ′(𝑥, 𝑦) = 𝑥 ∗ 𝑦 

 

Proposition 

𝐶 is closed by primitive recursion, so: 

- functions obtained from total functions by generalized composition are total  

- functions obtained from total functions by primitive recursion are total 

Proof 

Let: 𝑓: ℕ𝑘 → ℕ,𝑔: ℕ𝑘+2 → ℕ be in 𝐶 and let 𝐹, 𝐺 programs in standard form for 𝑓, 𝑔. We want to prove 

that ℎ:ℕ𝑘+1 → ℕ defined through primitive recursion: 

  

 

So, the definition of ℎ combines 𝑓 and 𝑔 to compute its value for different inputs. It starts with a 

base case where ℎ equals 𝑓 for input 0 and then uses the recursive case to compute ℎ for other 

values by using both 𝑔 and the previously computed values of ℎ. 
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is computable. 

 

Basically, we compute and instruction, then save the next and use registers not used to save the next 

instruction which needs to be computed. 

  

 

 

 

 

 

 

Essentially, we compute the following instruction until we get to 𝑖 = 𝑦. 

 

 

 

 

 

 

 

 

 

 

In words: we’re just making a for loop using closure under primitive recursion (a function that can be 

computed by a computer program whose loops are all "for" loops) and under composition (so, each 

previous function can be used to compute the following one).  

We simply go ahead until we reach 𝑖 = 𝑦; to avoid conflicts, we determine the maximum register 𝑚 

ensuring there’s enough space to do so, simply compute continuously given the problem conditions. It’s 

basically like implementing recursion through iteration, given each instruction gets taken and handled 

iteratively to a possible next register. 
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7.2.1 Functions defined by primitive recursion 

 

We define a list of computable functions, implementing recursion through composition.  

- sum 𝑥 + 𝑦 

 

- product 𝑥 ∗ 𝑦 

 

- exponential 𝑥𝑦 

 

- predecessor 𝑦 − 1 

 

 

- difference  

 

 

 

- sign  

 

 

- negative sign (or complement sign) 
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- minimum 

 

- maximum  

 

- remainder, specifically the remainder of the integer division of 𝑦 by 𝑥 

 

We might see it visually like the following: increment the number and the results changes, incrementing the 

remainder and the 𝑦 value accordingly, only if next multiple is not hit.  

 

 

 

 

By far, we use the definition by primitive recursion: 

 

 

 

 

- quotient,  

 

Let’s give a definition by cases; let 𝑓1, … 𝑓𝑛: ℕ
𝑘 → ℕ total and computable and 𝑄1(𝑥⃗),…𝑄𝑛(𝑥⃗) ⊆ ℕ

𝑘  

decidable (mutually exclusive between each other) predicates ∀𝑥 ∃! 𝑗 𝑄𝑗(𝑥⃗) (so, for each, exactly one of 

𝑄1, …𝑄𝑛 holds) and let 𝑓:ℕ𝑘 → ℕ total computable where: 

 

 

then 𝑓 is computable and total. 



82   Computability simple (for real) 
 

Written by Gabriel R. 

Proof 

𝑓(𝑥⃗) = 𝑓1(𝑥⃗) ∗ 𝑥𝑄1(𝑥⃗) + 𝑓2(𝑥⃗) ∗ 𝑥𝑄2(𝑥⃗) +⋯𝑓𝑛(𝑥⃗) ∗ 𝑥𝑄𝑛(𝑥⃗) 

So essentially, the right function will be selected and effectively computed, given all the marked functions 

are computable (sum and product) and composition is itself computable. We then conclude 𝑓 is 

computable.  

Still, there is a mistake one can do: not assuming the functions are total; this way, the proof will never be 

correct. Let’s show a counterexample: 

𝑛 = 2    𝑓1(𝑥) = 𝑥  ∀𝑥   𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒     𝑄1(𝑥) = 𝑡𝑟𝑢𝑒  ∀𝑥 

𝑓2(𝑥) ↑   ∀𝑥           𝑄2(𝑥) = 𝑓𝑎𝑙𝑠𝑒  ∀𝑥 

𝑓(𝑥) = {𝑓1(𝑥)   𝑖𝑓 𝑄1(𝑥),   𝑓2(𝑥)   𝑖𝑓 𝑄2(𝑥)} = 𝑓1(𝑥) = 𝑥    ∀𝑥 

 

≠ 𝑓1(𝑥) ∗ 𝑥𝑄1(𝑥) + 𝑓2(𝑥) ∗ 𝑥𝑄2(𝑥) 

The mistake in the given statement is the assumption that 𝑓2(𝑥) is computable for all 𝑥, which is not the 

case in this counterexample (because it’s explicitly told it diverges). Therefore, the statement is not valid. 

Important: We have a proof only if the component functions are total, otherwise it will be always 

undefined. The proof is wrong if we don’t assume totality of functions; keep in mind that for now.  

Let’s define the algebra of decidability. Let 𝑄1(𝑥⃗), 𝑄2(𝑥⃗) ⊆ ℕ
𝑘  be decidable predicates. Then: 

1) ¬𝑄1(𝑥⃗) 

2) Q1(𝑥⃗) ∧ Q2(𝑥⃗) 

3) Q1(𝑥⃗) ∨ Q2(𝑥⃗)  

can be considered decidable. 

Proof 

1) 𝑥¬𝑄1(𝑥⃗⃗) = {1  𝑖𝑓 ¬𝑄1(𝑥⃗⃗), 0 𝑖𝑓 𝑄1(𝑥⃗⃗)  = 𝑠𝑔 (𝑥𝑄1(𝑥⃗⃗)) (evaluates to 1 if true, 0 if false) 

2) 𝑥Q1∧Q2(𝑥⃗⃗) = xQ1(𝑥⃗⃗) ∗ xQ2(𝑥⃗⃗))  (evaluates to 1 if both are true, to 0 if one of them is false) 

3) 𝑥Q1∨Q2 = sg(xQ1(𝑥⃗⃗)+ xQ2(𝑥⃗⃗)  (evaluates to 1 if either of them is true, to 0 if both are false) 

7.3 BOUNDED SUM, BOUNDED PRODUCT AND BOUNDED QUANTIFICATION 
 

Let 𝑓(𝑥⃗, 𝑧), 𝑓: ℕ𝑘+1 be a total computable function and let’s define ℎ:ℕ𝑘+1 → ℕ.  

Then, we define the bounded sum as follows (composition of primitive recursive functions – total since 𝑓 is: 

ℎ(𝑥⃗, 𝑦) = 𝑓(𝑥⃗, 0) + 𝑓(𝑥⃗, 1) + 𝑓(𝑥⃗, 𝑦 − 1) = ∑𝑓(𝑥⃗, 𝑧)

𝑧<𝑦
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In simpler terms, it’s like adding up the values of the function for all 𝑧 starting from 0 up to 𝑦. It starts 

with 0 for ℎ(𝑥⃗⃗, 0) and then, for each increment of 𝑦, adds the value of 𝑓(𝑥⃗⃗, 𝑦) to the previous total. 

The bounded product ∏ 𝑓(𝑥⃗⃗, 𝑧)𝑧<𝑦  is defined as follows: 

 

 

It's like taking the product of the results for all 𝑧 starting from 0 up to 𝑦. 

By closure under composition, the bound can be a total computable function. Another consequence 

concerns the decidability of the bounded quantification of predicates. 

Let 𝑄(𝑥⃗, 𝑧) decidable: 

1) ∀𝑧 < 𝑦, 𝑄(𝑥⃗, 𝑧) 

2) ∃𝑧 < 𝑦, 𝑄(𝑥⃗, 𝑧) 

Solution  

Essentially, use this lemma from notes: 

 

and consider everything is defined by primitive recursion, so you have: 

1) 

𝑔(𝑥⃗, 0) = 0  

𝑔(𝑥⃗, 𝑦 + 1) = 𝑔(𝑥⃗, 𝑦) ∗ 𝑓(𝑥⃗, 𝑦)  

2) 

𝑔(𝑥⃗, 0) = 0  

𝑔(𝑥⃗, 𝑦 + 1) = 𝑔(𝑥⃗, 𝑦) ∗ 𝑓(𝑥⃗, 𝑦)  

We can also determine, since bound is computable, bounded quantification is decidable. 
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7.4 BOUNDED MINIMALISATION 
 

Let’s also define the bounded minimalisation. Given a total function 𝑓:ℕ𝑘+1 → ℕ, define a function 

ℎ:ℕ𝑘+1 → ℕ as follows: 

ℎ(𝑥,⃗⃗⃗ ⃗ 𝑦) = {
𝑧, 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑧 < 𝑦 𝑠. 𝑡. 𝑓(𝑥⃗, 𝑧) = 0   𝑖𝑓 𝑖𝑡 𝑒𝑥𝑖𝑠𝑡𝑠
𝑦, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑠𝑢𝑐ℎ 𝑧

 

 

 

 

 

This is very useful to prove computability of functions; here, we would write ℎ(𝑥,⃗⃗⃗ ⃗ 𝑦) = 𝜇𝑧 < 𝑦(𝑓(𝑥⃗⃗⃗, 𝑧) = 0). 

As such, this is called bounded minimalisation operator/bounded 𝜇 −operator. 

In simpler terms, ℎ searches for the smallest integer 𝑧 (less than 𝑦) at which the function 𝑓(𝑥⃗, 𝑧) becomes 

equal to 0. If it finds such a 𝑧, it returns that value. If there is no such 𝑧, it returns 𝑦. 

Observation: If 𝑓 is computable then ℎ(𝑥⃗, 𝑦) = 𝜇𝑧 < 𝑦. 𝑓(𝑥⃗, 𝑧) = 0 computable 

The observation correctly emphasizes that when the original function 𝑓 is computable, the process of 

finding this minimum value 𝑧, as described, is also computable (via composition of computable 

sum/product/sign) 

Proof   
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We then prove the above, defined this way, is then defined by primitive recursion. Let’s observe the 

following functions are computable: 

1)  

𝑑𝑖𝑣:ℕ2 → ℕ 

𝑑𝑖𝑣(𝑥, 𝑦) = {
1, 𝑖𝑓 𝑥 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑦
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= 𝑠𝑔(𝑟𝑚(𝑥, 𝑦))  

(the division can be also written as the negation of remainder, so it will be 1 if there is no rest, 0 otherwise, 

as you see here for dividing) 

2) 

𝐷(𝑥) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑣𝑖𝑠𝑜𝑟𝑠 𝑜𝑓 𝑥 

∑𝑑𝑖𝑣(𝑦, 𝑥)

𝑦≤𝑥

=∑(𝑠𝑔(𝑟𝑚(𝑦, 𝑥))

𝑦≤𝑥

 

We can put the non-strict bound there, like 𝑧 < 𝑥. Formally, we can say that is defined via composition 

over the previous function, posing 𝑦 < 𝑥 + 1 (given its recursive nature, we compute the current one if the 

last one was computed already, so if 𝑦 < 𝑥 holds, it will hold 𝑦 < 𝑥 + 1).  

3) 

Pr(𝑥) = {1   𝑥 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒,   0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

𝑥 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒 𝑖𝑓𝑓 𝑡ℎ𝑒 𝑜𝑛𝑙𝑦 𝑑𝑖𝑣𝑖𝑠𝑜𝑟𝑠 𝑜𝑓 𝑥 𝑎𝑟𝑒 𝑥 𝑎𝑛𝑑 1 𝑤𝑖𝑡ℎ 𝑥 ≠ 1 

⇕ 

𝑥 ℎ𝑎𝑠 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑧 𝑑𝑖𝑣𝑖𝑠𝑜𝑟𝑠 

Pr(𝑥) = 𝑠𝑔(|𝐷(𝑥) − 𝑧|) 

(So, it calculates the absolute difference between the number of divisors of 𝑥 and the given value 𝑧. This 

difference measures how far the number of divisors of 𝑥 is from 𝑧, in other terms, we can compute this 

absolute difference as |𝑥 − 𝑦| = (𝑥 − 𝑦) + (𝑦 − 𝑥)). 

4)  

𝑃𝑥 = 𝑥
𝑡ℎ 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 

𝑝0 = 0, 𝑝1 = 2, 𝑝3 = 5, 𝑝4 = 7… 

We use primitive recursion to do this.  

{
𝑝0 = 0

𝑝𝑥+1 = " " 𝜇𝑧  𝑧  𝑝𝑟𝑖𝑚𝑒 𝑎𝑛𝑑 𝑧 > 𝑝𝑥  " "
 

The goal is to find a number 𝑧 that is prime and greater than the 𝑥𝑡ℎ prime (𝑝𝑥); there, we use quotes there 

because this is not a formal definition. So, let’s define the search for the prime number properly, bounded 

to the recursive product of all the other factors. 

𝑃𝑧(𝑧) ∧ 𝑧 > 𝑝𝑥 

= 𝜇𝑧 ≤ (∏𝑃𝑖

𝑛

𝑖=1

) + 1    𝑠𝑔(𝑃𝑧(𝑧) ∗ 𝑠𝑔(𝑧 − 𝑝𝑥)) 
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𝑖𝑛𝑓𝑎𝑐𝑡     𝑝𝑥+1 ≤ (∏𝑝𝑖

𝑛

𝑖=1

) + 1 

Let 𝑝 be a prime divisor of    then 𝑝 ≠ 𝑝𝑖  ∀𝑖 = 1…𝑥,  

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖𝑓 𝑝 = 𝑝𝑗  𝑓𝑜𝑟 𝑗 ≤ 𝑥 

 𝑡ℎ𝑒𝑛  𝑝 | ∏𝑝𝑖

𝑥

𝑖=1

  

𝑏𝑢𝑡  𝑝 | (∏𝑝𝑖) + 1

𝑥

𝑖=1

 

→ 𝑝 | 1 → 𝑝 = 1  𝑛𝑜𝑡 𝑝𝑟𝑖𝑚𝑒 

⇒ 𝑝 ≥ 𝑝𝑥+1 ⇒ (∏𝑝𝑖

𝑥

𝑖=1

) + 1 ≥ 𝑝 ≥ 𝑝𝑥+1 

In summary, this argument demonstrates that if 𝑝 is a prime divisor of the product of the first 𝑛 prime 

numbers plus 1, it cannot be equal to any of the first 𝑥 primes. Instead, it must be greater than or equal to 

the (𝑥 + 1)𝑡ℎ prime, which is the next one in the sequence. This establishes the relationship between 

prime divisors and the order of primes in the sequence, recursively because it’s bounded. 

5)  

(𝑥)𝑦 = 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑝𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑒 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥 

𝐸. 𝑔. 20 = 22 30 51 

(20)1 = 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑝1 = 2 → (20)1 = 2 

(20)2 = ⋯𝑝2 = 3 → (20)2 = 0 

(20)3 = 1 

(20)4 = 0 

… 

(𝑥)𝑦 = max𝑧  𝑠. 𝑡. 𝑝𝑦
𝑧 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑥 

= max 𝑧 𝑠. 𝑡.  𝑑𝑖𝑣 (𝑝𝑦
𝑧, 𝑥) = 1 

= min𝑧  𝑠, 𝑡, 𝑑𝑖𝑣(𝑝𝑦
𝑧+1, 𝑥) = 0 

= 𝜇𝑧 𝑠. 𝑡. 𝑑𝑖𝑣(𝑝𝑦
𝑧+1, 𝑥) 

When we calculate (𝑥)𝑦, we're essentially finding the exponent to which the prime number 𝑝𝑦 is raised in 

the prime factorization of 𝑥. This implies that we're looking for the minimum 𝑧 such that if we consider 𝑝𝑦  

raised to (𝑧 + 1), it's no longer a divisor of 𝑥. Via bounded minimalisation, (𝑥)𝑦 represents the highest 

exponent to which the prime number 𝑝𝑦 can be raised in the prime factorization of 𝑥. 

Hence, we conclude this is computable by bounded minimalisation.  

  



87   Computability simple (for real) 
 

Written by Gabriel R. 

Also, the following functions are computable: 

 

 

 

 

 

 

 

 

 

 

 

 

 

This seems strictly rigid, but let’s reason on another example, the Fibonacci function.  

The Fibonacci function, as conventionally defined with two base cases and a recursive relationship involving 

the previous two values, is not a strictly primitive recursive function in the traditional sense of primitive 

recursion within computability theory. 

The reason for this lies in the binary nature of the recursive relationship (adding the previous two values), 

which goes beyond the simple predecessor relationship found in typical primitive recursive functions. Given 

that 𝑓(𝑦 + 2) is defined in terms of 𝑓(𝑦) and 𝑓(𝑦 + 1), it does not completely adhere to the classical 

primitive recursion schema (because the inductive step requires a prior pair of values).  

{

𝑓(0) = 1

𝑓(1) = 1

𝑓(𝑛 + 2) = 𝑓(𝑛) + 𝑓(𝑛 + 1)

 

We can show that 𝑓 is computable by resorting to a new function 𝑔: 

𝑔:ℕ → ℕ2  

𝑔(𝑛) = (𝑓(𝑛), 𝑓(𝑛 + 1)) 
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7.5 ENCODING IN PAIRS 
 

Let’s see an encoding in ℕ of pairs (and n-tuples) of natural numbers that will be useful for some 

considerations on recursion. Define a pair encoding as, given 𝐷 = ℕ2 

 

 

A pair encoding refers to a method of representing ordered pairs (and 𝑛-tuples) of natural numbers using a 

single natural number. The goal is to encode the information in a way that preserves the relationship 

between the elements of the pair or tuple while allowing for effective (computable) operations on these 

encodings. 

Note 𝜋 is bijective (uniquely decode for original pair to encoding) and effective (encoding/decoding are 

computable), so computable. For example, if you have a pair (𝑥, 𝑦), you can use 𝜋 to encode it as a single 

natural number 𝜋(𝑥, 𝑦). Later, you can use the inverse operation to decode the original pair from the 

encoded value. 

We also have 𝜋−1 effective and can be characterized in terms of two computable functions 𝜋1 and 𝜋2 that 

give the first and second component of a natural number 𝑛 seen as pair: 

 

 

 

It can be easily generalized in case for encoding 𝑛-tuples, defining the recursive nature over functions 

previously computed and with projection always obtain a natural number given 𝜋 as factor.  

On this encoding, let’s consider the Fibonacci function, which is defined as: 

{

𝑓(0) = 1

𝑓(1) = 1

𝑓(𝑛 + 2) = 𝑓(𝑛) + 𝑓(𝑛 + 1)

 

Given the function is not totally defined as the primitive recursion definition, we can show this is 

computable using the encoding in pairs. We then define: 

𝑔:ℕ → ℕ 

𝑔(𝑛) = 𝜋(𝑓(𝑛), 𝑓(𝑛 + 1)) 

therefore, by primitive recursion, we can write 𝑓𝑖𝑏 by primitive recursion: 

{

𝑔(0) = 𝜋(𝑓(0), 𝑓(0 + 1)) = 𝜋(1,1) = 21(2 ∗ 1 + 1) − 1 = 5

𝑔(𝑛 + 1) = 𝜋(𝑓(𝑛 + 1), 𝑓(𝑛 + 2) = 𝜋(𝜋2(𝑔(𝑛)), 𝜋1(𝑔(𝑛)) + 𝜋2(𝑔(𝑛))) 

and so 𝑔 is computable by primitive recursion and 𝑓(𝑛) = 𝜋1(𝑔(𝑛)) is defined computable by composition. 
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More in detail: 

- using the primitive recursion principle, 𝑔(0) and 𝑔(𝑛 + 1) are defined based on the pair encoding 

and the previously computed values 

- since 𝑔(𝑛) encodes the pair (𝑓(𝑛), 𝑓(𝑛 + 1)), 𝑓(𝑛) can be derived as 𝜋₁(𝑔(𝑛)), where 𝜋₁ is a 

projection function that extracts the first component of an encoded pair. This means that 𝑓(𝑛) is 

defined and computable by composition 

7.6 UNBOUNDED MINIMALISATION 
 

Generalized composition and primitive recursion produce total functions when starting from total 

functions. We then introduce unbounded minimalisation (same as the bounded, but here the search is not 

bounded, hence not necessarily total). The key point of this one is this: it allows us to obtain non total 

functions starting from total functions and we use it basically to “search for something”. 

Given 𝑓:ℕ𝑘+1 → ℕ (not necessarily total), specifically as 𝑓(𝑥⃗, 𝑦), define ℎ:ℕ𝑘 → ℕ,ℎ(𝑥⃗) = 𝜇𝑦. 𝑓(𝑥⃗, 𝑦) =  

= 𝑙𝑒𝑎𝑠𝑡 𝑦 𝑠. 𝑡. 𝑓(𝑥⃗, 𝑦) = 0 

→  𝑠𝑢𝑐ℎ 𝑦 𝑐𝑜𝑢𝑙𝑑 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 

→  𝑓(𝑥⃗, 𝑧) 𝑐𝑜𝑢𝑙𝑑 𝑏𝑒 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑓𝑖𝑛𝑑𝑖𝑛𝑔 𝑦 

 

(so, we set the minimum 𝜇 as before, but if 𝑓(𝑥⃗, 𝑧) is always ≠ 0, then ℎ ↑) 

= {
𝑦, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑦 𝑠. 𝑡. 𝑓(𝑥⃗, 𝑦) 𝑎𝑛𝑑 ∀𝑧 < 𝑦, 𝑓(𝑥⃗, 𝑧) ↓ ≠ 0

↑, 𝑖𝑓 𝑠𝑢𝑐ℎ 𝑎 𝑦 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡
 

You can compute 𝜇𝑦. 𝑓(𝑥⃗, 𝑦), but the result of such minimalisation is undefined. 

𝑓(𝑥⃗, 0) = 0  ?   𝑦𝑒𝑠 → 𝑠𝑡𝑜𝑝 𝑜𝑢𝑡 0 

𝑛𝑜 

𝑓(𝑥⃗, 1) = 0  ?   𝑦𝑒𝑠 → 𝑠𝑡𝑜𝑝 𝑜𝑢𝑡 1 

𝑛𝑜 

𝑓(𝑥⃗, 2) = 0  ?   𝑦𝑒𝑠 → 𝑠𝑡𝑜𝑝 𝑜𝑢𝑡 0 

There also can be problems is the function is undefined on a value 𝑧′ less than 𝑧 which zeroes the function 

and ℎ will be undefined also in this case.  

Proposition: Class 𝒞 is closed under (unbounded) minimalisation  

Proof 

Let 𝑓:ℕ𝑘+1 → ℕ in 𝒞. We want to prove ℎ ∈ 𝒞, ℎ: ℕ𝑘 → ℕ, ℎ(𝑥⃗) = 𝜇𝑦. 𝑓(𝑥⃗, 𝑦) 

Let 𝑃 be a program (std form) for 𝑓, like: 
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Pose 𝑚 = max {𝜌(𝑃), 𝑘 + 1} to get the largest possible register  

(not used by the program 𝐹). The program for ℎ can be:  

𝑇(1,𝑚 + 1)      //𝑠𝑎𝑣𝑒 𝑖𝑛𝑝𝑢𝑡 𝑥⃗ 

… 

𝑇(𝑘,𝑚 + 𝑘) 

𝐿𝑂𝑂𝑃: 𝑃[𝑚 + 1,…𝑚 + 𝑘,𝑚 + 𝑘 + 1 → 1]     //𝑓(𝑥⃗, 𝑖)  𝑖𝑛  𝑅1 

𝐽(1,𝑚 + 𝑘 + 2, 𝐸𝑁𝐷) ⇐   //𝑓(𝑥⃗, 𝑖) = 0?   

𝐽 (𝑚 + 𝑘 + 1)     //𝑖 + + 

𝐽(1,1, 𝐿𝑂𝑂𝑃) 

𝐸𝑁𝐷: 𝑇(𝑚 + 𝑘 + 1,1)      //𝑜𝑢𝑡𝑝𝑢𝑡 𝑖  

In essence, the program for ℎ extends the program for 𝑓 to perform a minimization operation by iteratively 

searching for the minimal value of 𝑖 that makes 𝑓(𝑥⃗, 𝑖) equal to 0.  

Observe 𝐹 may not terminate and this program does not terminate; hence: 

- the 𝜇 allows us to obtain non-total functions starting from total ones 

- unbounded minimalisation is nothing more than a while implemented with goto. 

Example 1 (Perfect square) 

𝑓:ℕ → ℕ, 𝑓(𝑥, 𝑦) = |𝑥 − 𝑦2| 

 

 

 

𝑓(𝑥) = 𝜇𝑦. "𝑦2 = 𝑥" 

= 𝜇𝑦. |𝑦 ∗ 𝑦 − 𝑥| → 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 𝑏𝑦 𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 

Example 2 (Inverse function) 

𝑔:ℕ2 → ℕ 

 

 

 

We can use only computable functions, like: 

𝑔(𝑥, 𝑦) = 𝜇𝑧. [𝑧 ∗ 𝑦 − 𝑥] 
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𝑔(𝑥, 𝑦) = 𝜇𝑧 . ([𝑧 ∗ 𝑦 − 𝑥] + 𝑠𝑔(𝑦)) 

 

So, we get: 

 

Observation 

Every finite (domain) function is computable.  

Proof 

Let 𝜃:ℕ → ℕ a finite domain function (for example, let’s define the domain as 𝑑𝑜𝑚 (𝜃) = {𝑥1, … 𝑥𝑛}): 

 

 

then: 

𝜃 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)} 

is computable (note, we use the weighted sum and product, and we map values in pairs). 

𝜃(𝑥) =∑𝑦𝑖 ∗ 𝑠𝑔(|𝑥 − 𝑥𝑖|)

𝑛

𝑖=1

+ 𝜇𝑧.∏|𝑥 − 𝑥𝑖|

𝑛

𝑖=1

  

 

 

 

 

Example (where both are computable and respect the 0/1/undefined definition for bounded minimalisation 

given just before): 

 

 

 

 

Observation 

Let 𝑓:ℕ → ℕ computable and injective. Then: 

 

 

is computable. 
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Proof 

𝑓−1(𝑦) = 𝜇𝑥. |𝑓(𝑥) − 𝑦| 

The challenge arises because, in some cases, certain input values may not be defined by the function. This 

problem is consistently related to the concept of a "non-total" function, where not all possible inputs have 

corresponding outputs. This, in turn, can lead to difficulties in finding inverse values, as there may exist 

output values for which no valid input exists.  

Hence, not working for non-total functions. 

𝑓:ℕ → ℕ 

𝑓(𝑥) = {𝑥 − 1    𝑖𝑓 𝑥 > 0,    ↑     𝑖𝑓 𝑥 = 0 }     𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

= (𝑥 − 1) + 𝜇𝑧. 𝑠𝑔(𝑥) 

𝑓−1(𝑦) = 𝑦 + 1 ≠   𝜇𝑥. |𝑓(𝑥) − 𝑦| 

 

The key point in this context is that for computable, injective functions, you can define their inverse in a 

computable way using the minimalization operator. Then, it depends when is defined or not. 

If 𝑓 is non-total: 

 

 

 

 

 

 

 

 

 

Let's consider the function 𝑓 and examine its behavior when applied to various inputs.  

In words, this is doing in a dove-tail execution pattern (different computations simultaneously): 

- 0 steps of the program on argument 0 

- 1 step on 0 

- 0 steps on 1 

- 2 steps on 0 

In this graphical representation, each point on the input axis corresponds to a specific input value. We can 

see that for some inputs, 𝑓 yields valid output values (red values).  

However, there are regions on the graph where there are gaps or undefined points. These gaps represent 

cases where 𝑓 is not defined for certain inputs, which makes it a non-total function. This non-totality can 

pose challenges when attempting to find the inverse function 𝑓−1 for every possible output (so the red 

computation continues and goes on and on).  
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To formalize this process, we can use program 𝑃 to compute 𝑓 for every possible number of steps on every 

possible input, but it's important to be aware of the regions where 𝑓 may not yield valid results. 

Every time the program terminates in a certain number of steps 𝑘 given the argument 𝑦, we check the 

output 𝑓(𝑦); if 𝑓(𝑦) = 𝑥 we stop, otherwise we continue. 
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8 PARTIAL RECURSIVE FUNCTIONS 

The 𝑈𝑅𝑀 is just one of the various possible computation models to formalize computability. We can 

alternatively use what we briefly described in the beginning of the course, like: 

• Turing Machine 

• 𝜆-calculus 

• Post system (canonical deduction) 

All of these refer to the same class of computable functions, leading to the following thesis (yeah, always 

this one, for obvious reasons): 

Church-Turing Thesis: A function is computable if and only if it is 𝑈𝑅𝑀-computable (so, a 𝑈𝑅𝑀-model) 

For our program: 

- class ℛ of partial recursive functions 

- prove ℛ = 𝒞 (remember the 𝒞 we’re talking about was defined here and we want to prove is 

equivalent to the 𝑈𝑅𝑀) 

We define then the class of partial recursive functions ℛ, which is the least class w.r.t (with respect to) 𝒞 of 

functions which contains: 

(a) zero function 

(b) successor function 

(c) projections 

and closed under: 

1. composition 

2. primitive recursion 

3. minimalisation 

We argue this is a well given definition and we will give some remarks in detail.  

We can define a rich class of functions if: 

1. it contains (a), (b), (c) [so, all basic operations] 

2. it is closed w.r.t. (1), (2) (3)  

𝑅 is a rich class s.t. for all rich classes 𝒜, we have ℛ ⊆ 𝒜. 

- Note: given 𝐴𝑖 , 𝑖 ∈ 𝐼 a family of rich classes then ⋂ 𝒜𝑖𝑖∈𝐼  is rich (so, a rich class is closed under 

intersection). 

 

- Another note: the class of all functions is rich ⇒ ℛ = ⋂ 𝒜𝒜 𝑟𝑖𝑐ℎ 𝑐𝑙𝑎𝑠𝑠  (it's a way of showing that 

there is a fundamental set of functions that are rich and that encompasses the richness of other 

classes) 

Equivalently, we note 𝑅 is the class of functions (a), (b), (c) which you can obtain from the basic functions 

using a finite number of times (1), (2), (3). 

Theorem: 𝒞 = 𝒜 (we’re now showing that the class of URM-computable functions coincides with the class 

of partial recursive functions) 
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Proof 

- (ℛ ⊆ 𝒞): just keep in mind ℛ is a rich class, while 𝒞 is the smallest rich class, so this inclusion is 

trivial and simply → ℛ ⊆ 𝒞 

 

- (𝒞 ⊆ ℛ): this is quite more difficult; let 𝑓:ℕ𝑘 → ℕ, 𝑓 ∈ 𝒞 be a computable function, so there is a 

𝑈𝑅𝑀-program for 𝑓, call it 𝑃 for instance, such that 𝑓𝑝
𝑘 = 𝑓. We want to show 𝑓 ∈ ℛ, so we reach 

with program after all input a function computing all its things (the vector one): 

 

 

 

 

 

 

{
𝑐𝑝
1: ℕ𝑘+1 → ℕ

𝑐𝑝
1(𝑥⃗, 𝑡)  = 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 𝑅1 𝑎𝑓𝑡𝑒𝑟 𝑡 𝑠𝑡𝑒𝑝𝑠 𝑜𝑓 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃(𝑥⃗)

 

(Above we consider 𝑐1
𝑝

 which is the content of 𝑅1 after 𝑡 steps of 𝑃(𝑥⃗) and will give the output of function 

if the program terminates in less than 𝑡 steps. This function is clearly total). 

Now, we’re defining the function for the instruction to be executed after 𝑡 steps of 𝑃(𝑥⃗) (also a total 

function), which is  

𝑗𝑝
1: ℕ𝑘+1 → ℕ 

 

 

 

 

Let 𝑥 ∈ ℕ𝑘  

→ 𝑖𝑓 𝑓(𝑥⃗), 𝑡ℎ𝑒𝑛 𝑃(𝑥⃗) ↓ 𝑖𝑛 𝑎 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠 

𝑡0 = 𝜇𝑡. 𝑗𝑝(𝑥⃗, 𝑡) (the least number of steps to reach a state where jump is undefined) 

ℎ𝑒𝑛𝑐𝑒 𝑓(𝑥⃗) = 𝑐𝑝
1(𝑥⃗, 𝑡0) = 𝑐𝑝

1(𝑥⃗, 𝜇𝑡. 𝑗𝑝(𝑥⃗, 𝑡)) (the value of function is determined by number of steps to 

have it undefined) 

→ 𝑖𝑓 𝑓(𝑥⃗), 𝑡ℎ𝑒𝑛 𝑃(𝑥⃗) ↑ (must be undefined, given the undefined behavior of jump) 

ℎ𝑒𝑛𝑐𝑒 𝜇𝑡. 𝑗𝑝(𝑥⃗, 𝑡) ↑ 

therefore: 

𝑓(𝑥⃗) = 𝑐𝑝
1 (𝑥⃗, 𝜇𝑡. 𝑗𝑝(𝑥⃗, 𝑡)) ↑ 

In all cases (in words: the combination of these functions is able to describe a URM program): 

𝑓(𝑥⃗) = 𝑐𝑝
1 (𝑥⃗, 𝜇𝑡. 𝑗𝑝(𝑥⃗, 𝑡)) 
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If we knew 𝑐𝑝
1, 𝑗𝑝 ∈ ℛ, we would conclude 𝑓 ∈ ℛ. To resolve the problem and complete the proof, you 

need to demonstrate that the functions are indeed partial recursive functions. 

Let’s then try to 𝑐𝑝
1, 𝑗𝑝 are in ℛ. We take a program 𝑃 in standard form (composed by a list of instructions).  

What we’re going to do is working on sequences encoding representing the registers and program counter 

configurations (respectively, 𝑐𝑝 and 𝑗𝑝 in general form, so “computation” and “jump” defined by 

composition and primitive recursion), then manipulate these with functions that are also composite and 

recursive, obtaining as a result 𝑐𝑝
1 and 𝑗𝑝 themselves. 

We can see this as: 

 

 

 

 

 

 

 

 

 

In the context of this memory encoding, we establish a representation for the configuration of registers. 

This representation, denoted as 𝑐, is calculated as the product of prime numbers, with each prime number 

raised to the power of the value stored in the corresponding register.  

The product spans over all prime numbers, and the allocation position is indicated by the factorization of 

the prime numbers. In formal terms, this can be expressed as: 

𝑐 =∏𝑃𝑖
𝑟𝑖 =∏𝑃𝑖

𝑟𝑖

𝑛

𝑖=1𝑖≥1

 

with 𝑃𝑖 representing the prime numbers and 𝑟𝑖 representing the values stored inside registers. 

Consider 𝑐𝑝 and 𝑗𝑝 with the recursive definition given before: 
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We define 𝑐𝑝, 𝑗𝑝 by primitive recursion as follows (first, the base cases): 

𝑐𝑝(𝑥⃗, 0) =  ∏𝑃𝑖
𝑥𝑖

𝑘

𝑖=1

 

𝑗𝑝(𝑥⃗, 0) = 1 

The recursion cases follow. We define: 

𝑐𝑝(𝑥⃗, 𝑡 + 1) 

𝑗𝑝(𝑥⃗, 𝑡 + 1) 

using a simplified notation: 

𝑐𝑝(𝑥⃗, 𝑡) = 𝑐 

𝑗𝑝(𝑥⃗, 𝑡) = 𝑗 

 

 

 

 

 

 

 

 

 

In words, to explain properly everything that was defined above for each case in the same order: 

- In case 1 the quotient of the number to be reset to zero is done so as to reset the exponent relative 

to the register in the numeric representation of the memory. 

- In case 2 the multiplication of the prime number associated with the register is done to increase 

the exponent of the prime number associated with the register in the numeric representation of 

memory by 1. 

- The case otherwise occurs when the program terminates or the jump instruction points outside the 

program, in either case the program memory does not change 

 

We the define the transfer of said program: 
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- In case 1, if the instruction is not jump, or it is a jump but with condition false, the instruction 𝑡 + 1 

is the next one.  

o If the jump has condition is true and the instruction to jump to is internal to the program, 

the next instruction is 𝑞.  

o Otherwise if the program is terminated or the jump instruction is finished outside the 

program 0 is returned. 

- The two functions are then defined using a "per case" definition and combining previously defined 

functions with basic operations (recursive primitives), so these two functions are in 𝒫ℛ and 

therefore are also in ℛ.  

Hence 𝑗𝑝, 𝑐𝑝 ∈ 𝑅 and thus 𝑓(𝑥⃗) = (𝑐𝑝 (𝑥⃗, 𝜇𝑡. 𝑗𝑝(𝑥⃗, 𝑡))
1

 and therefore 𝑓 ∈ ℛ. 

In this context, relying solely on unbounded minimalization and composition, we can confidently assert that 

the instruction pointer and program counter consistently yield valid outcomes. This assurance guarantees 

that the instruction pointer performs computations within defined boundaries, with a particular emphasis 

on the input for the first component (indicated by the subscript '1'), which is the register computation 

guaranteeing the successor instruction will be defined. 

This way, the program will compute its code effectively, without going out of bounds.   
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9 PRIMITIVE RECURSIVE FUNCTIONS 

We define the class of primitive recursive functions 𝒫ℛ as the smallest class of functions which: 

- Includes the basic functions 

o Zero function 

o Successor function 

o Projections 

- Is closed under 

o Composition 

o Primitive recursion 

o Minimalisation (not defined in all cases, because this is unbounded e.g. while loops) 

Intuitively, 𝑃𝑅 corresponds to bounded iterations, e.g. for loops. This way, we use a model to formalize 

structured program replacing jumps with for/while loops. This model can correspond to a class called 

𝐶𝑓𝑜𝑟,𝑤ℎ𝑖𝑙𝑒, which coincides with 𝒞 = ℛ.  

We also know that 𝒫ℛ ⊈ ℛ, because 𝒞𝑓𝑜𝑟  coincides with 𝑃𝑅 only with the for construct, this way we can 

include all cases if well-defined.  

- 𝒫ℛ does not contain all computable functions, because 𝑃𝑅 has always total functions inside, 

obtained by composition and primitive recursion. We study this class to understand the expressive 

power of for/while loops. 

One can still suppose 𝒫ℛ includes all total recursive functions, defining a set containing them all as 𝑇𝑜𝑡, so 

𝒫ℛ = ℛ ∩ 𝑇𝑜𝑡 (as was theorized by Hilbert). This is false (hence 𝒫ℛ ⊈ ℛ ∩ 𝑇𝑜𝑡). 

- The key reason for this is the while construct. Primitive recursive functions, as defined within the 

class 𝑃𝑅, are inherently based on bounded iterations, such as for loops 

- Total functions always terminate, and while loops may not 

Essentially, the while construct allows for both total/ending computations but also unbounded, even 

when considering total functions, potentially opening to unbounded results. As a consequence: 

- only minimalization can be used to define non-total functions 

- the 𝒫ℛ class is not able to define non-total functions and cannot define all total functions 

9.1 THE ACKERMANN FUNCTION 
 

A function which witnesses the inclusion 𝑃𝑅 ⊈ ℛ ∩ 𝑇𝑜𝑡  is the Ackermann function (the Greek letter below 

is “Psi” and an animation of the function here and my general summary on its point here) 

The function is an example of a total recursive function that is not primitive recursive (so, not primitive 

recursive but computable, only not using the set of primitive recursive operations, as it has more cases). Its 

definition involves unbounded recursion, which is not guaranteed to terminate. 

  

 

 

 

http://gfredericks.com/sandbox/arith/ackermann
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The function takes as argument two non-negative integers, so 𝑥 and 𝑦. Specifically: 

- Base case: the result is simply one more than the second argument 𝑦, which resembles the 

behavior of a successor function. 

 

- In another base case where the second argument 𝑦 is 0, the function behaves as follows: 

𝜓(𝑥, 0)  =  𝜓(𝑥 − 1, 1). Here, when 𝑦 is 0, the function recursively calls itself with 𝑥 decreased by 

1 and 𝑦 set to 1. So, first argument simply diminishes. 

 

- In the most complex case, when both 𝑥 and 𝑦 are greater than 0, the Ackermann function proceeds 

with deep nested recursion. It evaluates as 𝜓(𝑥, 𝑦)  =  𝜓(𝑥 − 1,𝜓(𝑝, 𝑦 − 1)). This case involves 

two levels of recursion. Initially, it calculates 𝜓(𝑥, 𝑦 − 1), effectively decreasing the second 

argument 𝑦. Then, it calculates 𝜓(𝑥 − 1,𝜓(𝑥, 𝑦 − 1)), resulting in a nested recursive structure. 

o So, in this case, we have a case in which the first argument gets smaller, another when the 

second argument gets smaller 

In other terms, the arguments of the function diminish in a lexicographical order on 𝑁2 (two-dimensional, 

because it depends on both 𝑥 and 𝑦) inside sequences of numbers: (𝑁2, ≤𝑙𝑒𝑥), (𝑥, 𝑦) ≤𝑙𝑒𝑥 (𝑥
′, 𝑦′) 𝑖𝑓 𝑥 <

𝑥′𝑜𝑟 (𝑥 = 𝑥′) 𝑎𝑛𝑑 (𝑦 ≤ 𝑦′). We can show (𝑁2, ≤𝑙𝑒𝑥) does not allow for infinite descending sequences. 

This means that given two pairs (𝑥, 𝑦) and (𝑥′, 𝑦′), the lexicographical order ≤𝑙𝑒𝑥 dictates that (𝑥, 𝑦) is 

considered less than or equal to (𝑥′, 𝑦′) if either 𝑥 is less than 𝑥′ or, in the case of equal 𝑥 values, 𝑦 is less 

than or equal to 𝑦′. 

(1000, 1000000) <𝑙𝑒𝑥 (1001, 0) 

(1000, 1000000) >𝑙𝑒𝑥 (1001, 0) 

Here, when you compare (1000, 1000000) and (1001, 0): 

- The lexicographical order first compares the first elements: 1000 and 1001. Here, 1000 is less than 

1001, so (1000, 1000000) <𝑙𝑒𝑥 (1001, 0) because the first element 𝑥 in the first pair is smaller 

than the first element 𝑥 in the second pair. 

 

- If the first elements were equal, the lexicographical order would then compare the second 

elements 𝑦. In this case, the second elements are 1000000 and 0. Because the first elements 

𝑥 have already determined the order (1000 < 1001), there's no need to further compare the 

second elements 𝑦. In lexicographical order, if the first elements are different, the comparison 

stops at that point. 

Concretely: the function grows enormously, but the argument diminish according to an order. 

An example: 

𝑓: ℤ → ℤ 

𝑓(𝑧) = {
0, 𝑧 ≥ 0

𝑓(𝑧 − 1), 𝑧 < 0
 

Simply, we say that this has a finite recursion → 𝑓(−1) → 𝑓(−2) → 𝑓(−3)… 

In the example of 𝑓(𝑧), when the input is initially negative (𝑧 < 0), the function repeatedly reduces the 

value of 𝑧 by 1. This process continues until 𝑧 reaches a non-negative value. 

Ackermann function has a logically sound recursion and to show so, we use need more notions.  
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9.2 PARTIALLY ORDERED/WELL FOUNDED POSETS 
 

Definition (partially ordered set) 

We define then a partially ordered set (abbreviated as “poset”, elements defined in an increasing order) as: 

(𝐷,≤)        ≤ 𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑒          𝑥 ≤ 𝑥 

≤ 𝑎𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐          𝑥 ≤ 𝑦 𝑎𝑛𝑑 𝑦 ≤ 𝑥 ⇒ 𝑥 = 𝑦 

≤ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒          𝑥 ≤ 𝑦 𝑎𝑛𝑑 𝑦 ≤ 𝑧 ⇒ 𝑥 ≤ 𝑧 

So basically, we analyze a binary relation in which elements are ordered (reflexive), there are no circular 

relations between elements because elements are different (antisymmetric) and elements have a 

predictable order (transitive).  

In a partially ordered set, some pairs of elements may be related, while others may not be related at all. 

Definition (Well-founded posets) 

(𝐷,≤) 𝑖𝑠 𝑤𝑒𝑙𝑙 − 𝑓𝑜𝑢𝑛𝑑𝑒𝑑 𝑖𝑓 ∀𝑥 ⊆ 𝐷 , 𝑥 ≠ 0, ℎ𝑎𝑠 𝑎 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 

In other words, within any non-empty subset, you can always find an element that is minimal with respect 

to the given partial order (so, we have no infinite descending chains) – this is what happens in Ackermann.  

- This means there's no other element in 𝑋 that is strictly smaller than 𝑑 in terms of the order 

relation (≤).  

- If the computation is well-founded, there is always a step which leads to a smaller value and 

eventually the program will terminate, given we will always find a minimal element. 

 

 

 

 

𝑑 ∈ 𝑋 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑠. 𝑡. 𝑖𝑓 𝑑′ ≤ 𝑑 𝑡ℎ𝑒𝑛 𝑑′ = 𝑑 

(given the partial order, “we can’t mix different things together” aka “you can’t mix pears with apples”). 

𝐷 = {(𝑝𝑒𝑎𝑟, 𝑛), (𝑎𝑝𝑝𝑙𝑒, 𝑛) | 𝑛 ∈ 𝑁} 

(𝑥, 𝑦) ≤ (𝑥′, 𝑦′) 𝑖𝑓 (𝑥 = 𝑥′) 𝑎𝑛𝑑 (𝑦 ≤ 𝑦′) 
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In this context, we’re dealing with a partially ordered set (poset) that consists of pairs of elements, where 

each element is associated with a label (such as "𝑝𝑒𝑎𝑟" or "𝑎𝑝𝑝𝑙𝑒") and a natural number (𝑛).  

The partial order on this set is defined such that elements are ordered first by their labels and then, within 

the same label, by their associated natural numbers. The key relationship here is "≤," which denotes the 

partial order on this set. 

• An element (𝑥, 𝑦) is considered less than or equal to (𝑥′, 𝑦′) if and only if both the labels are the 

same (𝑥 =  𝑥′) and the natural number associated with the first element is less than or equal to 

the natural number associated with the second element (𝑦 ≤  𝑦′). 

Here's the explanation for the example in the context of the partial order: 

- Suppose you have two elements, (𝑥, 𝑦) and (𝑥′, 𝑦′) in 𝐷. These elements represent items labeled 

"𝑝𝑒𝑎𝑟" and "𝑎𝑝𝑝𝑙𝑒," along with natural numbers, respectively. 

 

- The partial order specifies that you can't mix items of different labels, meaning you can't compare 

"𝑝𝑒𝑎𝑟𝑠" with "𝑎𝑝𝑝𝑙𝑒𝑠" in this order. So, comparing (𝑥, 𝑦) and (𝑥′, 𝑦′) only makes sense when 𝑥 

and 𝑥′ are the same (both "𝑝𝑒𝑎𝑟" or both "𝑎𝑝𝑝𝑙𝑒"). 

 

- Once you've established that the labels match (𝑥 =  𝑥′), you can compare the natural numbers (𝑦 

and 𝑦′). The element (𝑥, 𝑦) is considered "minimal" if there is no other element (𝑥′, 𝑦′) in 𝐷 with 

the same label (𝑥 =  𝑥′) where 𝑦′ is less than or equal to 𝑦. 

We note also: 

- Is ℤ well-founded? No (we can’t always find a minimal element) 

- Is ℕ well-founded? Yes (given it’s a well-ordered set, we can always find a minimal element) 

Note: (𝐷,≤) is well-founded if and only if there is no infinite descending chain 𝑑0 > 𝑑1 > 𝑑2… in 𝐷. This 

way our computation descends a decreasing sequence of values, which is necessarily finite. 

(In words: This fact can be useful when dealing with termination problems. If we can conclude that the set 

of configurations is well-founded, we simply need to prove that inductively this is all defined. This works 

also here with Ackermann: given the computation is based on smaller values, at some point it will end) 

Remember from before that (ℕ2 ≤𝑙𝑒𝑥) is well-founded. 

Let 𝑥 ⊆ ℕ2, 𝑥 ≠ 0: 

𝑥0 = min{𝑥 |  ∃𝑦. (𝑥, 𝑦) ∈ 𝑋} 

𝑦0 = min{𝑦 | (𝑥0, 𝑦) ∈ 𝑋} → (𝑥0, 𝑦0) = min 𝑋 

Essentially, what we just said simply means there is always a smallest element according to the 

lexicographical order and there is always a well-defined order. 

To explain the further concepts, we need to properly define induction.  

Given  𝑃(𝑛), 𝑛 ∈ ℕ, 𝑃(0) and assuming 𝑃(𝑛) you can deduce 𝑃(𝑛 + 1) 

⇓ 

𝑃(𝑛) ℎ𝑜𝑙𝑑𝑠 ∀𝑛 

(essentially, given a case, if it holds for a base case, it will hold for all natural numbers). Let’s give a simple 

reasoning by induction: a binary tree formation. 
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Statement: “A binary tree with height ℎ has at most 2𝑛+1 − 1 nodes” 

- Base case (𝑛 = 0) → number of nodes = 1 ≤ 20+1 − 1 = 2 − 1 = 1 

- Recursive case (𝑛 → 𝑛 + 1) 

 

 

 

 

 

9.3 COMPLETE/WELL-FOUNDED INDUCTION AND ACKERMANN PROOF 
 

As shown here, normal induction reaches cases where it can’t conclude (basically, the height of a binary 

tree can vary, because it would involve proving that if statement holds for trees of different height using 

always the same 𝑘; this is not linear, and the proof would require bounding the height to a value and 

inductively show the thing).  

We then need the complete induction, in which this can be applied to any well-founded poset. 

Specifically, to prove that 𝑃(𝑛) holds ∀𝑛 ∈ ℕ, show 

∀𝑛, assuming 𝑃(𝑛′) ∀𝑛′ < 𝑛 then 𝑃(𝑛) 

All of this is a well-founded induction. We define here (𝐷,≤) well-founded order, 𝑃(𝑥) property over 𝐷, if 

∀𝑑 ∈ 𝐷, assuming ∀𝑑′ < 𝑑, 𝑃(𝑑′), we can conclude 𝑃(𝑑) “holds everywhere”: 

⇓ 

∀𝑑 ∈ 𝐷 𝑃(𝑑) 

All this tour leads to a conclusion: the Ackermann function is total and if a property holds for all numbers 

before, then it will hold for all those after. 

Formally: 

1) Ψ is total 

• ∀(𝑥, 𝑦) ∈ 𝑁2, Ψ(𝑥, 𝑦) ↓ proceed by well-founded induction of (𝑁2, ≤𝑙𝑒𝑥) 
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Proof 

Let (𝑥, 𝑦) ∈ ℕ2, assume ∀(𝑥′, 𝑦′) <𝑙𝑒𝑥 (𝑥, 𝑦),Ψ(𝑥
′, 𝑦′) ↓, we want to show Ψ(𝑥, 𝑦) ↓ 

We have three cases: 

1) (𝑥 = 0) → Ψ(𝑥, 𝑦) = Ψ(0, 𝑦) = 𝑦 + 1 ↓ 

 

2) (𝑥 > 0, 𝑦 = 0) → Ψ(𝑥, 0) = Ψ(𝑥 − 1), 1) 

• (𝑥 − 1) <𝑙𝑒𝑥 (𝑥, 𝑦) ℎ𝑒𝑛𝑐𝑒 Ψ(𝑥 − 1, 1) ↓ by inductive hypothesis 

 

3) (𝑥 > 0, 𝑦 > 0) → Ψ(𝑥, 𝑦) = Ψ(𝑥 − 1),Ψ(𝑥, 𝑦 − 1) = Ψ(𝑥 − 1, 𝑢) ↓ (by ind. hyp.) 

• <𝑙𝑒𝑥 (𝑥, 𝑦) → Ψ(𝑥, 𝑦 − 1) ↓ = 𝑢 by inductive hypothesis 

Essentially, we prove Ackermann is total given two non-negative numbers which are well-defined in their 

order. We consider three cases based on the values of x and y: 

- Case 1 (𝑥 = 0): In this case, if 𝑥 is 0, we know that 𝛹(𝑥, 𝑦) is 𝛹(0, 𝑦). This leads to a 

straightforward result, which is y + 1. The function Ψ(0, y) is guaranteed to terminate, so this case is 

covered. 

 

- Case 2 (𝑥 > 0 𝑎𝑛𝑑 𝑦 = 0): When 𝑥 is greater than 0 and 𝑦 is 0, we have 𝛹(𝑥, 0)  =  𝛹(𝑥 − 1, 1). 

We know that 𝛹(𝑥 − 1, 1) terminates because it's part of our induction hypothesis. This means 

that 𝛹(𝑥, 0) also terminates. 

 

- Case 3 (𝑥 > 0 𝑎𝑛𝑑 𝑦 > 0): In the most complex case, where both 𝑥 and 𝑦 are greater than 

0,𝛹(𝑥, 𝑦) involves a nested recursion. It's defined as 𝛹(𝑥 − 1,𝛹(𝑥, 𝑦 − 1)). Our induction 

hypothesis ensures that 𝛹(𝑥, 𝑦 − 1) terminates (denoted as "𝑢"). Since (𝑥 − 1, 𝑢) is smaller than 

(𝑥, 𝑦), and we've assumed that for all smaller pairs, 𝛹 terminates, we can conclude that 𝛹(𝑥, 𝑦) 

also terminates.  

If you want to discuss infinite things: 

(𝑁2, ≤𝑙𝑒𝑥) 

(0,0)   (0,1)   (0,2) ….     (1,0)   (1,1)   (1,2) ….   (2,0)   (2,1)   (2,2) …. 

 

 

We are highlighting that, even though this set contains an infinite number of pairs, they are ordered in a 

systematic and predictable way. As you move through this set, the values in each pair follow a pattern, 

allowing us to compare and order them consistently. 

Within this well-ordered set, the Ackermann function operates by moving through these pairs in a specific 

manner. It doesn't "jump out" of this structured order.  

- The function goes through a process of descending values within this well-ordered set 

- This way, it can compute values within the natural numbers (N) without running into infinite or 

unbounded operations. 
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One could argue by using the Church-Turing thesis: the computation of Ψ(𝑥, 𝑦) is always reduced to the 

computation of 𝜓 on smaller input values until we reach a base case where the successor is used. The 

above is unsatisfactory. Given it is always defined, it is total. 

2) Ψ ∈ ℝ = 𝒞 

Ψ(1,1) = Ψ(0,Ψ(1,0)) = Ψ(0,2) = 3 

 

 

(1,1,3)    (0,2,3)    (1,0,2)    (0,1,2) 

In words: we reach sets of values defined by recursion, in this case triples defined inside these sets. 

Especially, we characterize: 

(𝑥, 𝑦, 𝑧) ∈ 𝑁3              → 𝑍 = Ψ(𝑥, 𝑦) 

→ 𝑆 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑙𝑙 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 Ψ(𝑥, 𝑦) 

A set 𝑆 ⊆ ℕ3 is considered valid if, for all (𝑥, 𝑦, 𝑧) ∈ 𝑆, it satisfies two conditions: 

1. 𝑧 equals 𝛹(𝑥, 𝑦), ensuring that the results in the set are consistent with the Ackermann function. 

2. 𝑆 contains all the triples needed to compute 𝛹(𝑥, 𝑦) for different values of 𝑥 and 𝑦. 

 

Formally, you just need to recall the function is defined (Ackermann system of equations definition), so 𝑆 ⊆

𝑁3 is valid. 

- (0, 𝑦, 𝑧) ∈ 𝑆 → 𝑧 = 𝑦 + 1 

- (𝑥 + 1,0, 𝑧) ∈ 𝑆 → (𝑥, 1, 𝑧) ∈ 𝑆 

- (𝑥 + 1, 𝑦 + 1, 𝑍) ∈ 𝑆 → ∃𝑢 (𝑥 + 1, 𝑦, 𝑢) ∈ 𝑆 𝑎𝑛𝑑 (𝑥, 𝑢, 𝑧) ∈ 𝑆 

You can show: 

∀(𝑥, 𝑦) ∈ 𝑁2, 𝑧 ∈ 𝑁 → Ψ(𝑥, 𝑦) = 𝑧  𝑖𝑓𝑓 ∃ 𝑣𝑎𝑙𝑖𝑑 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 𝑆 ∈ 𝑁3 𝑎𝑛𝑑 𝑆 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠. 𝑡. (𝑥, 𝑦, 𝑧) ∈ 𝑆 

(essentially, we have Ψ(𝑥, 𝑦) = 𝑧 𝑖𝑓𝑓 a valid finite set of triples is defined by complete induction, knowing 

the set is preserved under union) 

Then (in words: every triple can be encoded as a set of numbers and then as a number using primes) 

Ψ(𝑥, 𝑦) = " 𝜇 (𝑆, 𝑧). (𝑆 ∈ 𝑁3 𝑓𝑖𝑛𝑖𝑡𝑒 𝑣𝑎𝑙𝑖𝑑 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 𝑎𝑛𝑑 (𝑥, 𝑦, 𝑧))" 

 

 

→ Ψ ∈ ℛ = 𝒞 

(so, there exists the smallest finite number in which a valid set of triples minimizes correctly and gives 

values recursively enumerable inside the resulting function – aka computable and quantifiable). 

3) 𝑦 ∉ 𝒫ℛ 

This part of the proof wants to show that Ψ is not a primitive recursive function showing it grows faster 

than every other function in 𝑃𝑅. We combine nested primitive recursion to show Ackermann cannot 

compute a finite number of nested primitive recursions. 
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By using primitive recursion you can define the sum via the successor: 

- 𝑥 + 𝑦   

𝑥 + 0 = 𝑥 

𝑥 + (𝑦 + 1) = (𝑥 + 𝑦) + 1 

- 𝑥 ∗ 𝑦   

𝑥 ∗ 0 = 0 

𝑥 + (𝑦 + 1) = (𝑥 ∗ 𝑦) + 𝑥 

- 𝑥𝑦   

𝑥0 = 1 

𝑥(𝑦+1) = (𝑥𝑦) ∗ 𝑥 

(so, essentially, basic arithmetic operations under primitive recursion is defined). 

Consider 𝑥 as first parameter: 

Ψ𝑥(𝑦) = Ψ(𝑥, 𝑦) 

Ψ𝑥+1(𝑦) = Ψ𝑥(Ψ𝑥+1(𝑦 − 1)) = Ψ𝑥 (Ψ𝑥(Ψ𝑥+1(𝑦 − 2))) = Ψ𝑥…Ψ𝑥  Ψ𝑥+1(0) 

 

= Ψ𝑥…Ψ𝑥(1) = Ψ𝑥
𝑦+1

(1) 

 

Roughly: increasing 𝑥 𝑡𝑜 𝑥 + 1 you need iterating Ψ𝑥  , 𝑦 + 1 times → 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑜𝑟 𝑙𝑜𝑜𝑝 

So, we need minimalization → Ψ ∉ 𝒫ℛ 

(So, number of nested recursions is infinite and with primitive recursion we can’t quantify it prior; it’s 

necessary to use the unbounded minimalisation, hence Ackermann is not primitive recursive) 

Yeah, that was quite a ride, wasn’t it? 

 

- Short explanation in words: 

Intuitively, if x grows so does the level of nesting in the functions, which is equivalent to say that we need 

more nested for loops. Since x can grow to infinity and for loops cannot be nested to infinity, a while loop is 

needed. The for-loops nesting level won’t be able to catch up in a bounded way, so is not in PR. 

 

- Longer explanation in words: 

The discussion transitions to 𝛹𝑥+1(𝑦), representing the Ackermann function for the next value of 𝑥. The 

key insight here is that when you increase 𝑥 by 1, you need to iterate 𝛹𝑥(𝑦) a certain number of times, 

specifically 𝑦 + 1 times. This represents additional loops or iterations in the computation. 

The key insight is that you need a form of "minimalization" to determine how many additional iterations 

are required when 𝑥 increases by 1, but primitive recursive functions lack this capacity. 
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For the final part, to account for this additional looping when increasing 𝑥, a process of minimalization is 

introduced. This is because the Ackermann function doesn't fit neatly into the framework of primitive 

recursion, as it requires also unbounded iterations, giving we need additional loop and iteration “to try to 

reach a finite value”. 

To properly move ahead with the function, you need to iterate the function multiple times, which goes 

beyond what primitive recursion can handle. This leads to the conclusion that 𝛹 is not a primitive recursive 

function, as it necessitates unbounded iteration and minimalization, making it a more powerful and 

complex function. 

 

- At the end of the day: 

To be able to define all total functions you also need minimalization: otherwise, some functions might be 

too powerful to express traditionally, like happens here. 

 

Mathematically, we have: 

ψ ∈ ℛ ∩ 𝑇𝑜𝑡,Ψ ∉ 𝒫ℛ 

and so: 

𝑃𝑅 ⊊ ℛ ∩ 𝑇𝑜𝑡 
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10 ENUMERATING URM PROGRAMS 

 

 

 

We are postulating the existence of a universal program that can take programs (𝑃) represented as 

numerical input (vector of inputs, so the usual 𝑥⃗) and produce computations as output by processing the 

given instructions (so 𝑃(𝑥⃗)). To do that, we will establish the set of all programs is effectively denumerable, 

having an effective coding of programs by the set of all natural numbers – aka compiler. 

The goal is proving the enumeration of URM programs, so we give the following definition: 

Definition (Countable set) 

A set 𝑋 is countable if |𝑋| ≤ |ℕ| i.e. there is 𝑓: ℕ → 𝑋 surjective (enumeration/denumerable), in which we 

can list all elements one after the other with no repetition (so, we can list all URM programs without 

repetition and without missing any) as: 

𝑓(0)   𝑓(1)   𝑓(2) …⏟             

𝑥  

An enumeration is without repetitions if it is injective (we map elements from A to B distinctively) and thus 

bijective (complete mapping).  

- If 𝑓 is also injective, this is called bijective enumeration.  

- We require this enumeration to be effective (so finite and computable) and this happens if 𝑓 itself 

is effective; this doesn’t talk about computability, instead we use already computable components 

arguing about effectiveness 

Lemma 

There are bijective enumerations of effective functions (bijective support functions) 

1) 𝜋:ℕ2 → ℕ 
2) 𝑣:ℕ3 → ℕ 
3) 𝜏:⋃ ℕ𝑘𝑘≥1 → ℕ  

Proof 

On each set, we give a function which effectively shows the lemma: 

1) π 

We saw already that the following function: 

𝜋:ℕ2 → ℕ 

𝜋(𝑥, 𝑦) = 2𝑥(2𝑦 + 1) − 1 

is computable and we give its inverse: 

𝜋−1: ℕ → ℕ2 

𝜋−1(𝑛) = (𝜋1(𝑛), 𝜋2(𝑛)) 



109   Computability simple (for real) 
 

Written by Gabriel R. 

So, given: 

𝜋1, 𝜋2: ℕ → ℕ 

𝜋1(𝑛) = (𝑛 + 1)1 

(for your reference, remember the 1 in subscript represents the first component of output) 

𝜋2(𝑛) = (

𝑛 + 1
2𝜋1(𝑛)

2
) − 1 = 𝑞𝑡(2, 𝑞𝑡(2𝜋1 , 𝑛 + 1)) − 1 

2) 𝑣 

Consider the function: 

𝑣: ℕ3 → ℕ 

𝑣(𝑥, 𝑦, 𝑧) = 𝜋(𝑥, 𝜋(𝑦, 𝑧)) 

is computable and its inverse is built upon projections: 

𝑣−1: ℕ → ℕ3 

𝑣−1(𝑛) = (𝑣1(𝑛), 𝑣2(𝑛), 𝑣3(𝑛)) 

𝑣1(𝑛) = 𝜋1(𝑛) 

𝑣2(𝑛) = 𝜋1(𝜋2(𝑛)) 

𝑣3(𝑛) = 𝜋2(𝜋2(𝑛)) 

having 𝑣1, 𝑣2, 𝑣3 computable (so, projections leverage multiple successor functions and allow us to map 

natural numbers and get back triples effectively). 

2) 𝜏 (this letter is “tau”) 

𝜏: ⋃𝑁𝑘

𝑘≥1

 

𝜏(𝑥1, … 𝑥𝑘) =∏𝑃𝑖
𝑥𝑖 − 1

𝑘

𝑖=1

 

The encoding of tuple is not injective, given it probably won’t always map distinct elements (because we 

calculate a product and if there are same values, we might have multiple tuples mapping to the same value 

and violate injectiveness); the presence of subtraction further elevates the chance of having a collision. 

The idea is incrementing the last component in the following way: 

(1,0) → 𝑝1
1, 𝑝2

0 − 1 = 21 ∗ 30 − 1 = 1 

(1,0,0) → 𝑝1
1 ∗ 𝑝2

0 ∗ 𝑝3
0 = 21 ∗ 30 ∗ 50 − 1 = 1 

𝜏(𝑥1, … 𝑥𝑘) = (∏𝑃𝑖
𝑥𝑖) ∗ 𝑃𝑘

𝑥𝑘+1 = 2

𝑘−1

𝑖=1

 

The function 𝜏 is designed to increment the last component of the tuple by 1 and then compute the 

product of the other components.  
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We treat in a special way the last component (which is 𝑃𝑘
𝑥𝑘+1) to determine the injectivity of the sum, given 

it will map finite components determined by the following inverse function: 

𝜏−1: ℕ →⋃ℕ𝑘

𝑘≥1

 

𝜏−1(𝑛) = 𝑎(𝑛, 1)   𝑎(𝑛, 2)… (𝑛, 𝑙(𝑛))⏟                   

𝑙(𝑛)  𝑙: ℕ → ℕ 

The overall idea is to take a natural number 𝑛 and determine how many components should be in the tuple 

(length of decoding), as determined by the function 𝑙(𝑛). Once you know the length, you can use the 

function 𝑎(𝑛, 𝑖) to compute each component of the tuple. 

Now, given we can determine the length of the program, we want to determine the value of the single 

component (the last one 𝑙(𝑛) is computable, it’s asked to show it by exercise; this is shown by inserting 

correctly values via injection): 

𝑛 = 𝜏(… ) = (∏𝑃𝑖
𝑥𝑖) ∗ 𝑃𝑘

𝑥𝑘+1 = 2

𝑘−1

𝑖=1

⏞              

 

𝑘 = 𝑙(𝑛) 

𝑙(𝑛) = 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑘 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑝𝑘  𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑛 + 2 

(𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒, "𝑠ℎ𝑜𝑤 𝑖𝑡 𝑎𝑠 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒") 

Solution (made by me, best to take with a grain of salt) 

To show this is computable, we want to test some 𝑘 values which will respect the property of 𝑙(𝑛). 

So, given 𝑛 = 2 and so 𝑙(𝑛) = 2, we must find 𝑘: 

- Start with 𝑘 = 1. We check if 𝑃1 (first prime number that we have at our disposal across all the 

possible ones, so 2) divides 2 + 2, which is 4 (given 𝑛 + 2 = 2 + 2 = 4). In this case, it happens. 

- Continue with 𝑘 = 2. Check if 𝑃2 (second prime number, so 3) divides (2 + 2). This does not 

happen. 

We conclude the length of tuple is 𝑘 = 1.  

(Moving on) 

We see another definition of 𝑙(𝑛) in notes, which uses bounded minimalization to exist.  

In words, we can summarize its reasoning like this: observe there is always a smaller ℎ which is defined as 

bound for 𝑥 for which the division of the prime number for (𝑥 + 2) will either give 1 or 0 (hence, the usual 

negated sign function). 

So, given minimalisation is used, we can formalize it like: 

𝑥 − 𝜇(ℎ ≤ 𝑥) 

Usually, this is accompanied by usage inside the division function, so: 

𝑠𝑔(𝑑𝑖𝑣(𝑝𝑥−ℎ , (𝑥 + 2))) 



111   Computability simple (for real) 
 

Written by Gabriel R. 

Finally: 

 

Let’s give another function: 

𝑎(𝑛, 𝑖) = {
(𝑛 + 2)𝑖, 𝑖 < 𝑙(𝑛)

(𝑛 + 2)𝑖 − 1, 𝑖 = 𝑙(𝑛)
 

𝑙: ℕ → ℕ, 𝑎:ℕ2 → ℕ 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

We can now encode programs or instructions using a mapping that allows us to access program elements 

by computing the successor function 𝑖 times, where 𝑖 is determined by the length of the program. This 

approach enables effective encoding and decoding of programs using instructions, lists, or other data 

structures which compute elements continuously.  

A more general but alternative encoding is this one (which works with composition on two elements): 

 

 

 

Observation: Let 𝑃 the set of all 𝑈𝑅𝑀 programs. There is an “effective” enumeration which is bijective: 

𝛾: 𝑃 → ℕ ("𝑡𝑜 𝑒𝑣𝑒𝑟𝑦 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑎𝑠𝑠𝑖𝑔𝑛 𝑎 𝑛𝑢𝑚𝑏𝑒𝑟") 

(the Greek letter is “gamma”). The previous one also uses 𝛽: 𝐼𝑠𝑡𝑟𝑈𝑅𝑀 → ℕ, which “to every instruction 

assigns a number”. Two key observations: 

- Since programs are a sequence of instructions, 𝛾 is nothing more than the product of the power 

elevation of the encoding according to the instructions present. 

- Since computable programs are enumerable and since computable functions are those that have a 

program that computes it, then such functions are also enumerable 

Let 𝐹 = {𝑍(𝑛), 𝑆(𝑛), 𝑇(𝑚, 𝑛), 𝐽(𝑚, 𝑛, 𝑡):𝑚, 𝑛, 𝑡 ≥ 1}, we consider 𝐵:𝐹 → ℕ. We then put instructions in 

numbers in the following way: 

 

 

What we want here is achieving a bijective effective correspondence using enumerations of pairs and 

triples of only computable functions sending. Multiplication by 4 is used to "make room" in the encoding so 

as to continue to have a biunivocal function. Final sums also serve the same purpose. 

- 𝑍(𝑛) instructions to multiples of 4 

- 𝑆(𝑛) instructions to numbers congruent 1 𝑚𝑜𝑑 4 

- 𝑇(𝑚, 𝑛) instructions to numbers congruent 2 𝑚𝑜𝑑 4 

- 𝐽(𝑚, 𝑛, 𝑡) instructions to numbers congruent 3 𝑚𝑜𝑑 4  

{
 
 

 
 

𝐵(𝑍(𝑛)) = 4 ∗ (𝑛 − 1)

𝐵(𝑆(𝑛)) = 4 ∗ (𝑛 − 1) + 1

𝐵(𝑇(𝑚, 𝑛)) = 4 ∗ 𝜋(𝑚 − 1, 𝑛 − 1) + 2

𝐵(𝐽(𝑚, 𝑛, 𝑡)) = 4 ∗ 𝑣(𝑚 − 1, 𝑛 − 1, 𝑡 − 1) + 3
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We can then define the inverse 𝐵−1: ℕ → 𝐹 such that 𝑥 → 𝑟 = 𝑟𝑚(4, 𝑥) 𝑎𝑛𝑑 𝑞 = 𝑞𝑡(4, 𝑥). 

𝛽−1(𝑥) =

{
 

 
𝑍(𝑞 + 1), 𝑖𝑓 𝑟 = 0
𝑆(𝑞 + 1), 𝑖𝑓 𝑟 = 1

𝑇(𝜋1(𝑞) + 1, 𝜋2(𝑞) + 1), 𝑖𝑓 𝑟 = 2

𝐽(𝑣1(𝑞) + 1, 𝑣2(𝑞) + 1, 𝑣3(𝑞) + 1), 𝑖𝑓 𝑟 = 4

 

And this way both 𝛽 and 𝛽−1 are effective. Now 𝛾: 𝑃 → 𝑁 can be defined as follows; if 𝑃  𝑈𝑅𝑀 program is 

composed by a list of instructions, then via composition we can apply 𝛽: 

𝑃{

𝐼1
𝐼2
…
𝐼𝑆

      𝛾𝑝 = 𝜏(𝛽(𝐼1))…𝛽(𝐼𝑆)) 

This way, putting the inverse 𝛾−1, we will get the number back from the corresponding program: 

𝑖𝑛𝑣𝑒𝑟𝑠𝑒: 𝛾−1:𝑁 → 𝑃 

𝛾−1(𝑛) = 𝑃 = {𝐼1…𝐼𝑙(𝑛)} 𝑎𝑛𝑑 𝐼1 = 𝛽
−1(𝑎(𝑛, 𝑖)) 

This ensures 𝛾 is bijective because of composition of bijective functions,  

From now on, we have a fixed enumeration of 𝑈𝑅𝑀 programs, thus it’s bijective given it comes from 

program composition and 𝑃 is denumerable (mapping one-to-one with positive integers of programs). 

To define the code of 𝑃, given 𝛾 the fixed enumeration of 𝑈𝑅𝑀 program, we define the Gödel number of 𝑃 

as 𝛾(𝑃) (also called code of 𝑃), we write 𝑃𝑛 to represent 𝛾−1(𝑛) as the 𝑛𝑡ℎ program of such enumeration. 

(formally, to a well-formed formula, it assigns a unique natural number). 

Given this one, we can determine a fixed enumeration for programs, making us able to effectively compute 

their codes and to find the 𝑛𝑡ℎ program in a sequence. 

Now, let’s consider this program as an example, encoded by the 𝛽 function: 

𝑃 = {

𝑇(1,2) → β(T(1,2)) = 4 ∗ 𝜋(1 − 1, 2 − 1) + 2 = 4 ∗ 𝜋(0,1) + 2 = 10

𝑆(2) → β(S(2)) = 4 ∗ (2 − 1) + 1 = 5

𝑇(2,1) → β(T(2,1)) = 4 ∗ 𝜋(2 − 1, 1 − 1) + 2 = 4 ∗ 𝜋(1,0) + 2 = 6

 

So, given the results here, the program will get these numbers as a list as shown before: 

𝛾(𝑃) = 𝜏(10,5,6) 

= 𝑝1
10 ∗ 𝑝2

5 ∗ 𝑝3
6+1 − 2 

= 210 ∗ 35 ∗ 57 − 2 

= 19 439 999 998 

So, we want a machine taking in input this very big number and the only thing we care is, given the finite 

nature and effective enumeration, the program able to execute it and retrieve it as output (hence the well-

formed reasoning behind).  

This program computes because of 𝜇𝑥. 𝑥 + 1 (which means that using minimalisation, we’re able to 

retrieve, from the last computation, the following numbers, hence composing a specific result. This can be 

mapped back to the corresponding program, given it’s enumerated as “the one able to compute it”) 
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The program 𝑃′ able to execute the successor function (so 𝑃′: 𝑆(1)) computes the same function (and the 

encoding follows): 

𝛾(𝑝′) = 𝜏 (𝛽(𝑆(1))) = 𝜏(4 ∗ (1 − 1) + 1) = 𝜏(1) = 𝑝1
1+1 − 2 = 22 − 2 = 2 

Basically, the numbers 19,439,999,998 and 2 represent two programs that calculate the same successor 

function. So, given 𝑛 = 100, what is 𝑃100?→ (𝛾−1(100))? Let’s show it. 

Remember the encoding for 𝑛 was: 

(∏𝑃𝑖
𝑥𝑖) ∗ 𝑃𝑘

𝑥𝑘+1 = 2

𝑘−1

𝑖=1

 

We can observe: 

𝑛 + 2 = 100 + 2 = 21 ∗ 31 ∗ 171 

= 𝑝1
1 ∗ 𝑝2

1 ∗ 𝑝3
1 ∗ 𝑝4

0 ∗ 𝑝5
0 ∗ 𝑝6

0 ∗ 𝑝7
1 

And so the program will contain 7 instructions: 

𝑙(100) = 7 

 

 

 

 

 

 

All this program does (number 100) is calculating the constant 1. 

Clearly, an enumeration of 𝑈𝑅𝑀 programs induces an enumeration of computable functions. So, fixed an 

effective enumeration 𝛾: 𝑃 → ℕ, we define:  

• ϕ𝑛
(𝑘): ℕ𝑘 → ℕ (as the function of 𝑘 arguments (𝑘-ary function) computed by the program 

𝑃𝑛 = 𝛾
(−1)(𝑛) can be seen as 𝜙𝑛

(𝑘) = 𝑓𝑃𝑛
(𝑘)) 

• 𝑊𝑛
(𝑘) = 𝑑𝑜𝑚(𝜙𝑛

𝑘) = {𝑥⃗ ∈ 𝑁𝑘| 𝜙𝑛
(𝑘)(𝑥⃗) ↓} ⊆ ℕ𝑘  

➔ (as the domain, representing the set of argument vectors for which 𝜙𝑛
𝑘 converges) 

• 𝐸𝑛
(𝑘) = 𝑐𝑜𝑑 (𝜙𝑛

(𝑘) = { 𝜙𝑛
(𝑘)
| 𝑥⃗ ∈ 𝑊𝑛

(𝑘)
} ⊆ ℕ 

➔ as the codomain, representing the set of values that 𝜙
𝑛
𝑘 can produce when applied to 

arguments in 𝑊𝑛
(𝑘) 

When 𝑘 = 1, we omit it 𝜙𝑛 𝑓𝑜𝑟 𝜙𝑛
(1). 

(This statement means that, when dealing with unary functions (functions that take only one argument), 

the subscript indicating the arity (in this case, 𝑘) is typically omitted. In other words, for functions of a 

single argument, you don't need to explicitly specify 𝑘 because it's understood that 𝑘 is 1. So, for 𝑘 = 1, the 

function is commonly denoted as simply 𝜙𝑛) 
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What this mess above means 

 

- A function has a domain and a codomain or arguments which are defined over the 𝑘 combinations 

of those 

- Giving the function is surjective, either there are no programs that calculate it or there are infinite 

ones 

 

Example 

𝜙100:𝑁 → 𝑁 

𝜙100(𝑥) = 0    ∀𝑥 ∈ 𝑁 

𝑊100 = 𝑁      𝐸100 = {0} 

The following is an enumeration of all unary functions: 

 

 

 

 

 

In this list, there are definitely repetitions, which indicate that certain unary computable functions result in 

the same output, particularly when we compute their successor values.  

How many repetitions? Infinitely many (which means there is an unending occurrence of functions that 

yield the same results). 

We’re able to express, for every countable set, that the cardinality of every countable set is less than or 

equal the cardinality of the set of natural number (holds for set with one element but also any finite value 

of 𝑘): 

|𝐶(1)| ≤ |𝑁| 

|𝐶(𝑘)| ≤ |𝑁|  ∀𝑘 

So, the union of all countable set 𝐶 is countable too. 

⋃𝐶(𝑘)
𝑛

𝐾≥1

 

This expresses the idea that the union of finite or countable sets remains countable, and the cardinality of 

each set in the union is bounded by the cardinality of the natural numbers. 
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10.1 EXERCISES 
 

Exercise 

Take ℛ, the class of partial recursive functions, precisely the least rich class which: 

- includes basic functions 

- is closed under: 

o composition 

o primitive recursion 

o minimalisation  

We then consider the originally defined by Gödel-Kleene ℛ0, least rich class which: 

- includes basic functions 

- is closed under: 

o composition 

o primitive recursion 

o minimalisation used only when result is total 

The question for us is trying to compare the original definition of ℛ with this one (which has more 

constraints). In math terms, it can be defined as ℛ0 ⊆ ℛ ∩ 𝑇𝑜𝑡  (?⊆). 

This is not obvious since one can obtain total functions from partial ones: 

𝑓:ℕ2 → ℕ 

𝑓(𝑥, 𝑦) = {

−1, 𝑖𝑓 𝑦 < 𝑥
0, 𝑖𝑓 𝑦 = 𝑥 
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

ℎ(𝑥) = 𝜇𝑦. 𝑓(𝑥, 𝑦) = 𝑥 

So, we use minimalisation to find the smallest element here, which is 𝑥. Starting from the partial functions, 

you use combinators from 𝑅 and still obtain total functions.  

Solution (made by me, to take with a grain of salt) 

To show the subset property, we’re essentially trying to cover the case on which the partial recursive 

functions can use minimalisation, which happens if their result is defined. So, we want to give an example 

which is defined for “at least some elements” and get back something total. 

The building blocks would be the usual ones, all the basic functions (e.g. zero, successor, projection, etc.) 

and operations (primitive recursion, composition, etc.). One can say for instance this could be easy; one 

founds a function which can’t be defined in all cases and then call it quits. Thing is, to properly prove this 

we need a bound, which in partial recursive functions, we don’t always have. Minimalisation allows us to 

use bounded operations and combine low-level operations like 𝑠𝑔,−., 𝑠𝑔, etc. 

To do this, we can consider a case in which we nest a finite function, which is total, inside a partial function. 

In this case, the minimalisation would formally ensure “we stay inside bounds as long as the situation is 

total”. So, we define 𝑓(𝑥) as follows: 

𝑓(𝑥) = {
1,  𝑖𝑓 min(𝑥, 𝑥 − 1) 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑
𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  



116   Computability simple (for real) 
 

Written by Gabriel R. 

Then, we define the said total function 𝑔(𝑥) that utilizes 𝑓(𝑥) to ensure totality and checks the result of 

𝑓(𝑥): 

𝑔(𝑥) = {
0,  𝑖𝑓 𝑓(𝑥) = 0

𝑓(𝑥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

So, the minimalisation can be used like 𝑔(𝑥) = 𝜇𝑦. 𝑓(𝑥), finding the smallest 𝑦 for which 𝑓(𝑥) is defined. 

Given the class definition, this is defined for the values of the subset for 𝑓(𝑥), when the function is total, 

minimalisation is allowed and allows us to get defined results.  

Therefore, we have shown that ℛ0 includes functions that can be derived from partial functions in ℛ (by 

applying minimalization) and that become total functions when their results are defined. 

This confirms that ℛ0 is indeed a subset of ℛ ∩ 𝑇𝑜𝑡, as it includes functions that are both in ℛ and total, in 

accordance with the additional constraint of ℛ0.  

Exercise 

 

 

 

 

 

 

 

 

 

 

 

 

To prove it, we must define a well-founded order and decreasing it to prove the conjecture.  

Solution (made by me, to take with a grain of salt) 

Essentially, we want a set in which the minimalisation is always defined and recalling the well-founded 

poset definition. The well-founded order on 𝑁 ensures that there are no infinite descending chains, since 

the problem explicitly tells us we’re dealing with natural numbers. 

The property of order in 𝑁 is as follows: 

- given two elements, call them 𝑎, 𝑏, we know that 𝑎 < 𝑏 if 𝑎 is less than 𝑏, leaving trace for a 

smaller natural number. 

This respect the well-founded order definition, so, given a well-founded poset (𝑃,≤) every non-empty 

element has a minimal element 𝑑 𝑠. 𝑡. ∀𝑑′ ∈ 𝑋, 𝑑′ ≤ 𝑑 ⇒ 𝑑′ = 𝑑. This says that, from starting from 𝑁, we 

can take any subset of numbers and the well-foundedness will hold. 
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Given natural numbers are well-ordered, the well-foundedness of the order is trivial, given there is always 

the least element in the subset and minimalisation is always present. In other words, you can start with any 

natural number, and by repeatedly applying the "successor" operation (adding 1), you can generate all the 

natural numbers 

Now, let's consider the process of extracting a ball and substituting it with balls labeled with lower 

numbers. At each step of the process, we extract a ball with a certain number, and by our well-founded 

order "<," we know that the number of balls labeled with lower numbers is finite. 

Let's provide a concrete example to illustrate the termination of the process. We can consider a box with 

an arbitrary number of balls labeled with natural numbers (N). The process is as follows: 

1. Extract a ball. 

2. Substitute the extracted ball with an arbitrary number of balls, each labeled with a number lower 

than the one extracted. 

Let's say we start with the following set of balls in the box (call it 𝑆 ⊆ ℕ): 

{5, 3, 7, 1, 4} 

Now, let's apply the process step by step: 

1. Step 1: We extract the ball labeled with 7. 

2. Step 2: We substitute the ball with lower-labeled balls: {5, 3, 1, 4} 

Now, we repeat the process: 

1. Step 1: We extract the ball labeled with 5. 

2. Step 2: We substitute the ball with lower-labeled balls: {3, 1, 4} 

Once again: 

1. Step 1: We extract the ball labeled with 4. 

2. Step 2: We substitute the ball with lower-labeled balls: {3, 1} 

Now, let's consider the well-founded order defined earlier: 𝑎 < 𝑏 if 𝑎 is less than 𝑏. In this case, the well-

founded order is based on the natural numbers, where each number is less than the next. Since the 

extracted balls are labeled with natural numbers, and we always replace them with balls labeled with lower 

numbers, the process is guaranteed to terminate. 

In this example, the process terminates when we have no more balls to extract because we always 

substitute them with balls labeled with lower natural numbers. This demonstrates that the process of 

extracting and substituting balls will always come to an end, regardless of the initial configuration of the 

box. 
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11 CANTOR DIAGONALIZATION TECHNIQUE 

Roughly speaking, the diagonalization technique allows, starting from one object, to build an object of the 

same nature that differs from all values inside the collection, because the object itself is meant to be 

different from all the set values. 

Why do we care then?  

- Because it is a powerful argument to show functions are not computable, building them in a way 

and then using a partial function, the enumeration of such differs from all inputs and is not 

computable (source of this last one, which is pretty clear here). 

The key is that it's different by construction, which means that you're choosing the digits of the different 

number, say 𝑑, specifically so that it will be different from every other item in the list (more here in case). 

This technique was created by Cantor to show that there are different levels of infinity and not all infinity 

levels are equal. 

The idea behind is, given a countable set of objects, 𝑥𝑖 ∈ 𝐼, we can build another object in the same nature 

of 𝑥 𝑠. 𝑡. 𝑥 ≠ 𝑥𝑖. The idea has the following structure: 

𝑥0    𝑥1    𝑥2    𝑥3    ….    𝑥𝑖 ⇐ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑘 𝑜𝑓 𝑥𝑖 

𝑎𝑖𝑚: 𝑏𝑢𝑖𝑙𝑑 𝑥 𝑠. 𝑡. 𝑥 ≠ 𝑥𝑖         𝑥 𝑑𝑖𝑓𝑓𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 𝑥𝑖 𝑎𝑡 position 𝑖 

Cantor introduced the notion of cardinality, which is a measure of the size or "number" of elements in a 

set. He famously showed that not all infinite sets are of the same size. Here, we discuss Cantor's work on 

demonstrating different degrees of infinity, using the example of finite sets and power sets (sets of all 

subsets) as a basis for the argument.  

For finite sets, the cardinality is clear for each case, as you can see here. This also holds for infinite sets, so 

this gives the idea there exist more infinite sets and more different orders of infinite. 

∀𝑥 𝑠𝑒𝑡, |𝑋| < |2𝑥|, 2𝑥 = {𝑦| 𝑦 ⊆ 𝑥} 

𝑖𝑓 𝑥 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒 𝑥 = {0,1}, 2𝑥 = {0, {0}, {1}, {1,2}} 

|𝑥| = 2 < |2𝑥| = 2|𝑥| = 22 = 4 

Example: |𝑁| < |2𝑁| 

Proof Assume |𝑁| ≥ |2𝑁|, i.e. |2𝑁| countable (so, the thesis is false – we assume the power set to be 

countable). This means that there exists an enumeration of 2𝑁  (ℕ → 2ℕ), which is surjective.  
We take the diagonal here, which is seen as a set. This is taken and then changed systematically; this will be 
different from all the sets listed above. l 
 
 

 

 

 

 

 

https://disi.unitn.it/~zunino/teaching/computability/2008/computability.pdf
https://math.stackexchange.com/questions/1541316/understanding-cantors-diagonal-argument
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We can define a diagonal 𝐷 such that the 𝑖-th element differs from 𝑋𝑖  on 𝑖, which means that we can 

always map an element in the diagonal such that “it will always be inside a set”. 

𝐷 = {𝑖 | 𝑖 ∉ 𝑋𝑖} ⊆ ℕ 

⇒ ∃𝑘 ∈ ℕ 𝑠. 𝑡. 𝐷 = 𝑥𝑘 

 

Problem: 𝑘 ∈ 𝐷? 

- Yes: 𝑘 ∈ 𝐷 ⇒ 𝑘 ∉ 𝑋𝑘 = 𝐷 → contradiction 

- No: 𝑘 ∉ 𝐷 ⇒ 𝑘 ∈ 𝑋𝑘 = 𝐷 → contradiction 

⇒ 2ℕ is not countable, |ℕ| < |2ℕ| → the proof can’t be done without contradictions. 

In words, the diagonalization holds some logical implications (coming from a great answer here): 

- It basically states “There exist some infinite sets that cannot be put into one-to-one 

correspondence with the set of natural numbers” 

- There exist some infinite sets for which one of the following must be true: either such a set has no 

well-ordering, or it is larger than the set of natural numbers 

- No matter what language or formal system one uses to describe mathematical objects, there exists 

some encoding that maps every different statement in that language or system to a unique natural 

number.  

- Thus, the set of all possible unique descriptions of things is equal in size to the set of natural 

numbers. This implies that the set of all of the different mathematical things that could possibly 

exist is equal in size to the natural numbers 

- Under other considerations, the diagonal argument implies that certain sets, those that are 

referred to as “uncountably infinite”, have no well-ordering. They are uncountable not because 

they are too large to be counted, but rather because there does not exist any way for them to be 

arranged in order to be counted. 

In a nutshell: this shows there exists infinite sets that are uncountable (like real numbers set). 

11.1 EXAMPLES 
Exercise: 

𝐹 = {𝑓 | 𝑓: ℕ → ℕ} 

|𝐹| > |ℕ|  (𝑤ℎ𝑖𝑐ℎ 𝑚𝑒𝑎𝑛𝑠 ||ℕ| → |ℕ|| > |ℕ|)  

There are two approaches to consider: 

1) 

𝐹2 = {𝑓 ∈ 𝐹 | 𝑓: ℕ → ℕ 𝑡𝑜𝑡𝑎𝑙} ⊆ 𝐹, 𝑖𝑚𝑔(𝐹) ⊆ {0,1} 

To be more formal, we need bijection, so |𝐹2| = |2
ℕ| and for bijection 𝐹2 → 2ℕ, 𝑓 ↦ {𝑛 | 𝑓(𝑛) = 1} 

 

 

 

  

https://www.quora.com/Is-there-ambiguity-in-Cantors-diagonalization-proof


120   Computability simple (for real) 
 

Written by Gabriel R. 

In words: 

1. Define a subset of 𝐹, denoted as 𝐹2, which consists of functions in 𝐹 that are "total" (defined for all 

natural numbers) and whose image (range) is a subset of {0, 1}.  

2. The goal is to establish a bijection between 𝐹2 and the power set of 𝑁, denoted as 2𝑁. 

3. To define this bijection, for each function 𝑓 in 𝐹2, you can associate it with a set of natural numbers 

where the set contains all 𝑛 such that 𝑓(𝑛)  =  1. This association creates a function that maps 

functions in 𝐹2 to subsets of natural numbers, or in other words, 𝐹2  →  2
𝑁. 

 

It's important to note that the identity function is needed as a component of this bijection in order to have 

actually enumerable elements; in any case, the function itself is uncountable. 

 

(2𝑛𝑑 possibility) |𝐹| > |ℕ| 

Consider an enumeration of elements in 𝐹: 

 

 

 

 

 

 

 

Here the diagonalization tries to enumerate every single function over the 𝑖 values, which are not finitely 

countable hence numerable, since we have more numbers than the natural set like the previous approach. 

We have 𝑓 ≠ 𝑓𝑛 ∀𝑛 since 𝑓(𝑛) ≠ 𝑓𝑛(𝑛) by construction.  

Hence, there is no enumeration of all functions in 𝐹 ⇒ |𝐹| > |ℕ| (since you cannot establish a one-to-one 

correspondence between F and the natural number). 

Observation: There is a total non-computable function 𝑓: ℕ → ℕ: 

𝑓(𝑥) = {
𝜙𝑛(𝑛) + 1, 𝜙𝑛(𝑛) ↓ (𝑛 ∈ 𝑊𝑛)

0, 𝜙𝑛(𝑛) ↑ (𝑛 ∉ 𝑊𝑛)
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We can notice two things: 

- 𝑓 is total (defined for all natural numbers, thanks to diagonalization) 

- 𝑓 is not computable, 𝑓 ≠ 𝜙𝑛 ∀𝑛 ∈ 𝑁 (letter here is “phi”) – differs from all functions in the 

diagonal 

Consequently, the enumeration does not contain all the functions of 𝐹, hence 𝐹 not enumerable (bottom 

line: if you have infinite functions, it doesn't mean you have all of them) – so, if you take whatever 

enumeration of computable functions, you have a function always different from all other computable 

function. 

This means it “exists” but cannot compute all inputs. Infact, ∀𝑛, 𝑓(𝑛) ≠ 𝜙𝑛(𝑛): 

- 𝜙𝑛(𝑛) ↓ then 𝑓(𝑛) = 𝜙𝑛(𝑛) + 1 ≠ 𝜙𝑛(𝑛) 

- 𝜙𝑛(𝑛) ↑ then 𝑓(𝑛) = 0 ≠ 𝜙𝑛(𝑛) 

So, the use of diagonalization actually makes us establish a total function, but actually gives an input which 

makes the enumeration incomplete; in other words, it works based on the idea of creating a new element 

or object that is systematically distinct from all the elements in the list, thus showing that the list is 

incomplete. Given we can’t count them, there exists an infinite list of non-computable functions.  

𝑓 is total since it is always defined. With the fact that the function 𝑓(𝑛) = 𝜙𝑛(𝑛) + 1 if 𝑛 ∈ 𝑊𝑛 it will be by 

definition different from all computable functions, so it will be not computable. 

Exercise 

Let 𝐹:ℕ → ℕ be any function, 𝑚 ∈ ℕ. Show that there is a non-computable function 𝑔:ℕ → ℕ 𝑠. 𝑡. 

𝑔(𝑛) = 𝑓(𝑛), ∀𝑛 < 𝑚 

The idea here is using a “translated diagonal”, which is used to construct a non-computable function 

𝑔:𝑁 → 𝑁 based on a given function 𝑓:𝑁 → 𝑁 and a natural number 𝑚. This technique is often employed 

to show the existence of non-computable functions that are distinct from a given computable function 𝑓 up 

to a certain point (𝑛 <  𝑚). 

 

 

 

 

 

 

 

 

 

𝑔(𝑛) = {

𝑓(𝑛), 𝑛 < 𝑚

𝜙𝑛−𝑚(𝑛) + 1, 𝑛 ≥ 𝑚 𝑎𝑛𝑑 𝜙𝑛−𝑚(𝑛) ↓

0, 𝑛 ≥ 𝑚 𝑎𝑛𝑑 𝜙𝑛−𝑚(𝑛) ↑
 

 

𝑔 is not computable since 𝜙𝑛(𝑛 + 𝑚) ≠ 𝑔(𝑛 +𝑚), so ∀𝑛 𝜙𝑛 ≠ 𝑔 
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Hilbert's Hotel is a famous thought experiment in the field of mathematics, particularly in set theory, 

proposed by the German mathematician David Hilbert. 

Here's a description of it: imagine a hotel with an infinite number of rooms, numbered 1, 2, 3, and so on, 

extending to infinity. This hotel is fully occupied, with every room containing a guest. 

Now, let's consider several paradoxical situations: 

- New Guests Arriving: Suppose a new guest arrives at the hotel and wants a room. In a typical finite 

hotel, this would be a problem because all the rooms are occupied. However, in Hilbert's Hotel, 

accommodating the new guest is not an issue. 

• Solution: The manager can simply ask every current guest to move to the room with a 

number one greater than their current room. So, the guest in room 1 moves to room 2, the 

guest in room 2 moves to room 3, and so on. This frees up room 1 for the new guest. 

• First drawing below shows this one. 

- Infinite New Guests: Now, imagine an infinite bus filled with an infinite number of new guests 

arriving at the hotel. Each guest needs a room. 

• Solution: The manager can accommodate all the new guests. He asks the current guest in 

room 1 to move to room 2, the guest in room 2 to move to room 4, the guest in room 3 to 

move to room 6, and so on. In this way, all the odd-numbered rooms are now vacant, and 

the new guests can be placed in them. 

- Adding More Infinity: If an additional infinite bus with infinitely many new guests arrives, you can 

continue this pattern to free up additional rooms for new guests. For example, by doubling the 

room numbers, all the rooms originally occupied by guests become vacant. 

• Second drawing shows this one. 

 

 

 

 

 

 

 

 

If countably many new guests arrive? 
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Alternative: 

𝑔(𝑛) = {

𝑓(𝑛), 𝑛 < 𝑚

𝜙𝑛(𝑛) + 1, 𝑖𝑓 𝜙𝑛(𝑛) ↓,𝑚 ≥ 𝑛

0, 𝑖𝑓 𝜙𝑛(𝑛) ↑,𝑚 ≥ 𝑛
 

 

𝑔 is not computable: 

 

 

 

 

for all computable functions ℎ ∃𝑛 ≥ 𝑚     ℎ = 𝜙𝑛 ≠ 𝑔 

⇒ 𝑔 is different from all computable functions ⇒ 𝑔 not computable 

(Basically, since each function appears infinitely many times in the enumeration, skipping the first 𝑚− 1 

steps does not create any problem. The contradiction arises because we’ve shown that there exists a 

computable function ℎ such that 𝑔(𝑛) is different from ℎ for some 𝑛 ≥ 𝑚. 

The key insight here is that, by construction, 𝑔 is designed to be distinct from all computable functions for 𝑛 

greater than or equal to 𝑚. This shows that 𝑔 is non-computable, as there is no algorithm that can compute 

𝑔 for all inputs without contradiction). 

Exercise 

Show that there is a function 𝑔: ℕ → ℕ total, not computable 𝑠. 𝑡. 𝑔(𝑛) = 0, ∀𝑛 𝑒𝑣𝑒𝑛 (returns 0 when the 

input is even, because there is no surjection – mapping; you can see the point in the following drawing) 
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𝑔(𝑛) =

{
 
 

 
 

0, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

𝜙𝑛−1
2

(𝑛) + 1, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝜙𝑛−1
2

(𝑛) ↓

0, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝜙𝑛−1
2

(𝑛) ↑  
 

→  𝑔 is total 

→ 𝑔(𝑛) = 0 for all 𝑛 even 

→ 𝑔 not computable since 𝑔 ≠ 𝜙𝑛 for all 𝑛 ∈ 𝑁 

𝑔(𝑛) = 𝜙𝑛(2𝑛 + 1) 

𝑔(1) = 𝜙0(1) 

𝑔(3) = 𝜙1(3) 

 

Solution and idea 

It’s total because it’s defined for all natural numbers, but not computable. Consider, for 𝑊𝑛 the set of 

natural numbers for which the function does halt, the following reasoning: if there are even numbers, in 

any case there will be natural numbers expressing them, but we find at least a value which we cannot 

compute, given the function was designed to be different from all others from the start. This can be seen as: 

- If 2𝑛 + 1 ∈ 𝑊𝑛 ⇒ 𝑓(2𝑛 + 1) = 𝜙𝑛(2𝑛 + 1) + 1 ≠ 𝜙𝑛(2𝑛 + 1) 

- If 2𝑛 + 1 ∉ 𝑊𝑛 ⇒ 𝑓(2𝑛 + 1) = 0 ≠ 𝜙𝑛(2𝑛 + 1) ↑ 

𝑔 differs for 𝜙𝑛 for all inputs regardless of whether the computation halts or not, so: 

∀𝑛 𝑓(2𝑛 + 1) ≠ 𝜙𝑛(2𝑛 + 1) 

Exercise 

𝑓0, 𝑓1, 𝑓2…(𝑓𝑖)𝑖∈𝑁 given, define 𝑓: ℕ → ℕ 𝑠. 𝑡. 𝑑𝑜𝑚(𝑓) ≠ 𝑑𝑜𝑚(𝑓𝑖) ∀𝑖 ∈ ℕ 

Solution and idea 

To define a function 𝑓: ℕ → ℕ such that the domain of 𝑓 is not equal to the domain of any of the functions 

𝑓𝑖 for all 𝑖 ∈ ℕ, you can use the concept of disjoint domain selection. The idea is to construct a function that 

selects values from a different set than the domains of all the 𝑓𝑖 functions.  

For each natural number 𝑛 ∈ ℕ, define 𝑓(𝑛) as follows: 

1. If 𝑛 is even, let 𝑓(𝑛) = 2𝑛. This ensures that 𝑓 takes even numbers and maps them to even 

numbers. 

2. If 𝑛 is odd, let 𝑓(𝑛) = 2𝑛 + 1. This ensures that 𝑓 takes odd numbers and maps them to odd 

numbers. 

The key idea here is to make 𝑓 map even numbers to even numbers and odd numbers to odd numbers. 

As a result, the domain of 𝑓 is the set of all natural 

numbers (ℕ), but the domain of each 𝑓𝑖 is either the set of 

even natural numbers or the set of odd natural numbers, 

depending on the value of 𝑖. 

Similar to before, 𝑔 differs for 𝑓𝑛 for all inputs regardless of whether the 

computation halts or not. 
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12 PARAMETRISATION/SMN-THEOREM 

Here I want to give a careful intuition on what the theorem is all about. In computability theory, we often 

want to express a function that takes a function as an argument. 

The smn-theorem (also called “s-m-n-theorem” on the book, I’ll refer to the first notation) provides a way 

to represent such functions in a normalized form. It essentially provides a method for encoding and 

manipulating functions, which is particularly important in understanding the computability of functions.  

- This is also called parametrisation theorem/translation lemma because it shows an index 𝑒 for a 

computable function can be found effectively from a parameter 

o some links useful to understand: here, here and here). 

- The name of it comes from the three arguments, which infact are 𝑆,𝑚, 𝑛 

Let 𝐹: ℕ → ℕ computable, so there exists 𝑒 ∈ 𝑁 𝑠. 𝑡. 𝑓 = 𝜙𝑒
(2)
  (𝑃𝑒 = 𝛾

−1 (𝑒)) 

𝑓(𝑥, 𝑦) = 𝜙𝑒
(2)(𝑥, 𝑦) 

(with 𝑃𝑒 the program which computes 𝐹 and 𝛾−1 the inverse function to find 𝑒). 

Let 𝑥 ∈ ℕ be fixed, we obtain a function 𝑓 a single argument: 

𝑓𝑥: ℕ → ℕ 

𝑓𝑥(𝑦) = 𝑓(𝑥, 𝑦) = 𝜙𝑒
(2)(𝑥, 𝑦) 

Given 𝑥 is fixed (constant), for every value of 𝑥, you get a new function with one argument, which we'll call 

𝑓𝑥. It's like plugging in 𝑥 and leaving 𝑦 as a variable, obtaining an index effectively from the unary function. 

The following are examples on this: 

𝑒. 𝑔. 𝑓(𝑥, 𝑦) = 𝑦𝑥 

𝑓0(𝑦) = 𝑦
0 = 1 

𝑓1(𝑦) = 𝑦
1 = 1 

𝑓2(𝑦) = 𝑦
2 

… 

Since for all fixed 𝑥 ∈ ℕ, 𝑓𝑥 is computable there is 𝑑 ∈ 𝑁 𝑠. 𝑡. 𝑓𝑥 = 𝜙𝑑 

Now, the key point here is that for every fixed 𝑥, the function 𝑓𝑥 is computable. In other words, you can 

compute 𝑓𝑥 using some program represented by a natural number 𝑑. 

Hence there is a function 𝑠: ℕ2 → ℕ, 𝑠(𝑒, 𝑥) = 𝑑 

• The smn-theorem introduces a function 𝑠 that takes two natural numbers, 𝑒 and 𝑥, as inputs and 

returns another natural number, 𝑑. This function maps pairs of natural numbers to another natural 

number 𝑑 which is itself computable.  

• In simpler terms, there's a way to determine, using some program or procedure, which program 

computes the function 𝑓𝑥 for any given 𝑥. 

  

https://en.wikipedia.org/wiki/Smn_theorem
https://cs.stackexchange.com/questions/80837/is-smn-theorem-the-same-concept-as-currying
https://math.stackexchange.com/questions/4340129/finding-the-computable-function-in-s-m-n-theorem
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The smn-theorem additionally says that 𝑠:ℕ2 → ℕ is computable.  

𝑓(𝑥, 𝑦) = {

def 𝑃𝑒(𝑥, 𝑦)
…𝑥,
𝑦

𝑟𝑒𝑡𝑢𝑟𝑛 , , , ,

  → {

def 𝑃𝑒(𝑥, 𝑦)
…𝑥,
𝑦

𝑟𝑒𝑡𝑢𝑟𝑛 , , , ,

 

Idea:  

Given 𝑒 ∈ ℕ, we structure the program here on the right: 

 

 

 

 

 

for each 𝑥 ∈ ℕ fixed, 

we want a program 𝑃′ as shown here: 

 

 

What is 𝑃′ doing? 

𝑃′ = {

𝑚𝑜𝑣𝑒 𝑦 𝑡𝑜 𝑅2
𝑤𝑟𝑖𝑡𝑒 𝑥 𝑜𝑛 𝑅1
𝑒𝑥𝑒𝑐𝑢𝑡𝑒 𝑃𝑒 

 (set as constant during execution of 𝑃′) 

To get:  

𝑠(𝑒, 𝑥) = 𝛾(𝑃′) 

Essentially, the computation of 𝑠(𝑒, 𝑥) involves: 

- Get the program 𝑃𝑒 = 𝛾
−1(𝑒) that computes 𝜙𝑒

(2)(𝑥, 𝑦) 

o Means “find the program for which we can map back the original natural numbers” 

- Get the program that computes 𝑓𝑥 = 𝜆𝑦. 𝑓(𝑥, 𝑦) with fixed 𝑥 from 𝑃𝑒 

o Means the function will be bounded over a fixed parameter effectively 

Intuitively, we get the program which will map back our couple of inputs and from that we can build a new 

program able to advance the computation. Even fixing an argument we take, from a transforming function 

over it, an effective program. 

𝜙𝑒
(𝑥)(𝑥, 𝑦)    𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑏𝑦 𝑃𝑒 = 𝛾

−1(𝑒) 

For any fixed 𝑥, one obtains a function of 𝑦 only. The following are all computable and the program which 

computes them all is obtained algorithmically. 

𝑥 = 0      𝑦 ↦ 𝜙𝑒
(2)(0, 𝑦) 

𝑥 = 1      𝑦 ↦ 𝜙𝑒
(2)(1, 𝑦) 

…    … .. 

(𝑃′ runs the program that corresponds to the index 𝑒) 
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The program which computes the functions above for each fixed 𝑥 can be obtained algorithmically starting 

from 𝑃𝑒, starting with two arguments and hardcoding the indices, we will get the output effectively.  

The name of theorem comes from working with function of form 𝑓(𝑥⃗, 𝑦⃗): ℕ𝑚+𝑛 → ℕ starting from a total 

function called 𝑆, as seen before (hence, smn). 

 

 

 

 

 

More generally: 𝑓:𝑁𝑚+𝑛 → 𝑁 

𝜙𝑒
(𝑚+𝑛)(𝑥⃗, 𝑦⃗) = 𝜙𝑠(𝑒,𝑥)

(𝑛) (𝑦)⃗⃗⃗⃗⃗ 

12.1 SMN-THEOREM 
 

Theorem (smn-theorem) (according to Kleene) 

Given 𝑚, 𝑛 ≥ 1 there is a total computable function 𝑠𝑚,𝑛: ℕ
𝑚+1 → ℕ such that ∀𝑥⃗ ∈ ℕ𝑚, ∀𝑦⃗ ∈ ℕ𝑛, ∀𝑒 ∈ ℕ 

𝜙𝑒
(𝑚+𝑛)(𝑥⃗, 𝑦⃗) = 𝜙

𝑠𝑚,𝑛(𝑒,𝑥)
(𝑛)

(𝑦)⃗⃗⃗⃗⃗ 

The smn-theorem states that given a function 𝑔(𝑥, 𝑦) which is computable, there exists a total and 

computable function 𝑠 such that 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦), basically "fixing" the first argument of 𝑔 – usually, we 

fix 𝑥 in favor of 𝑦. It's like partially applying an argument to a function. This is generalized over 𝑚, 𝑛 tuples 

for 𝑥, 𝑦. 

Basically, we have that the program over two indices 𝑚, 𝑛 is the same as the transformed function over 𝑥 

inputs. Fixing an index, we obtain a program with the same features.  

Proof 

Intuitively, given 𝑒 ∈ ℕ, 𝑥⃗ ∈ ℕ 

- We get the program 𝑃𝑒 = 𝛾
−1(𝑒) in standard form that computes 𝜙𝑒

(𝑚+𝑛), so starting from the first 

drawing (this below), in which we compute the 𝜙𝑒
(𝑚+𝑛) over all inputs (𝑥⃗, 𝑦⃗) (so 𝜙𝑒

(𝑚+𝑛)(𝑥⃗, 𝑦⃗)) 
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You want, for each 𝑥⃗ ∈ ℕ𝑚 fixed, a program 𝑃′ ⇐ depending on 𝑒, 𝑥⃗ (mapping back its inputs effectively 

and composing function parameterizing its values, this you can see below). 

 

 

 

 

𝑃′ has to 

- Move 𝑦⃗ to 𝑚 + 1,…𝑚 + 𝑛 (so, move forward computation of 𝑚 registers) 

- Write 𝑥⃗ in 1…𝑚 (so, load the value in the free 𝑚 registers) 

- Execute 𝑃𝑒 (so, execute the computation) 

The program 𝑃′ can be: 

𝑇(𝑚,𝑚 + 𝑛)      // 𝑚𝑜𝑣𝑒 𝑦𝑛 𝑡𝑜 𝑅𝑚+𝑛 

….   …. 

𝑇(1,𝑚 + 1)      // 𝑚𝑜𝑣𝑒 𝑦1 𝑡𝑜 𝑅𝑚+1 

 

𝑍(1)     // 𝑤𝑟𝑖𝑡𝑒 𝑥1 𝑡𝑜 𝑅1 

𝑆(1) 

… 

𝑆(1) 

 

𝑍(𝑚)     // 𝑤𝑟𝑖𝑡𝑒 𝑥𝑚 𝑡𝑜 𝑅𝑚 

𝑆(𝑚) 

… 

𝑆(𝑚) 

Concatenation will update all the jump instructions, hence moving and writing values for all function 

parameterized inside, mapping back effectively with 𝑃𝑒 = 𝛾
−1(𝑒). Once the program 𝑃 has been built, we 

have 𝑆(𝑒, 𝑥⃗) = 𝛾(𝑃′). Given each function is effective, existence, totality and computability of 𝑠 are 

informally proven. 

In the context of the smn-theorem, 𝜙𝑒
𝑘 is the 𝑒𝑡ℎ partial computable function of 𝑘 variables. The theorem 

establishes that there exists a total computable function, denoted as 𝑠(𝑚,𝑛), which can effectively 

"translate" or encode the computation of 𝜙𝑒
(𝑚+𝑛)(𝑥, 𝑦) into the computation of 𝜙𝑆(𝑒,𝑥)

𝑛 (𝑦⃗). 

In summary, also given the book example (p. 90), we can establish given the effectiveness of 𝛾 and 𝛾−1, 

that 𝑠𝑚
𝑛  is effectively computable, given the bijective mapping and computability of both.   
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The formal proof of computability is long and involves the combination of many parametrized functions as 

auxiliary to construct the 𝑠𝑚𝑛 function (which is primitive recursive for all indices). Consider each for cases: 

1) sequential composition of programs 

Given two program codes (𝑒1, 𝑒2),we want the sequential encoding like → 𝛾(
𝑃𝑒1
𝑃𝑒2
) 

Consider the update function: 

𝑢𝑝𝑑:ℕ2 → ℕ 

where 𝑢𝑝𝑑(𝑒, ℎ) = (code of the program obtained from 𝑃𝑒 = 𝛾
−1(𝑒) by updating all jump instructions 

𝐽(𝑚, 𝑛, 𝑡) 𝑡𝑜 𝐽(𝑚, 𝑛, 𝑡 + ℎ)). Basically, this updates a program's jump instructions based on 𝑒 and ℎ. 

We define an auxiliary function working on each single instruction encoded with 𝛽: 

𝑢𝑝𝑑∼: ℕ2 → ℕ 

where 𝑢𝑝𝑑∼(𝑖, ℎ) = 𝛽 (code of the instruction obtained from 𝛽−1(𝑖), updating the target if it is a jump) 

Note: 𝛽(𝑗(𝑚, 𝑛, 𝑡)) = 𝑣(𝑚 − 1, 𝑛 − 1, 𝑡 − 1) ∗ 4 + 3 (calculates an encoded value based on parameters 𝑚, 𝑛, 𝑡) 

Given 𝑖, ℎ ∈ 𝑁, 𝑞 = 𝑞𝑡(4, 𝑖), 𝑟 = 𝑟𝑚(4, 𝑖), we formally define like: 

𝑢𝑝𝑑∼(𝑖, ℎ) = {
𝑖, 𝑖𝑓 𝑟𝑚(4, 𝑖) ≠ 3

𝑣(𝑣1(𝑞), 𝑣2(𝑞), 𝑣3(𝑞) + ℎ) ∗ 4 + 3, 𝑖𝑓 𝑟𝑚(4, 𝑖) = 3, 𝑞 = 𝑞𝑡(4, 𝑖)
 

= 𝑖 ∗  𝑠𝑔(|𝑟𝑚(4, 𝑖) − 3|) + (𝑣(𝑣1(𝑞), 𝑣2(𝑞), 𝑣3(𝑞) + ℎ) ∗ 4 + 3) ∗ 𝑠𝑔(|𝑟𝑚(4, 𝑖) − 3|) 

Overall, this function updates the encoded instruction 𝑖 based on whether it's a jump instruction or not, 

adjusting the jump target when required, calculating each time a new value thanks to the present triplet 

(which consider the two sign functions in order to “encode the two different characteristic functions, 

covering all cases in which will be either 1 or 0, deciding if it’s useful to jump or not”). 

Now: 

𝑢𝑝𝑑(𝑒, ℎ) = 𝜏(𝑢𝑝𝑑∼(𝑎(𝑒, 1), ℎ))       𝑢𝑝𝑑∼(𝑎(𝑒, 2), ℎ)      𝑢𝑝𝑑∼(𝑎(𝑒, 𝑙(𝑒)), ℎ) 

= ( ∏ 𝑝𝑖
𝑢𝑝𝑑∼(𝑎(𝑒,𝑖),ℎ)

𝑙(𝑒)−1

𝑖=1

 ) ∗ 𝑝𝑖
𝑢𝑝𝑑∼(𝑎(𝑒,𝑙(𝑒)),ℎ)+1

 − 2  

This, in words, represents a formal way to express the update of a program by modifying its jump 

instructions, considering the effect of the other two instructions when applied recursively. 

Basically, we are doing a kind of pattern matching via parametrization and making it computable thanks to 

composition and primitive recursion. The goal is to make the entire program computable by ensuring that 

jump targets are correctly adjusted, reflecting the desired program behavior, also doing some “fine-tuning” 

(the minus 2). 

We encode the input sequence of values like the following, where each instruction in adjusted to the 

current one, the next one and the fine-tuning that we quoted above: 

𝜏(𝑦1, … 𝑦𝑚) =∏𝑃𝑖
𝑦𝑖 ∗ 𝑃𝑚

𝑦𝑛+1 − 2

𝑛−1

𝑖=1
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Finally, this brings us to: 

𝑠𝑚,𝑛(𝑒, 𝑥⃗) = 

                𝑠𝑒𝑞(𝑡𝑟𝑎𝑛𝑠𝑓(𝑚, 𝑛), 

                                            𝑠𝑒𝑞(𝑠𝑒𝑡(1, 𝑥1), 

                                                                      … .. 

                                                                            𝑠𝑒𝑞(𝑠𝑒𝑡(𝑚, 𝑥𝑚), 𝑒)… ) 

All of this mess can refer to the following prefix function because it defines a sequence concatenating multiple sub-

sequences “prefixing” other ones, hence obtaining the final function. 

This proves that the smn-function is computable and total (actually, we can observe it’s also primitive recursive) 

since it is a composition of primitive recursive functions, themselves effective. 

In other words: 𝑠𝑚,𝑛: ℕ
𝑚+1 → ℕ, 𝑠𝑚,𝑛(𝑒, 𝑥⃗) = 𝑠𝑒𝑞(𝑝𝑟𝑒𝑓𝑚,𝑛(𝑥⃗), 𝑒) which is in 𝑃𝑅 (remember the class definition 

given here).  

Consider 𝑙(𝑒) = length of the encoded sequence. For 1 ≤ 𝑖 ≤ 𝑙(𝑒), we get back the corresponding 

component, which is 𝑎(𝑒, 𝑖) = 𝑖𝑡ℎ  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡. 

Now we will use the concatenation of sequences as a function. 

𝑐:ℕ2 → ℕ  

The concatenation of sequences follows here, considering the mapping of each encoding with  

𝑐(𝑒1, 𝑒2) = 𝜏(𝑎(𝑒1, 1)… . 𝑎(𝑒1, 𝑙(𝑒1))  𝑎(𝑒2, 1)… . 𝑎(𝑒2, 𝑙(𝑒2)) 

The concatenation of programs can be defined as: 

𝑠𝑒𝑞: ℕ2 → ℕ 

𝑠𝑒𝑞(𝑒1, 𝑒2) = 𝛾 (
𝑃𝑒1
𝑃𝑒2
) = 𝑐(𝑒1, 𝑢𝑝𝑑(𝑎, 𝑙(𝑒2)) 

Essentially, in words, we concatenate the first one with the update over the length of the second one. 

Then we use the transfer function: 

2) 𝑡𝑟𝑎𝑛𝑠𝑓:ℕ2 → ℕ 

𝑡𝑟𝑎𝑛𝑠𝑓(𝑚, 𝑛) = 𝛾 (
𝑇(𝑛, 𝑛 + 𝑚)

𝑇(1,𝑚 + 1)
  ) 

Technically, this one simply shift registers 𝑛 positions forward. 

Continuing, we will use the set function: 

3) 𝑠𝑒𝑡: ℕ2 → ℕ 

𝑠𝑒𝑡(𝑖, 𝑥) = 𝛾 (
𝑍(𝑖)

𝑆(𝑖)

𝑆(𝑖)
 ) 

It allows you to set a specific value 𝑥 into a particular register or 

location 𝑖 and possibly perform some operations like incrementing the value.  
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12.2 SIMPLIFIED SMN-THEOREM 
 

Corollary (Simplified smn-theorem): Let 𝑓: ℕ𝑛+𝑚 → ℕ be a computable function.  

Then there is a total computable function 𝑠:ℕ𝑚 → ℕ 𝑠. 𝑡. ∀𝑥 ∈ ℕ𝑚, 𝑦⃗ ∈ ℕ𝑛 

𝑓(𝑥⃗, 𝑦⃗) = 𝜙𝑆(𝑥)
(𝑛)
(𝑦)⃗⃗⃗⃗⃗ 

Note for the reader: You need to know the normal definition. This one is used “concretely” inside exercises 

(e.g. see recursiveness/reduction/second recursion theorem exercises to see how pattern-like it will be) 

Proof 

Since 𝑓 is computable, there is 𝑒 ∈ ℕ 𝑠. 𝑡. 𝑓 = 𝜙𝑒
(𝑚+𝑛) 

𝑓(𝑥⃗, 𝑦⃗) = 𝜙𝑒
(𝑚+𝑛)(𝑥⃗, 𝑦⃗) = 𝜙𝑆𝑚,𝑛(𝑒,𝑥)

(𝑛) (𝑦)⃗⃗⃗⃗⃗                    ∀𝑥⃗, 𝑦⃗ 

We conclude by setting 𝑆(𝑥⃗) = 𝑆𝑚,𝑛(𝑒, 𝑥⃗) 

In words: this is called simplified because you use a total computable function as index, simplifying the 

whole setting of the argument and all of its specifications.  

Example of usage of smn-theorem 

Prove that there is a total computable function 𝑘: ℕ → ℕ 

such that ∀𝑛 ∈ ℕ, ∀𝑥 ∈ ℕ: 

𝜙𝐾(𝑛)(𝑥) = ⌊√𝑥
𝑛
⌋ 

This means that 𝜙𝑘 is an enumeration of functions in 

form ⌊√𝑥
𝑛
⌋; so, given 𝑛, it returns the program 

computing ⌊√𝑥
𝑛
⌋ 

This is what right figure is saying. 

  Proof 

The function 𝑓: ℕ2 → ℕ 

𝑓(𝑛, 𝑥) = ⌊√𝑥
𝑛
⌋ 

= max𝑧.   "𝑧𝑛 ≤ 𝑥" 

= min 𝑧.   "(𝑧 + 1)𝑛 > 𝑥" 

= 𝜇𝑧 ≤ 𝑥 .   𝑥 + 1−. (𝑧 + 1)𝑛 

is computable (because it is a bounded minimalisation of a composition of known computable 

functions; as seen here, we put it and bound it correctly). 

⇓  

by (corollary of) 𝑠𝑚𝑛 theorem there is 𝑘:ℕ → ℕ total computable s.t. 

𝜙𝐾(𝑛)(𝑥) = 𝑓(𝑛, 𝑥) = ⌊√𝑥
𝑛
⌋ 
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12.3 EXAMPLES 
 

Example 

There is a total computable function 𝑘: ℕ → ℕ 𝑠. 𝑡. ∀𝑛, 𝜙𝐾(𝑛) is defined only on 𝑛𝑡ℎ powers (on 𝑦𝑛 for 𝑦 ∈

ℕ), i.e. 

𝑊𝑘(𝑛) = {𝑥 |∃𝑦 𝑠. 𝑡. 𝑥 = 𝑦
𝑛} 

We define 

𝑓(𝑛, 𝑥) = {
↓, 𝑖𝑓 ∃𝑦 𝑠. 𝑡. 𝑥 = 𝑦𝑛

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

= 𝜇𝑦.  "𝑦𝑛 = 𝑥" 

= 𝜇𝑦. |𝑦𝑛 − 𝑥| 

computable. 

By the (corollary of the) smn-theorem, ∃𝑘: ℕ → ℕ total computable 𝑠. 𝑡. ∀𝑛, 𝑥 ∈ ℕ: 

𝜙𝐾(𝑛)(𝑥) = 𝑓(𝑛, 𝑥) 

𝜙𝐾(𝑛)(𝑥) = 𝑓(𝑛, 𝑥) = {
√𝑥

𝑛
, 𝑖𝑓 ∃𝑦 𝑠. 𝑡. 𝑥 = 𝑦𝑛

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Observe that the domain of 𝑊 is the set of powers: 

𝑊𝐾(𝑛) = {𝑥 | ∃𝑦 . 𝑥 = 𝑦𝑛} 

In fact: 

𝑥 ∈ 𝑊𝐾(𝑛)  𝑖𝑓𝑓   𝜙𝐾(𝑚)(𝑥) ↓ 𝑖𝑓𝑓 ∃𝑦. 𝑥 = 𝑦
𝑚 

Exercise (homework) 

Show that there is a total computable function 𝑠:𝑁 → 𝑁 𝑠. 𝑡.𝑊𝑆(𝑥)
𝑘 = {(𝑦1, … 𝑦𝑘) | ∑ 𝑦𝑖 = 𝑥}

𝑘
𝑖=1  

Solution 

The smn-theorem states: 

 

 

 

 

We define a function: 

𝑓(𝑥, 𝑦⃗) = {
0, ∑𝑦𝑖 = 𝑥

𝑘

𝑖=1

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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We want essentially to bound the computation to 𝑚 = 𝑘 − 1 and 𝑛 = 1 as we are dealing with 𝑘 

projections. We’ll use the smn-theorem to find a function 𝑠𝑘−1,1(𝑒, 𝑥) 𝑠. 𝑡. 

𝜙𝑒
𝑘(𝑥) = 𝜙𝑠𝑘−1,1

(1) (𝑦) 

= 𝜇𝑧.  "∑𝑦𝑖 − 𝑥

𝑘

𝑖=1

" 

= 𝜇𝑧.  |∑𝑦𝑖 − 𝑥

𝑘

𝑖=1

| 

By the (corollary of the) smn-theorem, ∃𝑘: ℕ → ℕ total computable 𝑠. 𝑡. ∀𝑛, 𝑥 ∈ ℕ 

𝜙𝑆(𝑛)(𝑥) = 𝑓(𝑛, 𝑥) 

𝜙𝑆(𝑛)(𝑥) = 𝑓(𝑛, 𝑥) = {
∑𝑦𝑖

𝑛

𝑖=1

, 𝑖𝑓 ∑𝑦𝑖 = 𝑥

𝑘

𝑖=1

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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13 UNIVERSAL FUNCTION 

We now discuss how the theory developed up to now allows us to prove the computability of a universal 

function, i.e., a function which, roughly speaking, embodies every computable function of a given arity 

(which, for a specific value, makes capture all 𝑘-ary functions). 

 

 

 

 

 

Let Ψ𝑢: ℕ
2 → ℕ,Ψ𝑢(𝑒, 𝑥) = 𝜙𝑒(𝑥)  well-defined (where 𝑒 is the index of the program, 𝑥 is the input) 

Is it computable?  

 

 

When 𝑒 varies on the natural numbers 

Ψ𝑢(0,… )    Ψ𝑢(1,… )    Ψ𝑢(2,… )  

….     ….     …. 

𝜙0      𝜙1      𝜙2 

The function 𝛹𝑢 is indeed computable because it merely acts as a "translator" or "emulator" for other 

computable functions. It takes an index 𝑒 for a computable program and an input 𝑥, and it calculates the 

result of applying the program 𝜙𝑒 to 𝑥. Since 𝜙𝑒 is a computable function by definition, the computation 

carried out by 𝛹𝑢 is also computable. 

In the context of the example, it means it will be computable for any natural number. The key is that we 

just introduce the smn-theorem in order to modify arguments of functions and make them computable 

with introduction of additional parameters, hence computing the function output. 

We take a metaphoric example here: a company called Turing s.p.a which is asked to produce a software 

able to recognize these numbers below.  
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Instead of programming, we take the universal machine, hardcoding the input instead of real input, giving 

the desired output: 

 

 

 

 

 

 

 

 

 

 

The problem is the index; there is no precise way of working them in writing the program (so, if you put 

number 𝑥, you won’t necessarily get number 𝑦 universally over all indices). We write for this reason a 

general theorem working on any number of arguments.  

13.1 DEFINITION 
 

Theorem (Universal Program)  

Let 𝑘 ≥ 1. Then the universal function Ψ𝑢: ℕ
𝑘+1 → ℕ,Ψ(𝑒, 𝑥⃗) = 𝜙𝑒

(𝑘)(𝑥⃗) is computable. 

(consider 𝑒 is the index of the program 𝑃𝑒, which we’re given a description of what to run and the 

arguments 𝑥⃗; in words here, the universal function takes the parameterized program inside and over all its 

values will be able to contain all programs and compute them effectively) 

This here is important: it makes ϕ𝑥(𝑥) computable, so the program is computable when we are able to 

effectively describe a computation over itself on its index; a universal program only needs the ability to 

decode any number 𝑒 and hence mimic 𝑃𝑒. 

Proof 

Fixed 𝑘 ≥ 1 

 

given 𝑒, 𝑥⃗ 
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How can 𝑃𝑢 work 

⇒ determine 𝑃𝑒 = 𝛾
−1(𝑒) 

 

 

 

 

 

 

The idea here is: 

- Getting the program 𝑃𝑒 = 𝛾
−1(𝑒) 

- Execute 𝑃𝑒 on input 𝑥⃗ 

- If 𝑃𝑒(𝑥) ↓, the value 𝛹𝑈(𝑒, 𝑥⃗) is in 𝑅1 otherwise the program correctly diverges 

Since all operations are effective, that’s why the Church-Turing thesis holds, and the function is 

computable. The above argument still gives the idea, but it’s not satisfactory on formal terms. Let’s try to 

give here the idea. We need to encode the content of memory, where the configuration of registers is  

𝑐 = ∏ 𝑝𝑖
𝑟𝑖

𝑖≥1  and from that we can obtain the value of each register as 𝑟𝑖 = (𝑐)𝑖  

 

 

 

From the encoding, we can obtain the value of each register and we show how to simulate the execution 

steps of a program using only computable functions. 

Given 𝑐𝑘: ℕ
𝑘+2 → ℕ: 

- 𝑐𝑘(𝑒, 𝑥⃗, 𝑡)= configuration of the memory after 𝑡 steps of 𝑃𝑒(𝑥⃗) (if 𝑃𝑒(𝑥⃗) terminates in 𝑡 steps or less → final configuration) 

Given 𝑗𝑘: ℕ
𝑘+2 → ℕ: 

- 𝑗𝑘(𝑒, 𝑥, 𝑡) = {
𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑏𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑡 𝑠𝑡𝑒𝑝𝑠 𝑜𝑓 𝑃𝑒(𝑥)𝑖𝑓 𝑃𝑒(𝑥⃗)𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑎𝑙𝑡 𝑖𝑛 𝑡 𝑠𝑡𝑒𝑝𝑠 𝑜𝑟 𝑓𝑒𝑤𝑒𝑟

0 𝑖𝑓 𝑖𝑡 𝑑𝑜𝑒𝑠 ℎ𝑎𝑙𝑡 𝑎𝑓𝑡𝑒𝑟 𝑡 𝑜𝑟 𝑓𝑒𝑤𝑒𝑟 𝑠𝑡𝑒𝑝𝑠
 

Observe: 

• 𝑃𝑒(𝑥⃗) ↓ then it stops in 𝑡0 = 𝜇𝑡. 𝑗𝑥(𝑒, 𝑥⃗, 𝑡) steps hence 𝜙𝑒
(𝑘)(𝑥⃗) = (𝑐𝑘(𝑒, 𝑥⃗, 𝜇𝑡. 𝑗𝑘(𝑒, 𝑥⃗, 𝑡)))

1
 

• 𝑃𝑒(𝑥⃗) ↑ then 𝜇𝑡. 𝑗𝑥(𝑒, 𝑥, 𝑡) ↑, hence 𝜙𝑒
(𝑘)(𝑥⃗) ↑= (𝑐𝑘(𝑒, 𝑥⃗, 𝜇𝑡. 𝑗𝑘(𝑒, 𝑥⃗, 𝑡)))

1
 

We essentially mean we’re interested in the configuration obtained inside the first register. 

Therefore, in all cases: 

Ψ𝑢
(𝑘)(𝑒, 𝑥⃗) = 𝜙𝑒

(𝑘)(𝑥⃗) = (𝑐𝑘 (𝑒, 𝑥⃗, 𝜇𝑡. 𝑗𝑝(𝑒, 𝑥⃗, 𝑡)))
1
 

(What we mean by that is the partial recursion gives as result the combination of every possible subinput, 

effectively – note: usually, composition of computable functions uses this 1, but it’s often implied) 
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If we show that 𝑐𝑘 , 𝑗𝑘 are computable, we can conclude that Ψ𝑈
(𝑘) is also computable. 

Aim: show 𝑐𝑘 , 𝑗𝑘 computable (this allows us to show that, via composition and parametrization, this will 

prove the computability of 𝑐𝑝, 𝑗𝑝 with a fixed program 𝑃). We build these functions out of the following 

smaller components: 

-  Given 𝑖 ∈ 𝑁 instruction code i.e. 𝑖 = 𝛽(𝐼𝑛𝑠𝑡𝑟): 

- 𝑍𝑎𝑟𝑔(𝑖) = 𝑞𝑡(4, 𝑖) + 1     𝑖 = 𝛽(𝑧(𝑛)) = 4 ∗ (𝑛 − 1) 

- 𝑆𝑎𝑟𝑔(𝑖) = 𝑞𝑡(4, 𝑖) + 1     𝑖 = 𝛽(𝑠(𝑛)) = 4 ∗ (𝑛 − 1) + 1 

- 𝑇𝑎𝑟𝑔(𝑖) = 𝜋1(𝑞𝑡(4, 𝑖)) + 1     𝑖 = 𝛽(𝑇(𝑚, 𝑛)) = 4 ∗ 𝜋(𝑛 − 1, 𝑛 − 1) + 2 

- 𝑇𝑎𝑟𝑔(𝑖) = 𝜋2(… ) + 1      

𝑗𝑎𝑟𝑔1
, 𝑗𝑎𝑟𝑔2

, 𝑗𝑎𝑟𝑔3
 

-  Effect of executing some algebraic instruction on configuration 𝑐 

𝑧𝑒𝑟𝑜(𝑐, 𝑛) = 𝑞𝑡 (𝑝𝑛
(𝑐)𝑛 , 𝑐) 

𝑠𝑢𝑐𝑐(𝑐, 𝑛) = 𝑐 ∗ 𝑝𝑛 

𝑡𝑟𝑎𝑛𝑠𝑓(𝑚, 𝑛) = 𝑧𝑒𝑟𝑜(𝑐, 𝑛) ∗ 𝑝𝑛
(𝑐)𝑛 

 

-  Effect on configuration 𝑐 of executing instruction with code 𝑖 

𝑐ℎ𝑎𝑛𝑔𝑒(𝑐, 𝑖) =

{
 
 

 
 𝑧𝑒𝑟𝑜(𝑐, 𝑧𝑎𝑟𝑔(𝑖)), 𝑖𝑓 𝑟𝑚(4, 𝑖) = 0

𝑠𝑢𝑐𝑐(𝑐, 𝑠𝑎𝑟𝑔(𝑖)), 𝑖𝑓 𝑟𝑚(4, 𝑖) = 1

𝑡𝑟𝑎𝑛𝑠𝑓(𝑐, 𝑡arg1(𝑖), 𝑡arg2(𝑖)), 𝑖𝑓 𝑟𝑚(4, 𝑖) = 2

𝑐, 𝑖𝑓 𝑟𝑚(4, 𝑖) = 3

 

-  Configuration of registers starting from configuration 𝑐 and executing instruction number 𝑡 in 

program 𝑃𝑒 

𝑛𝑒𝑥𝑡𝑐𝑜𝑛𝑓(𝑒, 𝑐, 𝑡) = {
𝑐ℎ𝑎𝑛𝑔𝑒(𝑐, 𝑎(𝑒, 𝑡), 𝑖𝑓 1 ≤ 𝑡 ≤ 𝑙(𝑒)

𝑐, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

-  Number of the next instruction to be executed after executing 𝑖 = 𝛽(𝑖𝑛𝑠𝑡𝑟) and this is in position 

𝑡 in the program 

𝑛𝑖(𝑐, 𝑖, 𝑡) = {
𝑡 + 1, 𝑖𝑓(𝑟𝑚(4, 𝑖) ≠ 3) 𝑜𝑟(𝑟𝑚(4, 𝑖) = 3 𝑎𝑛𝑑 (𝑐)𝑗𝑎𝑟𝑔1(𝑖) ≠ (𝑐)𝑗𝑎𝑟𝑔2(𝑖) 

𝑗𝑎𝑟𝑔3(𝑖), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

-  Next instruction if we execute instruction in position 𝑡 of 𝑃𝑒 in configuration 𝑐 

𝑛𝑒𝑥𝑡𝑖𝑛𝑠𝑡𝑟(𝑒, 𝑐, 𝑡) = {
𝑛𝑖(𝑐, 𝑎(𝑒, 𝑡), 𝑡), 𝑖𝑓 1 ≤ 𝑡 ≤ 𝑙(𝑒) ∧ 1 ≤ 𝑛𝑖(𝑐, 𝑎(𝑒, 𝑡), 𝑡) ≤ 𝑙(𝑒)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Now, by primitive recursion, we obtain the state of the program. We start from the initialization and 

content of the memory, then we apply recursively the next configuration and next instruction, both 

computable and defined. This way we apply a primitive recursion over single and defined components.  

𝑐𝑘(𝑒, 𝑥⃗, 0) =∏𝑃𝑖
𝑥𝑖

𝑘

𝑖=1

 

𝑗𝑘(𝑒, 𝑥⃗, 0) = 1 

𝑐𝑘(𝑒, 𝑥⃗, 𝑡 + 1) = 𝑛𝑒𝑥𝑡𝑐𝑜𝑛𝑓(𝑒, 𝑐𝑘(𝑒, 𝑥⃗, 𝑡), 𝑗𝑘(𝑒, 𝑥⃗, 𝑡)) 

𝑗𝑘(𝑒, 𝑥⃗, 𝑡 + 1) = 𝑛𝑒𝑥𝑡𝑖𝑛𝑠𝑡𝑟(𝑒, 𝑐𝑘(𝑒, 𝑥⃗, 𝑡), 𝑗𝑘(𝑒, 𝑥⃗, 𝑡)) 

𝑐𝑘 , 𝑗𝑘 defined by primitive recursion from computable functions are computable (actually, they are in 𝑃𝑅, 

given we never use minimalisation). Thus, we can now say: 

Ψ𝑈
(𝑘)(𝑒, 𝑥⃗) = 𝑐𝑘 (𝑒, 𝑥⃗, 𝜇𝑡. 𝑗𝑝(𝑒, 𝑥⃗, 𝑡))

1
 

is computable.  

Corollary 

The following predicates are decidable: 

• 𝐻𝑘(𝑒, 𝑥⃗, 𝑡) = “𝑃𝑒(𝑥⃗) ↓ in 𝑡 steps or fewer” 

• 𝑆𝑘(𝑒, 𝑥⃗, 𝑦, 𝑡) = “𝑃𝑒(𝑥⃗) ↓ 𝑦 in 𝑡 steps or fewer” 

Proof 

a)  

The characteristic function: 

 𝑥𝐻𝑘(𝑒, 𝑥⃗, 𝑡) = {
1, 𝑖𝑓𝐻𝑘(𝑒, 𝑥⃗, 𝑡)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= 𝑠𝑔(𝑗𝑘(𝑒, 𝑥⃗, 𝑡) = {
0, 𝑖𝑓 𝑃𝑒(𝑥⃗) ↓ 𝑖𝑛 𝑡 𝑠𝑡𝑒𝑝𝑠

≠ 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

is computable by composition. 

b)   

The characteristic function: 

𝑥𝑆𝑘(𝑒, 𝑥⃗, 𝑦, 𝑡) = 𝑥𝐻𝑘(𝑒, 𝑥⃗, 𝑡). 𝑠𝑔 |𝑦 − (𝑐𝑘(𝑒, 𝑥⃗, 𝑡))1| 

is computable by composition.  

Note: when 𝑘 = 1, we often omit it → 𝐻(𝑒, 𝑥, 𝑡) for 𝐻1(𝑒, 𝑥, 𝑡)  
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Exercise: Computability of the inverse, reprise 

Let 𝑓:𝑁 → 𝑁 total injective and computable then 𝑓−1: ℕ → ℕ 

𝑓−1(𝑦) = {
𝑥, 𝑥 𝑠. 𝑡.  𝑓(𝑥) = 𝑦  𝑖𝑓 𝑖𝑡 𝑒𝑥𝑖𝑠𝑡𝑠

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

is computable 

𝑓−1(𝑦) = 𝜇𝑥 . |𝑓(𝑥) − 𝑦| 

without totality: 

 

 

 

 

 

𝑓 is computable → there is 𝑒 ∈ 𝑁 𝑠. 𝑡. 𝑓 = 𝜙𝑒 

𝑙𝑜𝑜𝑘 𝑓𝑜𝑟 {
𝑖𝑛𝑝𝑢𝑡 𝑥  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑠𝑡𝑒𝑝𝑠 𝑛
 𝑠. 𝑡. 𝑃𝑒(𝑥) ↓ 𝑦 𝑖𝑛 𝑡 𝑠𝑡𝑒𝑝𝑠 

 

(we are trying to say that given a program over underlying inputs, we are able to execute it and go to the 

following instruction, effectively halting the program over a finite number of steps) 

𝑓−1(𝑦) = 𝜇𝑥 . 𝜇𝑛 .      𝑆(𝑒, 𝑥, 𝑦, 𝑡) 

    𝜇𝑥 . 𝜇𝑛 .      𝑆(𝑒, 𝑥, 𝑦, 𝑡) 

 

 

(we are trying to see if given a pair, the mapping will be injective: infact, this does not happen, as you can 

see from following drawings and corresponding mappings) 

𝑓−1(𝑦) = (𝜇𝑤 . 𝑆(𝑒, (𝑤)1, 𝑦, (𝑤)2)1 

𝜋−1(𝑤) = (𝜋1(𝑤), 𝜋2(𝑤)) 

𝑤 → (𝑤)1 , (𝑤)2       𝑤 = 3 = 20 ∗ 31… → (0,1) 

𝑤 = 6 = 21 ∗ 31… → (1,1) 

𝑤 = 30 = 21 ∗ 31 ∗ 32… → (1,1) 

𝑛𝑜𝑡 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 

Instead of using this injective way, we can omit the totality option given there is at least more than one 

combination for which |𝑓(𝑥) − 𝑦| is defined. We then use the minimalisation operator in order to find at 

least a solution for which it is computable, which does happen at least for one value. Given this assumption, 

if it is bounded, then we can omit totality from the discussion because it will be computable anyway.  
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Observation 

Function which is total and not computable 

𝑓(𝑥) = {
𝜙𝑥(𝑥) + 1, 𝑖𝑓 𝜙𝑥(𝑥) ↓

0, 𝑖𝑓 𝜙𝑥(𝑥) ↑
 

 

= {
Ψ𝑈(𝑥, 𝑥) + 1, 𝑖𝑓 𝜙𝑥(𝑥) ↓

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

We define this as total, and we argue the above is not a problem. Infact, for every 𝑥, if 𝜙𝑥 is total, then 

𝜙𝑥 ≠ 𝑓 (where 𝜙𝑥 is the partial recursive 𝑘 − 𝑎𝑟𝑦 function given by the 𝑥 − 𝑡ℎ step of enumeration, so it 

can be different from the function). Since we said this: 

𝑓(𝑥) = 𝜙𝑥(𝑥) + 1 ≠ 𝜙𝑥(𝑥) 

so 𝑓 is not computable. It can be seen as computable as a combination of minimalisation and composition 

of computable functions, but since our function is not computable, it would be absurd anyway (below I put 

the example in question to see for yourself). 

 

 

In words: we look for a 𝑤 such that we get 𝜑𝑥(𝑥) when 𝑥 is total, 0 otherwise. We add 1, considering the 

encoding in tuples ((𝑤)1, (𝑤)2, (𝑤)3) will give us 𝜙𝑥(𝑥) + 1 or 0 otherwise. It is decidable since only 

decidable predicates are used and thanks to 𝑆 we will find the number of steps in which that function ends. 

With 𝑆, if the function is total I will find the number of steps with which it ends. 

13.2 RELATED EXERCISES  
 

Exercise: Show that the predicate below is undecidable (this is the “infamous” Halting Problem) 

𝐻𝑎𝑙𝑡(𝑥) = {
𝑡𝑟𝑢𝑒, 𝑖𝑓𝜙𝑥(𝑥) ↓   (𝑖. 𝑒. 𝑥 ∈ 𝑊𝑥)

𝑓𝑎𝑙𝑠𝑒, 𝑖𝑓𝜙𝑥(𝑥) ↑  (𝑖. 𝑒. 𝑥 ∉ 𝑊𝑥)
 

Idea: By contradiction: we show that assuming 𝐻𝑎𝑙𝑡(𝑥) decidable, we can prove 𝑓 computable. To achieve 

this, we use the diagonal method constructing a total function which is different from every computable 

function, yet such that if 𝐻𝑎𝑙𝑡 is computable, so is 𝑓. In doing so, we use the universal machine. 

𝑓(𝑥) = {
𝜙𝑥(𝑥) + 1, 𝑖𝑓 𝜙𝑥(𝑥) ↓

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
= {
Ψ𝑈(𝜋, 𝑥) + 1, 𝑖𝑓 𝐻𝑎𝑙𝑡(𝑥)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

= Ψ𝑈(𝑥, 𝑥) + 1 ∗ 𝑥𝐻𝑎𝑙𝑡(𝑥) 

 

The equality just written is wrong: when 𝜙𝑥(𝑥) ↑ then Ψ𝑈(𝑥, 𝑥) + 1 ⇒ the expression is ↑ 

Instead (basically; encoding of tuples of all the components, where using bounded minimalisation we 

express the computability of the current computation). 

𝑓(𝑥) = 𝜇(𝑡, 𝑦)  .  (𝑆(𝑥, 𝑥, 𝑦, 𝑡) ∧ 𝑧 = 𝑦 + 1 ∧  𝐻𝑎𝑙𝑡(𝑥) ) ∨ 
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         ( 𝑧 = 0 ∧ ¬ 𝐻𝑎𝑙𝑡(𝑥) → 0)𝑧 

= 𝜇𝑤 . (𝑠(𝑥, 𝑥, (𝑤)2, (𝑤)1) ∧ (𝑤)3 = (𝑤)2 + 1 ∧ 𝐻𝑎𝑙𝑡(𝑥)) ∨ 

((𝑤)3 = 0 ∧ ¬𝐻𝑎𝑙𝑡(𝑥))3 

(𝑤)1 = 𝑡, (𝑤)2 = 𝑦, (𝑤)3 = 𝑧 

If you call (in words: the combination of the previous conditions in a function) 

𝑄(𝑥,𝑤) ≡ (𝑠(𝑥, 𝑥, (𝑤)2, (𝑤)1) ∧ (𝑤)3 = (𝑤)2 + 1 ∧ 𝐻𝑎𝑙𝑡(𝑥)) ∨ 

((𝑤)3 = 0 ∧ ¬𝐻𝑎𝑙𝑡(𝑥))  

decidable. 

= (𝜇𝑤. |𝑋𝑄(𝑥, 𝑤) − 1|)3 

(in words: bounding the minimalisation of the characteristic function, which seems computable because it 

combines also computable functions, but it is not, since from the beginning the function is not computable, 

hence the problem is not decidable) 

computable as it arises as minimalisation of computable ⇒ contradiction ⇒ 𝐻𝑎𝑙𝑡(𝑥) not decidable. 

Exercise: Let 𝑄(𝑥) be a decidable predicate, 𝑓1, 𝑓2: ℕ → ℕ computable and define: 

𝑓(𝑥) = {
𝑓1(𝑥), 𝑖𝑓 𝑄(𝑥)
𝑓2(𝑥), 𝑖𝑓 ¬𝑄(𝑥)

  

We want to prove this is computable. 

Proof 

If 𝑓1, 𝑓2 total 

𝑓(𝑥) = 𝑓1(𝑥) ∗ 𝑋𝑄(𝑥) + 𝑓2(𝑥) + 𝑋¬𝑄(𝑥) 

 

 

⇒ 𝑓 computable (in words: we use the bounded product combining the above functions) 

In general, let 𝑒1, 𝑒2 ∈ 𝑁 𝑠. 𝑡. 𝜙𝑒1 = 𝑓1 𝑎𝑛𝑑 𝜙𝑒2 = 𝑓2  

𝑓(𝑥) = 𝜇(𝑡, 𝑦). (𝑆(𝑒1, 𝑥, 𝑦, 𝑡)) ∧ 𝑄(𝑥)) ∨ 

(𝑆(𝑒2, 𝑥, 𝑦, 𝑡) ∧ ¬𝑄(𝑥)) 

 

= 𝜇𝑤. (𝑠(𝑒1, 𝑥, (𝑤)2, (𝑤)1) ∧ 𝑄(𝑥)) ∨ 

(𝑆(𝑒2, 𝑥, (𝑤)1, (𝑤)2) ∧ ¬𝑄(𝑥))2 

 

 

⇒ 𝑓 is computable  
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(in words: we define two components of the primitive recursion happening above and we bound the 

composition of the sum on the two combinations of such function, using the smn-theorem. Combining 

computable functions, basic operations and bounded minimalisation over the recursion, thanks to the 

universal machine, the indices will give us computable outputs, hence this is computable and decidable). 

Exercise 

𝑓(𝑥) = {
0, 𝜙𝑥(𝑥) ↑

↑, 𝜙𝑥(𝑥) ↓
 not computable 

If 𝐻𝑎𝑙𝑡(𝑥) is decidable, then 𝑓 is decidable 

Exercise 

Let’s start from totality and define this predicate: 

𝑇𝑜𝑡(𝑥) = "𝜙𝑥  𝑖𝑠 𝑡𝑜𝑡𝑎𝑙" ≡ "𝑃𝑥  𝑖𝑠 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑜𝑛 𝑒𝑣𝑒𝑟𝑦 𝑖𝑛𝑝𝑢𝑡" 

is undecidable. 

In fact (in words: we use diagonalization as happened other times to give a computation different from all 

total computable function, given the primitive recursion is total and will be not equal to the following value. 

This leads to a contradiction, because if the predicate is decidable so it would be the function, which is not): 

𝑓(𝑥) = {
𝜙𝑥(𝑥) + 1,  𝑖𝑓 𝑇𝑜𝑡(𝑥)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

→ 𝑓 𝑖𝑠 𝑡𝑜𝑡𝑎𝑙 {
𝑇𝑜𝑡(𝑥) ⇒   𝑓(𝑥) = 𝜙𝑥(𝑥) + 1 ⇓

¬𝑇𝑜𝑡(𝑥) ⇒   𝑓(𝑥) = 0
 

→ 𝑓 𝑖𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑎𝑙𝑙 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 

(𝑖𝑓 𝜙𝑥  𝑖𝑠 𝑡𝑜𝑡𝑎𝑙 ⇒ 𝑓(𝑥) = 𝜙𝑥(𝑥) + 1 ≠ 𝜙𝑥(𝑥)) 

⇓ 

𝑓 𝑛𝑜𝑡 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

If we assume that 𝑇𝑜𝑡(𝑥) is decidable, we derive 𝑓 computable → contradiction 

𝑓(𝑥) = {
𝑓1(𝑥), 𝑖𝑓 𝑇𝑜𝑡(𝑥)
𝑓2(𝑥), 𝑖𝑓 ¬𝑇𝑜𝑡(𝑥)

 

where: 

𝑓1, 𝑓2: 𝑁 → 𝑁 

𝑓1(𝑥) = 𝜙𝑥(𝑥) + 1 = Ψ(𝑥, 𝑥) + 1 ∀𝑥 

𝑓2(𝑥) = 0 ∀𝑥 

⇒ by the previous exercise, 𝑓 is computable, which is absurd ⇒ 𝑇𝑜𝑡(𝑥) not decidable. 

(in words: 𝑓(𝑥) is essentially saying, "If the Turing machine represented by 𝜙𝑥 halts on every input, return 

the value of the machine plus 1. Otherwise, return 0." Now, we assume that 𝑇𝑜𝑡(𝑥) is decidable, meaning 

we can reliably say whether 𝜙𝑥 halts on every input or not. We run into a contradiction because we can 

show that 𝑓(𝑥) is computable under this assumption). 
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13.3 EFFECTIVE OPERATIONS OF COMPUTABLE FUNCTIONS 
 

The existence of the universal function, together with the smn-theorem, allows us to formalize operations 

that manipulate programs and derive their effectiveness. This allows us to combine domains of functions 

and get indices which can be computed and obtained effectively, allowing us to get effective operations. 

1) Effectiveness of product: there exists a total computable function 𝑆:ℕ2 → ℕ 

∀𝑥, 𝑦    𝜙𝑆(𝑥,𝑦)(𝑧) = 𝜙𝑥(𝑧) ∗ 𝜙𝑦(𝑧) ∀𝑧 

 

 

 

Proof 

We define 𝑔:ℕ3 → ℕ 

𝜙𝑆(𝑥,𝑦)(𝑧) = 𝑔(𝑥, 𝑦, 𝑧) = 𝜙𝑥(𝑧) ∗ 𝜙𝑦(𝑧) 

= Ψ𝑈(𝑥, 𝑧) ∗ Ψ𝑢(𝑦, 𝑧) 

𝑔 is computable (composition of computable functions) 

Hence (by corollary of) smn-theorem, there is 𝑆:ℕ2 → ℕ total computable such that 

𝜙𝑆(𝑥,𝑦)(𝑧) = 𝑔(𝑥, 𝑦, 𝑧) = 𝜙𝑥(𝑧) ∗ 𝜙𝑦(𝑧) 

 

 

 

 

2) Effectiveness of the inverse function 

There is a total computable function 𝑘:𝑁 → 𝑁 𝑠. 𝑡. ∀𝑥 𝑖𝑓 𝜙𝑥  𝑖𝑠 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑡ℎ𝑒𝑛 𝜙𝐾(𝑥) = (𝜙𝑥)
−1 

 

 

Proof 

Define 

𝑔(𝑥, 𝑦) = (𝜙𝑥)
−1(𝑦) = {

𝑧, ∃𝑧 𝑠. 𝑡.  𝜙𝑥(𝑧) = 𝑦
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(if 𝜙𝑥 is injective) 

    = (𝜇(𝑧, 𝑡). 𝑆(𝑥, 𝑧, 𝑦, 𝑡))
2

 

    = (𝜇𝑤. 𝑆(𝑥, (𝑤)1, 𝑦, (𝑤)2)1 

    = 𝜇𝑤. (|𝑋𝑠(𝑥, (𝑤)1, 𝑦, (𝑤)2) − 1|)1 
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computable  

(in words: given the inverse function, we get a value from it, and we can map it back injectively to get the 

original value. Bounded minimalisation ensures, in combination with smn-theorem, that we can 

parametrize two functions over 𝑥 and 𝑦, hence bounding a finite value via the characteristic function. This 

results in something computable).  

Hence, by smn-theorem, there is 𝐾:ℕ → ℕ total computable 𝑠. 𝑡. 

𝜙𝐾(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = (𝜙𝑥)
−1(𝑦)          𝑖𝑓 𝜙𝑥  𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 

What do we get when 𝜙𝑥 is not injective? 𝜙𝐾(𝑥) is one of the counterimages of 𝑦. 

Question: Can you get the least counterimage? To put it more explicitly: 

Given 𝑓:ℕ → ℕ computable, define 𝑔(𝑦) = {
min{𝑥 | 𝑓(𝑥) = 𝑦}, 𝑖𝑓 ∃𝑥 𝑠. 𝑡. 𝑓(𝑥) = 𝑦

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

Is 𝑔 computable? 

Exercise to do here (tip: define minimalisation before finding the 0, for the current function and all 

arguments before the current one) 

Possible solution (to take with a grain of salt) 

We use minimalisation defining a computable function: 

𝑔(𝑥, 𝑦) = {
𝑧, ∃𝑧 𝑠. 𝑡. 𝜙𝑥(𝑧) = 𝑦
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

And then we apply, defining a function 𝑆 over the parameters via smn-theorem: 

𝑔(𝑥, 𝑦) = (𝑤. 𝑆(𝑥, 𝑧, 𝑦, 𝑡))
2
= 𝜇(𝑤. (|𝑋𝑠(𝑥, (𝑤)1, 𝑦, (𝑤)2)|)1 

which is computable and via smn-theorem corollary: 

𝜙𝑆(𝑥,𝑦)(𝑧) = 𝑔(𝑥, 𝑦) = {
1, 𝑖𝑓 𝜙𝑥(𝑧) = 𝑦

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Exercise: There is a total computable function 𝑆: ℕ2 → ℕ 𝑠. 𝑡.𝑊𝑆(𝑥,𝑦) = 𝑊𝑥 ∪𝑊𝑦 

𝜙𝑆(𝑥,𝑦)(𝑧) ↓ 𝑖𝑓𝑓 𝜙𝑥(𝑧) ↓ 𝑜𝑟 𝜙𝑦(𝑧) ↓ 
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We define a function 𝑔:ℕ3 → ℕ 𝑠. 𝑡. 

𝑔(𝑥, 𝑦, 𝑧) = {
↓, 𝑖𝑓 𝜙𝑥(𝑧) ↓ 𝑜𝑟 𝜙𝑦(𝑧) ↓ (𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑤𝑜𝑟𝑑𝑠 𝑧 ∈ 𝑊𝑥 ∨ 𝑧 ∈ 𝑊𝑦)

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

= 𝟏(𝜇𝑡 . 𝐻(𝑥, 𝑧, 𝑡) ∨ 𝐻(𝑦, 𝑧, 𝑡)) 

where 𝟏(𝑥) = 1∀𝑥 (keep in mind the bold 𝟏 is the “indicator function”; we use it because it can be true 

either for 𝑥 or for 𝑦) 

𝑔 is computable and thus by smn-theorem ∃𝑠: ℕ2 → ℕ total computable s.t. 

𝜙𝑆(𝑥,𝑦)(𝑧) = 𝑔(𝑥, 𝑦, 𝑧) = {
1, 𝑖𝑓 𝜙𝑥(𝑧) ↓ 𝑜𝑟 𝜙𝑦(𝑧) ↓

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑆 is the desired function (this part has borders drawn in red because quoting the professor “in exam you 

don’t write this, it’s clear 𝑆 has the desired properties). 

𝑧 ∈ 𝑊𝑆(𝑥,𝑦) 𝑖𝑓𝑓 𝜙𝑆(𝑥,𝑦) (𝑧) ↓                     𝑖𝑓𝑓 𝜙𝑥(𝑧) ↓ 𝜙𝑦(𝑧) ↓ 

 

𝑖𝑓𝑓 𝑧 ∈ 𝑊𝑥  𝑜𝑟 𝑧 ∈ 𝑊𝑦 

𝑖𝑓𝑓 𝑧 ∈ 𝑊𝑥 ∪𝑊𝑦 

Exercise 

There is a total computable function 𝑠: ℕ → ℕ 𝑠. 𝑡.  

𝐸𝑆(𝑥,𝑦) = 𝐸𝑥 ∪ 𝐸𝑦  

(𝑃𝑆(𝑥,𝑦) produces as outputs all values produced by 𝑃𝑥 and 𝑃𝑦 and to do this, we simulate 𝜙𝑥 on even 

numbers and 𝜙𝑦 on odd numbers – what the drawing wants to say). We define a function 𝑔:ℕ3 → ℕ: 

 

 

 

 

𝑔(𝑥, 𝑦, 𝑧) = {
𝜙𝑥(

𝑧

2
), 𝑧 𝑒𝑣𝑒𝑛

𝜙𝑦(
𝑧 − 1

2
), 𝑧 𝑖𝑠 𝑜𝑑𝑑

 

= Ψ𝑈(𝑥, 𝑞𝑡(2, 𝑧)) ∗ 𝑠𝑔(𝑟𝑚(2, 𝑧)) + 

Ψ𝑢 (𝑦, 𝑞𝑡(2, 𝑧)) ∗ 𝑟𝑚(2, 𝑧) 

= 𝜇(𝑣, 𝑡). (𝑆 (𝑥,
𝑧

2
, 𝑣, 𝑡) ∧ 𝑧 𝑒𝑣𝑒𝑛) ∨ 

(𝑆 (𝑦,
𝑧 − 1

2
, 𝑣, 𝑡) ∧ 𝑧 𝑜𝑑𝑑)

𝑣
∨ 

= (𝜇𝑤. (𝑆(𝑥, 𝑞𝑡(2, 𝑧), (𝑤)1, (𝑤)2) ∧ 𝑧 𝑒𝑣𝑒𝑛) ∨ 

(𝑆(𝑦, 𝑞𝑡(2, 𝑧), (𝑤)1, (𝑤)2) ∧ 𝑧 𝑜𝑑𝑑))1 

One may be tempted to use 

composition over functions and 

decidable predicate this way, 

which does not work, because one 

or both functions can be 

undefined (hence, we mark them 

in read) 
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Here we express the program with bounded minimalisation and so we cover all input cases and express all 

possibilities for 𝑧 even or odd. This way, we can ensure that is decidable, given the bounded 

minimalisation.  

An alternative might include the use of 𝑚𝑎𝑥 function and remainder, which ensure we take the bounded 

maximum for the even and odd division, making it computable: 

 

By smn-theorem ∃𝑠:ℕ2 → ℕ total computable s.t. ∀𝑥, 𝑦, 𝑧: 

𝜙𝑆(𝑥,𝑦)(𝑧) = 𝑔(𝑥, 𝑦, 𝑧) = {
𝜙𝑥 (

𝑧

2
) , 𝑧 𝑒𝑣𝑒𝑛

𝜙𝑦 (
𝑧 − 1

2
) , 𝑧 𝑜𝑑𝑑

 

I claim that 𝑠 is the desired function, i.e. 𝐸𝑆(𝑥,𝑦) = 𝐸𝑥 ∪ 𝐸𝑦 

(⊆) 𝑣 ∈ 𝐸𝑆(𝑥,𝑦) 

∃𝑧 𝑠. 𝑡. 𝜙𝑆(𝑥,𝑦)(𝑧) = 𝑣 

 

hence two possibilities (whatever happens, we are in the codomain, and we still remain inside the union). 

• 𝑣 = 𝜙𝑥 (
𝑧

2
) → 𝑣 ∈ 𝐸𝑥 

• 𝑣 = 𝜙𝑦 (
𝑧−1

2
) → 𝑣 ∈ 𝐸𝑦  

(⊇) 𝑣 ∈ 𝐸𝑥 ∪ 𝐸𝑦 → 𝑣 ∈ 𝐸𝑆(𝑥,𝑦) 

i.e.  (1) 𝑣 ∈ 𝐸𝑥 →  𝑣 ∈ 𝐸𝑆(𝑥,𝑦) 

(2) 𝑣 ∈ 𝐸𝑦 →  𝑣 ∈ 𝐸𝑆(𝑥,𝑦) 

They are analogous and we prove only one; assume we are in the codomain of 𝑥: 

1) 𝑣 ∈ 𝐸𝑥  𝑖. 𝑒. ∃𝑧 𝑠. 𝑡. 𝜙𝑥(𝑧) = 𝑣 

Therefore:𝜙𝑆(𝑥,𝑦) = (2𝑧) = 𝜙𝑥 (
2𝑧

𝑧
) = 𝜙𝑥(𝑧) = 𝑣 → 𝑣 ∈ 𝐸𝑆(𝑥,𝑦) 

 

2) identical (as said, the computations are the same here as last point) 

Exercise: variant of URM machine in which you remove the successor, and you insert the predecessor: 

𝑈𝑅𝑀𝑃  𝑧(𝑛) 

𝑆(𝑛) 

𝑇(𝑚, 𝑛) 

𝐽(𝑚, 𝑛, 𝑡) 

𝑒𝑝 𝑈𝑅𝑀
𝑃- computable function. What is the class of relationship between them? 

𝐶𝑝 = 𝐶 
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Possible solution (to take with a grain of salt) 

Consider the simulation of 𝑈𝑅𝑀𝑝 for URM normal machine to simulate the predecessor, which is not 

present in URM. In this case, you can consider a combination of both transfer and jump instructions. The 

predecessor should have the same configuration as current register minus one step of computation. So, we 

just need to jump back and transfer the content back: 

𝐽(𝑚, 𝑛, 𝑡 + 1) 

𝑇(𝑚, 𝑛 − 1) 

We will be unlucky here; still, there will always be predecessor instructions, because the model is not 

powerful enough. So, the inclusion 𝐶 ⊈ 𝐶𝑃 holds. 

In the case of 𝑈𝑅𝑀𝑝 simulating the successor, we’re basically doing the same thing forward: 

𝐽(𝑚, 𝑛, 𝑡 + 1) 

𝑇(𝑚, 𝑛 + 1) 

Exercise: Are there 𝑓, 𝑔: 𝑁 → 𝑁 functions s.t.  

1) 𝑓 computable, 𝑔 not computable, 𝑓 ∘ 𝑔 computable (composition of those) 
2) 𝑓 not computable, 𝑔 not computable, 𝑓 ∘ computable  

Tip: the answer is “yes” to both (computability is preserved by composition, non-computability is not 

preserved by composition). 

Possible solution (to take with a grain of salt) 

The function 𝑓 can be something simple like: 

𝑓(𝑥) = {

(𝑥 + 1)

2
, 𝑥 > 0

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

While 𝑔 can be: 

𝑔(𝑥) = {
𝜙𝑥(𝑥) + 1, 𝑥 ∈ 𝑊𝑥

𝑥, 𝑥 ∉ 𝑊𝑥
 

In the second one, we have 𝜙𝑥(𝑥) ≠ 𝑓(𝑥) ∀𝑥 ∈ 𝑁, hence this is not computable. 

In this case, the composition holds computable, defining a predicate 𝑋𝐾 which is 𝑔 = 𝑥𝐾 and: 

𝑓 ∘ 𝑔 (𝑥) = {
0, 𝑥 ≤ 0
𝑋𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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13.4 OTHER EXERCISES SOLVED IN LESSONS 
 

Exercise  

𝑈𝑅𝑀𝑃 instructions 

𝑍(𝑛) 

𝑇(𝑚, 𝑛) 

𝐽(𝑚, 𝑛, 𝑡) 

𝑆(𝑛)         𝑃(𝑛)    𝑟𝑛 ← 𝑟𝑛 − 1 = {
0, 𝑟𝑛 = 0

𝑟𝑛 − 1, 𝑟𝑛 > 0
 

We conjecture if 𝐶𝑃 ⊆ 𝐶 is true and holds or not.  

Instead, we will understand from the first part of the following part that the inclusion is strict, so we’ll show 

𝐶𝑃 ⊂ 𝐶. Let’s structure the proof. 

(𝐶𝑝 ⊆ 𝐶) 

Given a program 𝑃 in 𝑈𝑅𝑀𝑃: 

 

 

 

 

 

 

 

 

 

 

Formal proof: 

For every program 𝑃 of 𝑈𝑅𝑀𝑃, for every 𝑘 ∈ 𝑁, there is a URM-program 𝑃′ 𝑠. 𝑡. 𝑓
𝑝′
(𝑘) = 𝑓𝑝

(𝑘) (proof by 

induction on the number of predecessors).  

There is a problem: if you try to replace the predecessor instruction, you will still have other predecessor 

instructions recursively (a sort of hybrid between the two languages), so the full inclusion is not respected.  

Note (my try on that, so could be wrong, but just to exercise myself): 

There is this part on this exercise which makes the proof work not only for this machine but in general. This 

can be proven inductively too. In general, given as a base case a URM program 𝑃′𝑠. 𝑡. 𝑓𝑝
′0 = 𝑓𝑝

0, this would 

be trivially true given the programs are equal.  
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Inductively, this would be working too, assuming we get 𝑓𝑝
′𝑚 = 𝑓𝑝

𝑚, computing 𝑓𝑝
′(𝑚+1) = 𝑓𝑝

𝑚+1. Assuming 

the claim works for 𝑘 = 𝑚, we will build a program 𝑃′ using a register not referenced here, like 𝑞 =

max{𝜌(𝑃), 𝑘} + 1, something like. 

𝑆𝑡𝑎𝑟𝑡: 𝐼1 

𝑗: 𝐽(1,1, 𝑆𝑈𝐵) 

𝑙(𝑃): 𝐼𝑙(𝑃) 

𝐽(1,1, 𝐸𝑁𝐷) 

𝑆𝑈𝐵: 𝐽(𝑛, 𝑞, 𝑍𝐸𝑅𝑂) 

𝑍(𝑛) 

𝑆(𝑛) 

𝑇(𝑚, 𝑛) 

𝑃(𝑛) 

𝑍𝐸𝑅𝑂: 𝐽(1,1, 𝑗 + 1) 

The program here will contain the ℎ instructions of desired type and will be equally effective, then showing 

𝑓𝑝
′((𝑘))

= 𝑓𝑝
(𝑘)

, which is the desired program.  

(Coming back to the exercise) 

Now we try to prove the other part: 

(𝐶 ⊈ 𝐶𝑃) 

Given a program 𝑃 of 𝑈𝑅𝑀𝑃 and 𝑥⃗ ∈ 𝑁𝑘 the maximum value in memory after any number of computation 

of 𝑃(𝑥⃗) is ≤ max
1≤𝑖≤𝑛

𝑥𝑖  

We proceed with a proof by induction of the number 𝑡 of computation steps. 

(𝑡 = 0) the memory is: 

 

(𝑡 → 𝑡 + 1) the content of memory after 𝑡 + 1 steps is: 
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Several cases according to the instruction executed at step 𝑡 + 1: 

𝑍(𝑛) 

𝑇(𝑚, 𝑛)      max
𝑖
𝑟𝑖 ≤ max

𝑖
𝑟𝑖
′ ≤ max

1≤𝑖≤𝑛
𝑥𝑖 

𝐽(𝑚, 𝑛, 𝑡) 

𝑃(𝑛) 

* The successor 𝑆:𝑁 → 𝑁   𝑆(𝑥) = 𝑥 + 1 is not 𝑈𝑅𝑀𝑃- computable. 

 

 

 

 

 

Note: Termination is decidable for the 𝑈𝑅𝑀𝑃 model (exercise) 

 

 

My take on the solution (to take with a grain of salt) 

To prove the termination is decidable for the 𝑈𝑅𝑀𝑝 model, we define a function assuming the model is 

computable, and we define 𝑊𝑥 as the input set composed of the instructions we saw before: 

𝑓(𝑥) = {
𝑓(𝑥) + 1, 𝑥 ∈ 𝑊𝑥

0, 𝑥 ∉ 𝑊𝑥
= {
Ψ𝑈(𝑥) + 1, 𝑖𝑓 𝑥 ∈ 𝑊𝑥

0, 𝑖𝑓 𝑥 ∉ 𝑊𝑥
 

We can see the problem as: 

𝑔(𝑥, 𝑦) = {
1, 𝑖𝑓 Ψ𝑈(𝑥 + 1)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

By the smn-theorem, there is 𝑓:𝑁 → 𝑁 total and computable s.t. 

𝜙𝑓(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝟏(Ψ𝑈(𝑥 + 1)) 

We then constructed a total computable function deciding h, which will give as domain the values of the 

𝑈𝑅𝑀𝑃 model and as range its outputs, effectively halting or not. Hence, 𝑊𝑥 is decidable and so its model. 
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Exercise: Show that there is a total computable function 𝑘: ℕ → ℕ 𝑠. 𝑡.  

𝐸𝐾(𝑥) = 𝑊𝑥 (in words: set of outputs of the function = values of its domain) 

𝑃𝑥 → 𝑃𝐾(𝑥)    𝑤𝑖𝑡ℎ 𝑠𝑒𝑡 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 

= 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠 𝑤ℎ𝑒𝑟𝑒 𝑃𝑥  𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑠 

def𝑃𝐾(𝑥)(𝑦) 

𝑃𝑥(𝑦) 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑦 

Define 𝑓:𝑁2 → 𝑁 as follows: 

𝑓(𝑥), 𝑦 = {
𝑦, 𝑖𝑓 𝜙𝑥(𝑦) ↓

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

= 𝟏𝜙𝑥(𝑦) ∗ 𝑦 

1 𝑖𝑓 𝜙𝑥(𝑦) ↓ 

↑ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

= 𝟏(Ψ𝑈(𝑥, 𝑦)) ∗ 𝑦 

Hence, by smn-theorem, there is 𝑘: ℕ → ℕ total and computable s.t. 

𝜙𝐾(𝑥)(𝑦) = 𝑓(𝑥, 𝑦) = {
𝑦,     𝑖𝑓𝜙𝑥(𝑦) ↓

↑ ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(in words: partial recursion allows us to cover all cases for true/false thanks to characteristic function, then 

the smn-theorem allows us to get the function in two parameters as above, effectively terminating). 

* 𝑘 is the desired function 𝑊𝑥 = 𝐸𝐾(𝑥) 

(𝑊𝑥 ⊆ 𝐸𝐾(𝑥))   Let 𝑦 ∈ 𝑊𝑥 ⇒ 𝜙𝑥(𝑦) ↓ ⇒  𝜙𝐾(𝑥)(𝑦) = 𝑓(𝑥, 𝑦) = 𝑦 

hence 𝑦 ∈ 𝐸𝐾(𝑥) 

(𝐸𝐾(𝑥) ⊆ 𝑊𝑥)   Let 𝑦 ∈ 𝐸𝐾(𝑥)  i.e. there is 𝑧 ∈ 𝑁 𝑠. 𝑡. 𝜙𝐾(𝑥)(𝑧) = 𝑦 

 

⇒ 𝑧 = 𝑦 and 𝜙𝑥(𝑦) ↓ ⇒ 𝑦 ∈ 𝑊𝑥  

(in words: all cases, thanks to partial recursion over 𝜙𝑥 allow us to get to 𝑦 as output, this thanks to smn-

theorem) 

Exercise: There is a total computable function 𝑘:ℕ → ℕ 𝑠. 𝑡. 

𝑊𝐾(𝑥) = 𝑃      (𝑃 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟𝑠) 

𝐸𝐾(𝑥) = {𝑦 ∈ 𝑁  |  𝑦 ≥ 𝑥} 

Define 𝑓:ℕ2 → ℕ as: 

𝑓(𝑥, 𝑦) = {
𝑥 +

𝑦

2
, 𝑦  𝑖𝑠 𝑒𝑣𝑒𝑛

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝟏(𝑥) = 1 ∀𝑥 
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= 𝑥 + 𝑞𝑡(𝑧, 𝑦) + 𝜇𝑤. 𝑟𝑚(𝑧, 𝑦) 

 

computable. 

Hence, by the smn-theorem, there is 𝑘:ℕ → ℕ total computable s.t. 

𝜙𝐾(𝑥)(𝑦) = 𝑓(𝑥, 𝑦) = {
𝑥 +

𝑦

2
, 𝑖𝑓 𝑦 𝑒𝑣𝑒𝑛

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑘 is the desired function: 

→ 𝑊𝐾(𝑥) = 𝑃    (𝑜𝑘) 

→ 𝐸𝐾(𝑥) = {𝑦  |  𝑦 ≥ 𝑥} 

𝐸𝐾(𝑥) = {𝜙𝐾(𝑥)(𝑦) | 𝑦 ∈ 𝑊𝑥} 

= {𝜙𝐾(𝑥)(𝑦) | 𝑦 ∈ 𝑃} 

= {𝜙𝐾(𝑥)(2𝑧) | 𝑧 ∈ 𝑁} 

= {𝑥 +
2𝑧

2
 |  𝑧 ∈ 𝑁} 

= {𝑥 + 𝑧 | 𝑧 ∈ 𝑁} 

= {𝑦  | 𝑦 ≥ 𝑥} 

Exercise 

Are there 𝑓, 𝑔  with 𝑓 computable, 𝑔 not computable 𝑠. 𝑡. 𝑓 ∘ 𝑔 computable? 

The usual mistake here is constructing a function with some non-computable parts and assuming this will 

be not computable. The function is not computable because it’s wildly irregular, as shown here: 

 

 

 

 

 

 

 

𝑓(𝑔(𝑥)) = 0    ∀𝑥   𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑠𝑜 𝑖𝑡 𝑖𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑐𝑒) 

= 𝑓(𝑥) 

Then for the second part of the exercise: 

- Are there 𝑓, 𝑔 with 𝑓 not computable, 𝑔 not computable 𝑠. 𝑡. 𝑓 ∘ 𝑔 computable? 

- 𝑔(𝑥) = {
1, 𝜙𝑥(𝑥) ↓
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     𝑛𝑜𝑡 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 
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- 𝑓(𝑥) = {

0, 𝑖𝑓 𝑥 ≤ 1

𝜙𝑥(𝑥) + 1, 𝑖𝑓 𝑥 > 1 𝑎𝑛𝑑 𝜙𝑥(𝑥) ↓

0,   𝑖𝑓 𝑥 > 1  𝑎𝑛𝑑 𝜙𝑥(𝑥) ↑
 

not computable. This is intuitive, but to be more formal:  

𝑓 ≠ 𝜙𝑥     ∀𝑥 > 1 

(∀𝑦    ∃𝑥 > 1  𝑠. 𝑡. 𝜙𝑥 = 𝜙𝑦 → 𝑓 ≠ 𝜙𝑥 = 𝜙𝑦 

→ 𝑓 different from all computable functions) 

but 

𝑓(𝑔(𝑥)) = 0, ∀𝑥 computable! 

Exercise: Show that every computable function 𝑓 can be obtained as the composition of two non-

computable functions 𝑔, ℎ.  

My take on the solution (to take with a grain of salt) 

Let’s assume ℎ(𝑥) = 𝑓(𝑔(𝑥)) as computable, having the underlying function 𝑔:𝑁 → 𝑁  as follows: 

𝑔(𝑥) = {
𝜙𝑥(𝑥) + 1, 𝑖𝑓 𝑥 ∈ 𝑊𝑥

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The function is not computable, given 𝜙𝑥(𝑥) + 1 ≠ 𝜙𝑥, so the composition will be  

ℎ(𝑥) = {
𝜙𝑔(𝑥) + 1, 𝑖𝑓 𝑥 ∈ 𝑊𝑥

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Both will not be computable; define an arbitrary computable function such as: 

𝑓(𝑥) = {
2𝑥 + 1, 𝑥 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Since 𝑔 ignores its inputs, (ℎ ∘  𝑔) just effectively applies f to some constant 𝑦. 

So by choosing a simple computable 𝑓, we get a computable function from the composition of non-

computable 𝑔 and ℎ.  

Exercise: Prove that 𝑝𝑜𝑤2:𝑁 → 𝑁, 𝑝𝑜𝑤2(𝑥) = 2
𝑥 is 𝑃𝑅 

by using only the definition of 𝑃𝑅.  

(least class of functions including basic functions (zero, successor, projections) and closed under 

composition and primitive recursion)  

One way can be observing the sum is primitive recursive and using: 

{
𝑥 + 0 = 𝑥

𝑥 + (𝑦 + 1) = (𝑥 + 𝑦) + 1
 

{
𝑥 ∗ 0 = 0

𝑥 ∗ (𝑦 + 1) = (𝑥 ∗ 𝑦) + 𝑥
 

{
𝑥0 = 1 = 𝑠𝑢𝑐𝑐(0)

𝑥𝑦+1 = (𝑥𝑦) ∗ 𝑥
 

𝑝𝑜𝑤2(𝑥) = 2𝑦 = 𝑠𝑢𝑐𝑐(𝑠𝑢𝑐𝑐(0))
𝑦

 

𝑠𝑢𝑐𝑐:𝑁 → 𝑁 

𝑠𝑢𝑐𝑐(𝑥) = 𝑥 + 1 
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Alternatively, one can use primitive recursion directly: 

{
𝑝𝑜𝑤2(0) = 20 = 1 = 𝑠𝑢𝑐𝑐(0)

𝑝𝑜𝑤2(𝑦 + 1) = 2𝑦+1 = 2𝑦 + 2𝑦 = 𝑝𝑜𝑤2(𝑦) + 𝑝𝑜𝑤2(𝑦)
 

and observe that + (the sum) is in 𝑃𝑅.  

Alternatively, you don’t need the full sum: 

{
𝑝𝑜𝑤2(0) = 20 = 1 = 𝑠𝑢𝑐𝑐(0)

𝑝𝑜𝑤2(𝑦 + 1) = 2𝑦+1 = 𝑡𝑤𝑖𝑐𝑒(2𝑦)
 

{
𝑡𝑤𝑖𝑐𝑒(0) = 0

𝑡𝑤𝑖𝑐𝑒(𝑦 + 1) = 𝑡𝑤𝑖𝑐𝑒(𝑦) + 2 = 𝑠𝑢𝑐𝑐(𝑠𝑢𝑐𝑐(𝑡𝑤𝑖𝑐𝑒(𝑦))
 

Exercise 

𝑋𝑃 ∈ 𝒫ℛ 

𝑋𝑃(𝑥) = {
1, 𝑖𝑓 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑋𝑃(𝑥) = 𝑠𝑔(𝑟𝑚(2, 𝑥)) 

⋮ 

directly 

{
𝑋𝑃(0) = 1

𝑋𝑃(𝑦 + 1) = 𝑠𝑔(𝑋𝑃(𝑦))
 

{
𝑠𝑔(0) = 1

𝑠𝑔(𝑦 + 1) = 0
 

   

𝑡𝑤𝑖𝑐𝑒:𝑁1 → 𝑁1 
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14 RECURSIVE SETS 

Until now, we defined classes of computable/decidable properties and techniques for proving 

computability, specifically characterizing: 

- recursive properties (easy – decidable) 

- recursively enumerable properties (less easy – semidecidable [can only answer in positive case]) 

- non-recursive properties (hard – undecidable [not always you can give an answer]) 

 

 

 

 

 

 

 

 

 

We are trying to characterise mathematically classes of undecidable predicates/non-computable functions, 

giving a structure to the class of non-computable functions and sort out general classes of problems which 

do not admit an algorithmic solution. Every interesting property of program behavior is not computable 

(correctness, absence of bugs, termination). 

Specifically, we are focusing on the sets of numbers 𝑥 ⊆ ℕ and on the corresponding membership problem 

"𝑥 ∈ 𝑋? " 

In most cases 𝑋 will be seen as a set of program codes and thus it can be seen as a program property, e.g.: 

- 𝑋 = {𝑥 | 𝜙𝑥 = 𝑓𝑎𝑐𝑡} (factorial function) 

- 𝑋 = {𝑥 | 𝑃𝑥  ℎ𝑎𝑠 𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦} (the program underneath has linear complexity) 

- 𝑋 = {𝑥 | 𝑃𝑥  𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑚𝑜𝑑𝑖𝑓𝑦 𝑅𝑗} (the program does not modify the registers) 

- 𝑋 = {𝑥 | 𝑃𝑥  𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑠 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑖𝑡𝑠 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑖𝑛𝑝𝑢𝑡} 

- ⋮ 

We will discuss and distinguish between: 

- decidable properties/recursive sets, in which it is possible to answer “yes” or “no” when the 

property holds or not; 

o These are those problems for which there exists a corresponding Turing machine that halts 

on every input with an answer – yes (accepting) or no (rejecting).   

 

- semidecidable properties/recursively enumerable sets, in which it is possible to answer “yes” when 

the property holds or ↑ when the property does not hold. 

o These are those problems for which a Turing machine halts on the input accepted by it but 

can either loop forever or halt on the input which is rejected by the Turing Machine.  
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Graphically, you can see the correspondence between sets like: 

 

 

 

 

 

 

14.1 DEFINITION 
 

Definition (recursive sets) 

A set 𝐴 ∈ 𝑁 s defined as recursive if the characteristic function: 

𝜒𝐴: 𝑁 → 𝑁 

𝜒𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
0, 𝑥 ∉ 𝐴

    𝑖𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

(⇔ in other words if predicate "𝑥 ∈ 𝐴" i decidable) - so, a set 𝐴 is recursive if and only if there is a verifier 

program, returning “true” on A and “false” on its complement 𝐴 (partial verifier/semi-verifier) 

If χ𝐴 ∈ 𝒫ℛ we will say 𝐴 is primitively recursive and the notion can be extended to subsets of 𝑁𝑘. 

Examples 

The following sets are recursive: 

- 𝑁 recursive, since 𝜒𝑁 = 1 ∀𝑥 computable 

- ∅ recursive, since 𝜒∅(𝑥) = 0 ∀𝑥 computable 

- 𝑃 (prime numbers set) recursive, given 𝜒𝑃(𝑥) = 𝑠𝑔(𝑟𝑚(2, 𝑥)) = {
1,   𝑖𝑓 𝑥 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

- ⋮ 

* Observation: All finite sets 𝐴 ⊆ ℕ are recursive. 

Proof 

Let 𝐴 = {𝑥0, 𝑥1, … 𝑥𝑘}, with 𝐴 ⊂ ℕ and |𝐴| < ∞ 

𝑋𝐴(𝑥) = 𝑠𝑔 (∏|𝑥 − 𝑥𝑖|

𝑛

𝑖=0

)   𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

The following set is not recursive: 

𝐾 = {𝑥 ∈ ℕ | 𝜙𝑥(𝑥) ↓} = {𝑥 ∈ ℕ | 𝑥 ∈ 𝑊𝑥} 

(from now on, 𝐾 means the halting set, where programs will terminate). Hence: 

𝜒𝐾(𝑥) = {
1, 𝑖𝑓 𝜙𝑥(𝑥) ↓
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     𝑛𝑜𝑡 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 
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Also: {𝑥 | 𝜙𝑥  𝑡𝑜𝑡𝑎𝑙} is not recursive.  

Observation: Let 𝐴, 𝐵 ⊆ ℕ recursive sets. Then: 

1) 𝐴 = ℕ ∖ 𝐴 

2) 𝐴 ∩ 𝐵     

3) 𝐴 ∪ 𝐵 

are recursive.  

Proof 

1)    𝑋𝐴(𝑥) = {
1, 𝑖𝑓 𝑥 ∈ 𝐴
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= 𝑠𝑔(𝑋𝐴(𝑥))   𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

(2) – (3) [see decidable predicates – you can describe a bounded product/sum of both predicates and will 

be computable] 

14.2 REDUCTION AND RELATED PROBLEMS  
 

Now we will define reduction, a simple but powerful tool when studying the decidability status of 

problems, formalizing the idea of having a problem 𝐴 which you argue is “simpler” than another problem, 

calling it 𝐵. Intuitively:  

𝐴 𝑟𝑒𝑑𝑢𝑐𝑒𝑠 𝑡𝑜 𝐵 

(every instance of 𝐴 can be transformed easily into an instance of 𝐵) 

Definition (reduction) 

Given 𝐴, 𝐵 ⊆ ℕ, we say the problem 𝑥 ∈ 𝐴 reduces to "𝑥 ∈ 𝐵"  (or simply that 𝐴 reduces to 𝐵) if there is a 

total computable function 𝑓: ℕ → ℕ 𝑠. 𝑡. ∀𝑥 ∈ ℕ 

𝑥 ∈ 𝐴  𝑖𝑓𝑓 𝑓(𝑥) ∈ 𝐵 

In this case, we say 𝑓 is the reduction function. Graphically: 

 

 

 

 

 

 

 

 

In this case 𝐴 ≤𝑚 𝐵 (the symbol is read like “which reduces to”, with “m” standing for “mapping”: more 

here on notation and meaning. Translate it as “many-one-reducible” or “m-reducible” [also look here]) 

https://courses.engr.illinois.edu/cs373/sp2013/Lectures/lec23.pdf
https://disi.unitn.it/~zunino/teaching/computability/2008/computability.pdf
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Observation 

Let 𝐴, 𝐵 ⊆ ℕ,      𝐴 ≤𝑚 𝐵 

1) if 𝐵 is recursive then 𝐴 is recursive 

2) if 𝐴 not recursive then 𝐵 is not recursive 

Proof 

1) Let 𝐵 recursive 

𝜒𝐵(𝑥) = {
1,      𝑖𝑓 𝑥 ∈ 𝐵
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

since 𝐴 ≤𝑚 𝐵, there is a total computable function 𝑓:ℕ → ℕ 𝑠. 𝑡. ∀𝑥 ⇒  𝑥 ∈ 𝐴  𝑖𝑓𝑓 𝑓(𝑥) ∈ 𝐵. Then: 

𝜒𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= 𝜒𝐵(𝑓(𝑥)) 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 𝑏𝑦 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

→ 𝐴 is recursive (in other words; we simply observe that 𝜒𝐴 = 𝜒𝐵 ∘ 𝑓). 

2) this part is equivalent to (1), given the composition works in both ways.  

 

 

 

 

 

 

 

 

 

 

Example 

𝑘 = {𝑥 | 𝑥 ∈ 𝑊𝑥} = {𝑥 | 𝜙𝑥(𝑥) ↓}  𝑛𝑜𝑡 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 

𝑇 = {𝑥 | 𝑊𝑥 = 𝑁} = {𝑥 | 𝜙𝑥  𝑡𝑜𝑡𝑎𝑙} 

𝑘 ≤𝑚 𝑇 ? 

Proof 

Assume that we have: 
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Given 𝑃𝑥 we construct 𝑃𝑓(𝑥) 𝑠. 𝑡. 

𝑃𝑥(𝑥) ↓   𝑖𝑓𝑓  𝑃𝑓(𝑥) is defined everywhere 

then we could construct: 

 

 

 

 

The idea for defining 𝑓: 

 

 

 

 

 

Given we argue: 

𝑥 ∈ 𝑊𝑥 ⇔ 𝜙𝑓(𝑥)  𝑖𝑠 𝑡𝑜𝑡𝑎𝑙 

We define: 

𝑔(𝑥, 𝑦) = {
1, 𝑥 ∈ 𝑊𝑥
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Formally: 

𝑔(𝑥, 𝑦) = 𝟏(𝜙𝑥(𝑥)) 

= 𝟏(Ψ𝑈(𝑥, 𝑥)) 

By the smn-theorem, there is 𝑓:𝑁 → 𝑁 total and computable s.t. 

𝜙𝑓(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝟏(𝜙𝑥(𝑥))   ∀𝑥, 𝑦 

We claim that 𝑓:𝑁 → 𝑁 is the reduction function for 𝐾 ≤𝑚 𝑇 i.e. ∀𝑥, 𝑥 ∈ 𝐾   𝑖𝑓𝑓   𝑓(𝑥) ∈ 𝑇 

- 𝑖𝑓 𝑥 ∈ 𝐾 →   𝑓(𝑥) ∈ 𝑇 

𝑖𝑓 𝑥 ∈ 𝐾 → 𝜙𝑥(𝑥) ↓    ⇒   𝜙𝑓(𝑥)(𝑦) = 1    ∀ 𝑦  ⇒ 

⇒  𝜙𝑓(𝑥) 𝑡𝑜𝑡𝑎𝑙  𝑖. 𝑒.  𝑓(𝑥) ∈ 𝑇 

- 𝑖𝑓 𝑥 ∉ 𝐾 → 𝑓(𝑥) ∉ 𝑇 

𝑖𝑓 𝑥 ∉ 𝐾 → 𝜙𝑥(𝑥) ↑    ⇒    𝜙𝑓(𝑥)(𝑦) ↑   ∀ 𝑦   ⇒ 

⇒ 𝜙𝑓(𝑥) 𝑛𝑜𝑡 𝑡𝑜𝑡𝑎𝑙   𝑖. 𝑒.  𝑓(𝑥) ∉ 𝑇 

Therefore, 𝑓 is the reduction function for 𝐾 ≤𝑚 𝑇 hence, since 𝐾 not recursive then 𝑇 is not recursive.  

  

𝟏(𝑥) = 1  ∀𝑥 
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Example (input problem) 

Let 𝑛 ∈ 𝑁 fixed. Consider 𝐴𝑛 = {𝑥 | 𝜙𝑥(𝑛) ↓} which is not recursive. 

Proof 

We will prove 𝐾 ≤𝑚 𝐴𝑛 

We define a function 𝑓 𝑠. 𝑡. 𝑥 ∈ 𝐾 ⇔ 𝑓(𝑥) ∈ 𝐴𝑛  𝑖. 𝑒.  𝑥 ∈ 𝑊𝑥 ⇔ 𝜙𝑓(𝑥)(𝑛) ↓. Ideally: 

 

 

 

 

 

 

defined on 𝑛 𝑖𝑓𝑓 𝑃𝑥(𝑥) ↓ 

- 𝑃𝑥(𝑥) ↓    ⇒    𝑃𝑓(𝑥) ↓ ∀𝑦 in particular 𝑃𝑓(𝑥)(𝑛) ↓ 

- 𝑃𝑥(𝑥) ↑    ⇒    𝑃𝑓(𝑥)(𝑦) ↑ ∀𝑦 in particular 𝑃𝑓(𝑥)(𝑛) ↑ 

Define 𝑔:𝑁2 → 𝑁: 

𝑔(𝑥, 𝑦) = 𝟏(𝜙𝑥(𝑥)) = 𝟏(Ψ𝑈(𝑥, 𝑥))  𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

By the smn-theorem there is 𝑓:𝑁 → 𝑁 total computable s.t. 

𝜙𝑓(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝟏(𝜙𝑥(𝑥)) 

The function 𝑓 is the reduction function for 𝐾 ≤𝑚 𝐴𝑛 

* 𝑥 ∈ 𝐾 →   𝑓(𝑥) ∈ 𝐴𝑛 

if 𝑥 ∈ 𝐾  then 𝜙𝑥(𝑥) ↓. Therefore, 𝜙𝑓(𝑥)(𝑦) = 𝟏(𝜙𝑥(𝑥)) = 1 ∀𝑦.  In particular 𝜙𝑓(𝑥)(𝑛) ↓, thus 𝑓(𝑥) ∈ 𝐴𝑛. 

* 𝑥 ∉ 𝐾 → 𝑓(𝑥) ∉ 𝐴𝑛 

If 𝑥 ∉ 𝐾 then 𝜙𝑥(𝑥) ↑. Therefore, 𝜙𝑓(𝑥)(𝑦) = 𝟏(𝜙𝑥(𝑥)) ↑ ∀𝑦. In particular 𝜙𝑓(𝑥)(𝑛) ↑, thus 𝑓(𝑥) ∉ 𝐴𝑛 

 

 𝐾 ≤𝑚 𝐴𝑛    since 𝐾 not recursive, 𝐴𝑛 is not recursive 

Exercise     𝐴𝑛 ≤𝑚 𝐾  (home) 

My take on the solution (to take with a grain of salt) 

Let 𝑛 ∈ 𝑁 fixed. Consider 𝐴𝑛 = {𝑥 | 𝜙𝑥(𝑛) ↓} which is not recursive. 

We will prove 𝐴𝑚 ≤𝑚 𝐾 

We define a function 𝑓 𝑠. 𝑡. 𝑥 ∈ 𝐴𝑚 ⇔ 𝑓(𝑥) ∈ 𝑊𝑥 ⇒ 𝑓(𝑥) ∈ 𝐾. We define 𝑓 as a function running over a 

program 𝑃𝑥  𝑠. 𝑡. 𝑃𝑥(𝑦) = 1 𝑖𝑓 𝑦 = 𝑚, ↑ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 
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Define 𝑔:𝑁2 → 𝑁: 

𝑔(𝑥, 𝑦) = 𝟏(𝜙𝑥(𝑥)) = 𝟏(Ψ𝑈(𝑥, 𝑥))  𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

By the smn-theorem there is 𝑓:𝑁 → 𝑁 total computable s.t. 

𝜙𝑓(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝟏(𝜙𝑥(𝑥)) 

The function 𝑓 is the reduction function for 𝐴𝑛 ≤𝑚 𝐾 

- 𝑥 ∈ 𝐴𝑛 →   𝑓(𝑥) ∈ 𝐾 

if 𝑥 ∈ 𝐾  then 𝜙𝑥(𝑚) ↓. Therefore, 𝜙𝑓(𝑥)(𝑦) = 𝟏(𝜙𝑥(𝑚)) = 𝑥 ∀𝑥.  In particular 𝜙𝑓(𝑥)(𝑚) ↓, thus 𝑓(𝑥) ∈

𝐾. 

- 𝑥 ∉ 𝐴𝑛 → 𝑓(𝑥) ∉ 𝐾 

If 𝑥 ∉ 𝐾 then 𝜙𝑥(𝑥) ↑. Therefore, 𝜙𝑓(𝑥)(𝑦) = 𝟏(𝜙𝑥(𝑚)) ↑ ∀𝑥. In particular 𝜙𝑓(𝑥)(𝑚) ↑, thus 𝑓(𝑥) ∉ 𝐾 

Example: 𝑂𝑁𝐸 = {𝑥 | 𝜙𝑥 = 𝟏} 

 

 

 

 

𝐾 ≤𝑚  𝑂𝑁𝐸  same reduction function as before 

Example (output problem) 

Let 𝑛 ∈ 𝑁. Consider 𝐵𝑛 = {𝑥 | 𝑛 ∈ 𝐸𝑥} not recursive 

 

 

 

Show 

𝑘 ≤𝑚 𝐵𝑛 

 

 

 

 

Define: 

𝑔(𝑥, 𝑦) = 𝑛 ∗  𝟏(𝜙𝑥(𝑥) = 𝑛 ∗ 𝟏(Ψ(𝑥, 𝑥))   𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

By the smn-theorem there is 𝑓:𝑁 → 𝑁 total computable s.t. 𝜙𝑓(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝑛 ∗ 𝟏(𝜙𝑥(𝑥)) ∀𝑥, 𝑦 

𝑓 is the reduction function for 𝑘 ≤𝑚 𝐵𝑛 
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- if 𝑥 ∈ 𝐾 then 𝜙𝑥(𝑥) ↓.  

So: 

𝜙𝑓(𝑥)(𝑦) = 𝑛 ∗ 𝟏(𝜙𝑥(𝑥)) = 𝑛   ∀𝑦 

Thus: 

𝑛 ∈ 𝐸𝑓(𝑥) = {𝑛} 

hence 𝑓(𝑥) ∈ 𝐵𝑛 

- if 𝑥 ∉ 𝐾 then 𝜙𝑥(𝑥) ↑. Thus 

𝜙𝑓(𝑥)(𝑦) = 𝑛 ∗ 𝟏(𝜙𝑥(𝑥)) ↑    ∀𝑦 

Thus: 

𝑛 ∉ 𝐸𝑓(𝑥) = ∅ 

hence 𝑓(𝑥) ∉ 𝐵𝑛 

We conclude 𝑘 ≤𝑚 𝐵𝑛, hence 𝐵𝑛 not recursive.  

Exercise 

1) There exists 𝑓: ℕ → ℕ total computable s.t. 

|𝑊𝑓(𝑥)| = 2𝑥 

|𝐸𝑓(𝑥)| = 𝑥  

∀𝑥 

Solution  

 

 

 

2) Functions computed by programs which can only jump forward  

𝐼𝑖:   𝐽(𝑚, 𝑛, 𝑡)   𝑡 > 𝑖 

are all total (what if we allow only for backward steps?) 

My take on the solution (to take with a grain of salt) 

We will prove this inductively on a program 𝑃 by induction on the instruction 𝑖𝑡ℎ over the index 𝑡. 

- Base case: The first instruction has the instruction 𝑡 > 𝑖 > 0 (at least 1) 

 

- Inductive case: At step 𝑡 + 1𝑡ℎ step, the previous instruction has an index > 𝑡, so at step 𝑡 + 1, the 

jump address must be > 𝑡, therefore the instruction will have index > 𝑡 + 1. 

 

After 𝑡 steps, the index would definitely be greater than the program length, at > 𝑙(𝑃), so the program 

must halt at the (𝑡 + 1)𝑡ℎ step of computation, effectively halting the program.  



163   Computability simple (for real) 
 

Written by Gabriel R. 

15 SATURATED SETS AND RICE’S THEOREM 

Rice’s theorem helps showing program properties are not decidable or not recursive, basically. 

More in detail, it roughly states that no property of the behaviour of programs which is related to the 

input/output (besides the obvious ones) is decidable or, in other words, that no non-trivial property of 

computable functions is decidable. We can see it like this: 

 

 

 

We consider properties we already know they are not decidable: 

“ 𝑃 is terminating on every input “ 

“ 𝑃 has some fixed 𝑥 ∈ ℕ as an output “ 

“ 𝑃 computes a function 𝑓 “ 

⋮  

“ the length of program 𝑃 is ≤ 10 “ 

⋮  

What is a behavioral property of a program? 

𝐴 ⊆ ℕ 

↑ 

set of programs (program property) 

Let’s give then: 

𝑇 = {𝑛 | 𝑃𝑛 is terminating on every input} 

= {𝑛 | 𝜙𝑛 is total} 

= {𝑛 | 𝜙𝑛 ∈ 𝑇}  

𝑂𝑁𝐸 = {𝑛 | 𝑃𝑛 is a sound implementation of 𝟏} 

= {𝑛 | 𝜙𝑛 is 𝟏}  

= {𝑛 | 𝜙𝑛 ∈ {𝟏}}   

𝐴 ⊆ ℕ (program property) is a behavioral property if, for all programs 𝑛 ∈ ℕ the facts that 𝑛 ∈ 𝐴 or 𝑛 ∉ 𝐴 

only depends on 𝜙𝑛  

(the computed function in I/O, nothing else; so, we might say a behavioral property would be a set of 

programs that share a common behavioral trait during their execution and their behavior reflects how a 

program behaves during runtime). 

  

undecidable 

decidable 

Every property of programs which 

concerns the I/O behaviour of 

programs is undecidable 



164   Computability simple (for real) 
 

Written by Gabriel R. 

15.1 SATURATED SETS 
 

Definition 

A subset 𝐴 ⊆ ℕ is saturated (or extensional) if ∀ 𝑚, 𝑛 ∈ ℕ 

𝑖𝑓 𝑚 ∈ 𝐴 𝑎𝑛𝑑 𝜙𝑚 = 𝜙𝑛 𝑡ℎ𝑒𝑛 𝑛 ∈ 𝐴 

(in words:  

- given two programs, if the first program is in the set of programs satisfying the property and two 

programs are computing the same thing, then also the second program satisfies the property 

- this means that if one program with a certain property is in the set, all programs computing the 

same function must also be in the set) 

The property does not depend on the program but on the function it computes. A saturated set contains all 

the indices (which are infinite) of programs that compute functions with a particular common 

characteristic. 

⇕ 

𝐴 saturated if 𝐴 = {𝑛 | 𝜙𝑛 satisfies a property of functions} = {𝑛 | 𝜙𝑛 ∈ 𝐴}  

where 𝐴 ⊆ 𝐹 

Examples 

- 𝑇 = {𝑛 | 𝑃𝑛 is terminating on every input}  

= {𝑛 | 𝜙𝑛 is total}  

= {𝑛 |𝜙𝑛 ∈ Τ} 

Where Τ = {𝑓 ∈ 𝐹 | 𝑓 total} 

- 𝑂𝑁𝐸 = {𝑛 | 𝑃𝑛 is a sound implementation of 𝟏} (which simply means “computes 𝟏”) 

= {𝑛 | 𝜙𝑛 = 1}  

= {𝑛 | 𝜙𝑛 ∈ {𝟏}}    

- 𝐿𝐸𝑁10 = {𝑛 | 𝑃𝑛 has length ≤ 10} 

𝑚 ∈ 𝐿𝐸𝑁10 

𝑚 ∉ 𝐿𝐸𝑁10 

𝑒. 𝑔.  

 𝑚 = 𝛾(𝑍(1))   ∈ 𝐿𝐸𝑁10 (program with 10 lines; the next one has more lines, but they do the same thing) 

𝑚 = 𝛾(

𝑍(1)

𝑍(1)
⋮

𝑍(1)

) ≥ 11   ∉ 𝐿𝐸𝑁10 

  

property of functions set of all functions 

𝜙𝑚 = 𝜙𝑛 = 0 

constant zero 

𝑎𝑛𝑑 𝜙𝑚 = 𝜙𝑛 
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- 𝐾 = {𝑛 | 𝜙𝑛(𝑛) ↓} (this is the halting problem, checking if it terminates over the program code) 

= {𝑛 | 𝜙𝑛 ∈ 𝒦} 

 𝒦 = {𝑓 | 𝑓(? ) ↓}   ? ? ?  (here we would like to have a function able to compute the halting problem in the 

same set, but this does not happen) 

It seems that 𝐾 is not saturated (we can’t conclude the proof, because we are not able to define something 

which “behaves as the halting problem” itself and then given 𝐾 does not depend on the underlying 

function, we would like to have “something able to prove it universally”).  

Formally, I should find 𝑚, 𝑛 ∈ 𝑁 s.t. 

𝑚 ∈ 𝐾        𝜙𝑚(𝑚) ↓ 

𝑚 ∉ 𝐾          𝜙𝑛(𝑛) ↑ 

(they have different values, but they are computing the same function).  

If we were able to show there exists a program 𝑚 ∈ 𝑁 𝑠. 𝑡. 

𝜙𝑚(𝑥) = {
1, 𝑖𝑓 𝑥 = 𝑚

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

we can conclude:  

1) 𝑚 ∈ 𝐾         𝜙𝑚(𝑚) ↓ 

2) for a computable function there are infinitely many programs hence there is 𝑛 ≠ 𝑚 𝑠. 𝑡. 𝜙𝑚 = 𝜙𝑛 

3) 𝑛 ∉ 𝐾 

𝜙𝑛(𝑛) = 𝜙𝑚(𝑛) ↑ 

 

 

 

𝐾 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑! (ℎ𝑒𝑛𝑐𝑒, 𝑡ℎ𝑒𝑦 𝑑𝑜𝑛′𝑡 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑡ℎ𝑖𝑛𝑔) 

What about (∗) ? 

 

 

We check if 𝑥 corresponds to the program we are defining.  

  

and 𝜙𝑚 = 𝜙𝑛 

𝜙𝑛 = 𝜙𝑚 𝑛 ≠ 𝑚 

𝑖𝑓 𝑥 ∈ 𝑃 𝑡ℎ𝑒𝑛 1 

𝑖𝑓 𝑥 ∉ 𝑃 𝑡ℎ𝑒𝑛 ↑ 

def 𝑃(𝑥): 

𝑖𝑓 𝑥 = "def 𝑃(𝑥): 

…   " 
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15.2 RICE’S THEOREM 
 

Definition (Rice’s theorem) 

Let 𝐴 be a set and 𝐴 ≠ ∅,𝐴 ≠ ℕ, 𝐴 ⊆ ℕ. If 𝐴 is saturated, then 𝐴 is not recursive.  

In simpler terms: 

- the saturation property implies that 𝐴 contains all the indices of programs that compute functions 

with a common characteristic 

o this property holds extensionally, meaning it solely depends on the elements within the set 

without consideration for their internal representations. 

- the significance of this in proving non-recursiveness lies in the inherent uncertainty: we cannot 

definitively determine whether a program possesses a specific property precisely 

Proof 

We start from the halting problem, making it reducible to 𝐴. So: 

𝐾 ≤𝑚 𝐴 (since 𝐾 is not recursive → 𝐴 is not recursive) 

To remember, this happens with reduction “behind the scenes”: 

 

 

 

 

Let 𝑒0 be an in index 𝑠. 𝑡. 𝜙𝑒0(𝑥) ↑ ∀𝑥 (program for the function always undefined – consider, as note, we 

assume 𝜙𝑒0 ≠ 0, which could be not true). We distinguish two cases depending on 𝑒 ∈ 𝐴 or 𝑒 ∉ 𝐴. 

1) Assume 𝑒0 ∉ 𝐴 

Let 𝑒1 ∈ 𝐴 (it exists since 𝐴 ≠ ∅) 

and define: 

𝑔(𝑥, 𝑦) = {
𝜙𝑒1(𝑦), 𝑖𝑓 𝑥 ∈ 𝐾

𝜙𝑒0(𝑦), 𝑖𝑓 𝑥 ∈ 𝐾 (𝑜𝑟 𝑥 ∉ 𝐾)
 

= {
𝜙𝑒1(𝑦), 𝑖𝑓 𝑥 ∈ 𝐾        [𝜙𝑥(𝑥) ↓]

↑, 𝑖𝑓 𝑥 ∈ 𝐾        [𝜙𝑥(𝑥) ↑]
 

= 𝜙𝑒1(𝑦) ∗ 𝟏 (𝜙𝑥(𝑥)) 

 

= 𝜙𝑒1(𝑦) ∗ 𝟏(Ψ𝑈(𝑥, 𝑥)) 

computable! 
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By the smn-theorem, there is 𝑠: 𝑁 → 𝑁 total and computable s.t. ∀𝑥, 𝑦: 

𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = {
𝜙𝑒1(𝑦), 𝑖𝑓 𝑥 ∈ 𝐾

𝜙𝑒0(𝑦), 𝑖𝑓 𝑥 ∈ 𝐾
 

𝑠 is the reduction function for 𝐾 ≤𝑚 𝐴 

- 𝑥 ∈ 𝐾 ⇒ 𝑠(𝑥) ∈ 𝐴 

𝑖𝑓 𝑥 ∈ 𝐾 𝑡ℎ𝑒𝑛 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝜙𝑒1(𝑦)  ∀𝑦  

𝑖. 𝑒. 𝜙𝑠(𝑥) = 𝜙𝑒1  since 𝑒1 ∈ 𝐴 and 𝐴 saturated → 𝑠(𝑥) ∈ 𝐴 

- 𝑥 ∉ 𝐾 ⇒ 𝑠(𝑥) ∉ 𝐴 

𝑖𝑓 𝑥 ∉ 𝐾 𝑡ℎ𝑒𝑛 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝜙𝑒0(𝑦)  ∀𝑦  

𝑖. 𝑒. 𝜙𝑠(𝑥) = 𝜙𝑒0  since 𝑒0 ∉ 𝐴 and 𝐴 saturated → 𝑠(𝑥) ∉ 𝐴  

Hence, as expected by our construction, 𝑠 is the reduction function and since 𝐾 is not recursive, we deduce 

𝐴 is not recursive either.  

2) if instead 𝑒0 ∈ 𝐴, 

we have 𝑒0 ∉ 𝐴  

𝐴 ⊆ ℕ is saturated (since 𝐴 is) 

𝐴 ≠ ∅ (since 𝐴 ≠ ℕ) 

𝐴 ≠ 𝑁 (since 𝐴 ≠ ∅) 

→ by (1) applied to 𝐴 we deduce 𝐴 not recursive → 𝐴 not recursive either 

15.3 EXAMPLES  
 

Example (Output problem) 

We proved that 𝐵𝑛 = {𝑥 | 𝑛 ∈ 𝐸𝑥} and we observed it was not recursive by showing 𝐾 ≤𝑚 𝐵𝑛. We can 

conclude the same using: 

- 𝐵𝑛 is saturated (hence, given codomain=image, they compute the same values) 

𝐵𝑛 = {𝑥 | 𝜙𝑥 ∈ 𝐵𝑛}  

𝐵𝑛 = {𝑓 | 𝑛 ∈ 𝑐𝑜𝑑(𝑓)}  

- 𝐵𝑛 ≠ ∅ (we get at least one element from natural set, hence it is well-defined and total) 

e.g. let 𝑒1 ∈ ℕ be s.t. 𝜙𝑒1(𝑦) = 𝑦    ∀𝑦 →    𝑛 ∈ 𝐸𝑒1 = ℕ 

→ 𝑒1 ∈ 𝐵𝑛 ≠ ∅  (so, using the identity, we find all possible numbers as output)  

- 𝐵𝑛 ≠ ℕ (there are always different elements we can map) 

e.g. let 𝑒2 ∈ ℕ 𝑠. 𝑡. 𝜙𝑒2(𝑦) = 𝑚 (≠ 𝑛)   ∀𝑦 

𝑒2 ∈ 𝐵𝑛 (since 𝑛 ≠ 𝐸𝑒2 = {𝑚}) 
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⇒ by Rice’s theorem, 𝐵𝑛 is not recursive 

Example 

𝐼 = {𝑥 ∈ ℕ| 𝑃𝑥  ℎ𝑎𝑠 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑚𝑎𝑛𝑦 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑝𝑢𝑡𝑠}  

= {𝑥 ∈ ℕ | 𝐸𝑥  𝑖𝑠 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒}  

Is it saturated? Yes, it is. We are not making assumptions over the underlying program, we’re only 

interested in the property of functions and its sets. We will argue what we just wrote: 

- 𝐼 saturated 

𝐼 = {𝑥 | 𝜙𝑥 ∈ 𝐼}  

with 𝐼 = {𝑓 | 𝑐𝑜𝑑(𝑓) 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒} 

- 𝐼 ≠ ∅ (it is not empty) 

if 𝑒1 is as previous exercise → 𝐸𝑒1 = 𝑁 infinite ⇒ 𝑒1 ∈ 𝐼 

- 𝐼 ≠ ℕ 

if 𝑒2 is as before → 𝐸𝑒2 = {𝑚} → 𝑒2 ∉ 𝐼 

⇒ 𝐼 not recursive, by Rice’s theorem  

Example 

𝐴 = {𝑥 | 𝑥 ∈ 𝑊𝑥 ∩ 𝐸𝑥} (programs halting on their own description) 

Is it saturated? 

𝐴 = {𝑥 | 𝜙𝑥 ∈ 𝐴}  

𝐴 = {𝑓 | ?  ∈ 𝑑𝑜𝑚(𝑓) ∩ 𝑐𝑜𝑑(𝑓)}  

 

 

Hence, we will not use Rice. We show 𝐾 ≤𝑚 𝐴 i.e. that there is a total computable function 𝑠:𝑁 → 𝑁 𝑠. 𝑡. 

𝑥 ∈ 𝐾   𝑖𝑓𝑓   𝑠(𝑥) ∈ 𝐴 

⇕ 

𝑠(𝑥) ∈ 𝑊𝑠(𝑥)  …  𝜙𝑠(𝑥) ↓ 

𝑎𝑛𝑑 

𝑠(𝑥) ∈ 𝐸𝑠(𝑥)…  𝜙𝑠(𝑥)(𝑦) = 𝑠(𝑥) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦 

We define, by the smn-theorem, a function of two arguments as follows (we know nothing about the 

function discussed before; to be sure, we use a function defined for every natural number and produces 

code as an output without knowing the code using also universal function; then the opposite case).  

𝑔(𝑥, 𝑦) = {
𝑦, 𝑥 ∈ 𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

= 𝑦 ∗ 𝟏(𝜙𝑥(𝑥)) 

we do not know what to put here; essentially, the function is computing its own code, or the syntax, halting on the given 

input in a predictable way. It doesn’t means it isn’t saturated, only there is no such function “able to do it universally”  
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= 𝑦 ∗ 𝟏(Ψ𝑈(𝑥, 𝑥) ) 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

By the smn-theorem, there is 𝑠: ℕ → ℕ total computable s.t. 

𝜙𝑠(𝑥) = 𝑔(𝑥, 𝑦) = {
𝑦, 𝑖𝑓 𝑥 ∈ 𝐾

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        ∀𝑥, 𝑦 

𝑠 is the reduction function 

→ 𝑥 ∈ 𝐾 then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝑦  ∀𝑦 

Hence, 𝑊𝑠(𝑥) = 𝑁, 𝐸𝑠(𝑥) = 𝑁 and so 𝑠(𝑥) ∈ 𝑊𝑠(𝑥) ∩ 𝐸𝑠(𝑥) = ℕ 

Thus, 𝑠(𝑥) ∈ 𝐴.  

→ 𝑥 ∉ 𝐾 then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) ↑ 

Hence, 𝑊𝑠(𝑥) = ∅, 𝐸𝑠(𝑥) = ∅ and so 𝑠(𝑥) ∉ 𝑊𝑠(𝑥) ∩ 𝐸𝑠(𝑥) = ∅ 

Thus, 𝐾 ≤𝑚 𝐴 and since 𝐾 is not recursive, also 𝐴 is not recursive.  
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16 RECURSIVELY ENUMERABLE SETS 

We started looking at recursive sets, which have properties completely satisfiable, either “yes” or “no”, 

with a set of numbers associated to code satisfying the property (and understanding if a number is inside 

the specific set or not). We then move to the larger class, responding “yes” or “does not exist” for all 

possible elements. 

 

 

 

 

 

 

 

 

 

 

16.1 DEFINITION 
 

A set 𝐴 ⊆ 𝑁 is recursively enumerable (called from now on “r.e.”) if the semi-characteristic function 

𝑠𝑐𝐴: ℕ → ℕ: 

𝑠𝑐𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  𝑖𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

- Enumerable since there is surjective function total and computable 𝑓:ℕ → ℕ s.t. 𝑐𝑜𝑑(𝑓) = 𝐴 

- Recursive since the enumeration can be done via a computable function  

A property/predicate 𝑄(𝑥⃗) ⊆ ℕ𝑘 is semi-decidable if  

𝑠𝑐𝑄: ℕ
𝑘 → ℕ 

𝑠𝑐𝑄(𝑥⃗) = {
1, 𝑖𝑓 𝑄(𝑥⃗)

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

Keep in mind that a recursive set is said to be decidable, a r.e. set is said to be semidecidable. 

Note 

If 𝑄(𝑥) ⊆ ℕ 

𝑄(𝑥) semidecidable if and only if {𝑥 ∈ 𝑁 | 𝑄(𝑥)} r.e.  

(we could define also recursive/r.e. sets 𝐴 ⊆ ℕ𝑘) 

Saying that 𝐴 is r.e. is like saying the predicate 𝑄(𝑥) = "𝑥 ∈ 𝐴" is semidecidable and we’re also generalizing 

to subsets of ℕ𝑘 and 𝑘-ary predicates.  
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In practice: 

- there is an algorithm such that the set of input numbers for which the algorithm halts is exactly 𝐴  

 

or equivalently: 

- there is an algorithm that enumerates the members of 𝐴. That means that its output is simply a list 

of all the members of 𝐴: 𝑎1, 𝑎2, 𝑎3… . If 𝐴 is infinite, this algorithm will run forever. 

A recursively enumerable set is a set where you can write a program that will output each element in the 

set: 𝐸1, 𝐸2, 𝐸3... it's okay if this program never stops. People usually talk about this in the context of 

languages. A recursively enumerable language is a language where you could write a program that writes 

out every valid string in that language. A language is just a set of strings, so "the set of all prime numbers in 

base 10" is a valid language. 

Also, if a set is recursive, it’s also recursively enumerable. 

Observation 

Let 𝐴 ⊆ ℕ be a set. 

𝐴 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 ⇔ 𝐴, 𝐴 𝑎𝑟𝑒 𝑟. 𝑒. 

Proof 

(⇒) Let 𝐴 ⊆ ℕ be recursive, i.e. 

𝜒𝐴 = {
1, 𝑖𝑓 𝑥 ∈ 𝐴
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  𝑖𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

We want to show 𝐴 r.e., i.e. 

𝑠𝑐𝐴 = {
1, 𝑖𝑓 𝑥 ∈ 𝐴

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  𝑖𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

Intuitively: 

You have 𝑃𝜒𝐴 for “𝑥 ∈ 𝐴” 

 

 

 

(we’re defining the semi-characteristic function to show it is r.e.) 

Formally: 

𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑤. |𝜒𝐴(𝑥) − 1|)  

 

 

 

 

(in words: we use minimalisation to give a finite computation if the argument is in its domain, which will be 

for the characteristic function minimized and the indicator function, which will express all the possibilities 

for the expression to be valid or not) 

computable, since it is composition/minimalisation of 

computable functions 
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Hence, 𝐴 is r.e. 

Concerning 𝐴, note that since 𝐴 recursive, also 𝐴 recursive. Hence, by the argument above, 𝐴 is r.e. (just 

simply do the same and substitute for both characteristic/semi-characteristic function 𝜒𝐴 and it will work). 

(⇐) Let 𝐴, 𝐴 be r.e., i.e. the semi-characteristic functions are computable: 

𝑠𝑐𝐴(𝑥) = {
1, 𝑖𝑓 𝑥 ∈ 𝐴

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
  

𝑠𝑐𝐴(𝑥) = {
1, 𝑖𝑓 𝑥 ∈ 𝐴

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
  

Here, we combine two machines, in which both are computable, given they are recursive and r.e. This 

means they will both terminate and since 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐴, the process will terminate for sure. Infact, now 

we consider the results of both computations, then building the characteristic function. 

Let 𝑒1, 𝑒0 ∈ 𝑁 s.t. 𝑠𝑐𝐴 = 𝜙𝑒1  and 1 −. 𝑠𝑐𝐴 = 𝜙𝑒0  

Idea (combining minimalization and encoding in pairs which will terminate): 

“(𝑢(𝑦, 𝑡).  𝑆(𝑒1, 𝑥, 𝑦, 𝑡) ∨ 𝑆(𝑒0, 𝑥, 𝑦, 𝑡))↓𝑦” 

Formally (we apply projection and then use negated sign to represent the binary computation over the 

projection on first component, hence obtaining a computable thing): 

𝜒𝐴(𝑥) = 𝜇𝑤. 𝑆(𝑒1, 𝑥, (𝑤)1, (𝑤)2 ∨ 𝑆(𝑒0, 𝑥, (𝑤)1, (𝑤)2) 

 

= (𝜇𝑤. 𝑠𝑔(max(𝑋𝑆(𝑒1, 𝑥, (𝑤)1, (𝑤)2), 𝜒𝑆(𝑒0, 𝑥, (𝑤)1, (𝑤)2))))
1

 

computable. Hence, 𝐴 is recursive. 

 

 

 

 

 

 

 

 

16.2 EXISTENTIAL QUANTIFICATION 
 

𝑄(𝑡, 𝑥⃗) ⊆ ℕ𝑘+1    decidable 

𝑃(𝑥⃗) ≡ ∃𝑡. 𝑄(𝑡, 𝑥⃗)      semi-decidable 

So, in words: if a decidable predicate is universally quantified existentially, it can become semi-decidable.  

* 𝐾 not recursive, it is r.e. 

𝑠𝑐𝐾(𝑥) = {
1, 𝑖𝑓 𝑥 ∈ 𝐾 (𝜙𝑥(𝑥) ↓)

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

= 𝟏(𝜙𝑥(𝑥)) 

= 𝟏(Ψ𝑈(𝑥, 𝑥)) 

* 𝐾 is not r.e. 

Otherwise if 𝐾 r.e., since 𝐾 r.e., we would have 

𝐾 recursive  
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An example might help on this: 

Consider 𝑄(𝑡, 𝑥⃗) be the statement "There exists a natural number 𝑡 such that the sum of 𝑡 and the first 

component of 𝑥⃗ is equal to the second component of 𝑥⃗."  

Mathematically, this could be represented as: 

𝑄(𝑡, 𝑥⃗) ≡ (𝑡 + 𝑥1 = 𝑥2)  

In this example, 𝑄 asserts that there is a natural number 𝑡 such that adding 𝑡 to the first component of 

𝑥⃗⃗ results in the second component of 𝑥⃗⃗. The solutions to 𝑄(𝑡, 𝑥⃗) would be tuples (𝑡, 𝑥1, 𝑥2) where this 

condition holds true (in our cases, in general, 𝑡 is the number of steps).  

So, we mean, looking at this one, “∃𝑥 𝑃(𝑥) is true when 𝑃(𝑥) is true for at least one value of 𝑥”. Given it is 

semidecidable, eventually some value might be found and there would be an algorithm for that. If you 

consider this one, you will see quantification it’s basically “minimalisation for predicates”. 

16.3 STRUCTURE THEOREM 
 

Structure theorem (Structure of semi-decidable predicates) 

there is 𝑄(𝑡, 𝑥⃗) ⊆ ℕ𝑘+1 decidable predicate 

s.t. 𝑃(𝑥⃗) = ∃𝑡. 𝑄(𝑡, 𝑥⃗) 

(in words: the predicate 𝑃 is a generalization of a decidable predicate that is computed over multiple 

points. In general, existentially quantifying transforms a decidable predicate into a semidecidable one) 

Proof 

(⇒) Let 𝑃(𝑥⃗) ⊆ ℕ𝑘 be semi-decidable: 

𝑠𝑐𝑃(𝑥⃗) = {
1, 𝑖𝑓 𝑃(𝑥⃗)

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  𝑖𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

i.e. there is 𝑒 ∈ ℕ 𝑠. 𝑡. 𝑠𝑐𝑃 = 𝜙𝑒
(𝑘) 

𝑃(𝑥⃗) 𝑖𝑓𝑓 𝑠𝑐𝑃(𝑥⃗) = 1 

𝑖𝑓𝑓 𝑠𝑐𝑃(𝑥⃗) ↓ 

𝑖𝑓𝑓 𝑃𝑒(𝑥⃗) ↓ 

𝑖𝑓𝑓 ∃𝑡. 𝐻(𝑘)(𝑒, 𝑥⃗, 𝑡) 

If we let 𝑄(𝑡, 𝑥⃗) = 𝐻(𝑘)(𝑒, 𝑥⃗, 𝑡) decidable and 𝑃(𝑥⃗) ≡ ∃𝑡. 𝑄(𝑡, 𝑥⃗)  

(⇐) We assume 𝑃(𝑥⃗) ≡ ∃𝑡. 𝑄(𝑡, 𝑥⃗) with 𝑄(𝑡, 𝑥⃗) decidable 

𝑠𝑐𝑃(𝑥⃗) = {
1, 𝑖𝑓𝑃(𝑥⃗) ⇔ ∃𝑡. 𝑄(𝑡, 𝑥⃗) ⇔ ∃t. XQ(𝑡, 𝑥⃗) = 1

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

= 𝟏(𝜇𝑡. |𝑋𝑄(𝑡, 𝑥⃗) − 1|) 

 

 

𝑃(𝑥⃗) semi-decidable ⇔ 

Observe: 

https://en.wikipedia.org/wiki/Existential_quantification
https://www.youtube.com/watch?v=qvgobkzCHmE
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16.4 PROJECTION THEOREM  
 

Definition (projection theorem) – closure by existential quantification  

Let 𝑃(𝑥, 𝑦⃗) ⊆ ℕ𝑘+1 semi-decidable 

Then 𝑅(𝑦⃗) ≡ ∃𝑥. 𝑃(𝑥, 𝑦⃗) is semi-decidable 

 

 

 

 

 

 

In essence, the projection theorem tells us that if we have a property that is semi-decidable for pairs of 

numbers, then we can define another property about the second part of those pairs, and it will also be 

semi-decidable. It establishes a connection between the semi-decidability of properties involving pairs and 

the semi-decidability of properties involving only one part of those pairs. 

It also shows ℛℰ class is shown with respect to existential quantification.  

Proof 

Let 𝑃(𝑥, 𝑦⃗) ⊆ ℕ𝑘+1 semi-decidable. Hence, by structure theorem, there is 𝑄(𝑡, 𝑥, 𝑦⃗) ⊆ ℕ𝑘+2 decidable s.t. 

𝑃(𝑥, 𝑦⃗) ≡ ∃𝑡. 𝑄(𝑡, 𝑥, 𝑦⃗) 

Now: 

𝑅(𝑦⃗) ≡ ∃𝑥. 𝑃(𝑥, 𝑦⃗) ≡ ∃𝑥. ∃𝑡. 𝑄(𝑡, 𝑥, 𝑦⃗) 

≡ ∃𝑤.𝑄((𝑤)1, (𝑤)2, 𝑦⃗) 

 

Hence 𝑅 is the existential quantification of a decidable predicate ⇒ by structure theorem, it is semi-

decidable.  
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Theorem (Closure under conjunction/disjunction – and/or) 

Let 𝑃(𝑥⃗), 𝑄(𝑥⃗) ⊆ ℕ𝑘  semi-decidable predicates. Then: 

1) 𝑃(𝑥⃗) ∧ 𝑄(𝑥⃗) 

2) P(𝑥⃗) ∨ 𝑄(𝑥⃗) 

Proof 

Since 𝑃(𝑥⃗), 𝑄(𝑥⃗) are semi-decidable, by structure theorem, there are two decidable predicates such that: 

𝑃(𝑥⃗) ≡ ∃𝑡. 𝑃′(𝑡, 𝑥⃗) 

𝑄(𝑥⃗) ≡ ∃𝑡. 𝑄′(𝑡, 𝑥⃗) 

1) 𝑃(𝑥⃗) ∧ 𝑄(𝑥⃗) ≡ ∃𝑡. 𝑃′(𝑡, 𝑥⃗) ∧ ∃𝑡. 𝑄′(𝑡, 𝑥⃗) 

≡ ∃𝑤. (𝑃′((𝑤)1, 𝑥⃗) ∧ 𝑄
′((𝑤)2, 𝑥⃗))  

 

(here, the projection theorem was used, thanks to structure theorem and minimalisation over decidable 

predicates) 

Hence, by the structure theorem, 𝑃(𝑥⃗⃗) ∧ 𝑄(𝑥⃗⃗) is semi-decidable. 

2) 𝑃(𝑥⃗) ∨ 𝑄(𝑥⃗) ≡ ∃𝑡. 𝑃′(𝑡, 𝑥⃗) ∨ ∃𝑡. 𝑄′(𝑡, 𝑥⃗) 

≡ ∃𝑡. (𝑃′(𝑡, 𝑥⃗) ∧ 𝑄′(𝑡, 𝑥⃗))  

 

Hence, by the structure theorem, 𝑃(𝑥⃗⃗) ∨ 𝑄(𝑥⃗⃗) is semi-decidable. 

 

 

 

 

 

 

 

 

 

  

semi-decidable 

with 𝑃′(𝑡, 𝑥⃗), 𝑄′(𝑡, 𝑥⃗) decidable 

* Negation ? 

𝑄(𝑥) ≡ "𝑥 ∈ 𝐾" ≡  "𝜙𝑥(𝑥) ↓ "  

semi-decidable 

¬𝑄(𝑥) ≡ " 𝑥 ∉ 𝐾" ≡  "𝜙𝑥(𝑥) ↑ " 

not semi-decidable  
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Theorem (Universal quantification) 

𝑅(𝑡, 𝑥) ≡ ¬𝐻(𝑥, 𝑥, 𝑡) decidable 

"𝑥 ∈ 𝐾" ≡ ∀𝑡. 𝑅(𝑡, 𝑥) ≡ ∀𝑡.¬𝐻(𝑥, 𝑥, 𝑡) non semi-decidable 

This means that the set of semi-decidable predicates is closed under ∨, ∧, ∃ but not under ∀ and ¬ 

- Universal quantification is mangy to deal with because even if a decidable predicate it is universally 

quantified can become non-semi-decidable. Intuitively this is true because it is indefinite to go and 

test a predicate on infinite values. 

- This is essentially saying that there exists a property 𝑅 involving universal quantification over terms 

𝑡 and a variable 𝑥 s.t. 𝑅 is decidable but you universally quantity over 𝑡 in the context of 

¬𝐻(𝑥, 𝑥, 𝑡), the resulting property is non-semi-decidable, indicating that determining membership 

in the complement of set 𝐾 is not always computationally possible. 

16.5 OTHER EXERCISES FROM LESSONS 
 

Exercise: Define a function total and non-computable 𝑓:ℕ → ℕ 𝑠. 𝑡. 𝑓(𝑥) = 𝑥 on infinitely many 𝑥 ∈ ℕ 

1st idea 

 

 

 

 

 

 

 

- 𝑓 total 

 

- 𝑓(𝑥) = 𝑥   ∀𝑥 even (infinite set) 

 

- 𝑓 not computable (total and ≠ from all total computable functions) (∀𝑥 𝑖𝑓 𝜙𝑥  is total, 𝑓(2𝑥 + 1) =

𝜙𝑥(2𝑥 + 1) + 1 ≠ 𝜙𝑥(2𝑥 + 1))  

2nd idea 

𝑓(𝑥) = {
𝜙𝑥(𝑥) + 1, 𝜙𝑥(𝑥) ↓

𝑥, 𝜙𝑥(𝑥) ↑
 

- total 

 

- not computable (∀𝑥 if 𝜙𝑥 is total, 𝑓(𝑥) = 𝜙𝑥(𝑥) + 1 ≠ 𝜙𝑥(𝑥)), hence 𝑓 is different from all total 

computable functions 

 

- 𝑓(𝑥) = 𝑥, ∀𝑥 ∈ 𝐾   (𝐾 is infinite, otherwise it would be recursive and so it will be computable) 

 

𝑓(𝑥) =

{
 

 
𝑥, 𝑖𝑓 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛

𝜙𝑥−1
2

(𝑥) + 1, 𝑖𝑓 𝑥 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝜙𝑥−1
2

(𝑥) ↓

0, 𝑖𝑓 𝑥 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝜙𝑥−1
2

(𝑥) ↑ 
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3rd idea 

𝑓(𝑥) = {
𝑥 + 1, 𝑖𝑓 𝜙𝑥(𝑥) ↓

𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

- 𝑓 total 

 

- 𝑓(𝑥) = 𝑥 ∀𝑥 ∈ 𝐾 

 

- 𝑓 not computable (exercise) 

My take on the solution 

According to the last specification: 

- the function is indeed total, because is defined over the natural numbers, hence ∀𝑥 over 𝑥 + 1 and 

defined whe 𝜙𝑥 is defined, undefined otherwise 

- the function computes correctly the identity function, so for each value of 𝑓(𝑥), it should halt and 

output a value for 𝑥. Since we are outside 𝐾 (𝑥 ∉ 𝐾), this means 𝜙𝑥(𝑥) does not halt, however 

according to the definition, in this case it should be undefined.  

- this contradicts the fact 𝑓(𝑥) should halt for all inputs and have it undefined for such 𝑥, given in 

this case 𝜙𝑥(𝑥) ↑ should happen, but it doesn’t. Given also 𝐾 is not r.e. 𝑓(𝑥) is not computable 

Exercise:  

If 𝑓 is computable, and 𝑔 coincides with 𝑓 almost everywhere (except for a finite set of inputs) then 𝑔 is 

computable.  

My take on the solution 

If 𝑓 is computable, there exists a function able to compute it, may it be the identity function, say you have: 

𝑓(𝑥) = {
𝑥, 𝑥 ∈ 𝑊𝑥
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

We define 𝑔(𝑥) = 𝑓(𝑥) ∀𝑥 except those elements inside a set 𝑆; 𝑔(𝑥) can take any value and the set will 

remain finite. Say for example: 

𝑓(𝑥) = 2𝑥 ∀𝑥 ∈ 𝑁, 𝑔(𝑥) to be the same for 𝑓(𝑥) except for 𝑥 = 5; for 𝑥 = 5, let 𝑔(5) = 100. In this case, 

𝑔(𝑥) coincides for all 𝑥 ≠ 5 and the overall behavior of 𝑔 is computable because it’s based on the 

computable function 𝑓. 

Because 𝑔(𝑥) coincides with 𝑓(𝑥) for almost all 𝑥, the algorithm that computes 𝑓 can also be used to 

compute 𝑔 and by composition it remains computable. 

 

 

My take on the solution 

To prove this, we can use diagonalization. Assume 𝑃(𝑥⃗) is semi-decidable but not decidable. This means 

there exists a semi-decidable predicate 𝑄(𝑡, 𝑥⃗) s.t. 𝑃(𝑥⃗) ≡ ∃𝑡. 𝑄(𝑡, 𝑥⃗).  

Suppose at this point ¬𝑃(𝑥⃗) is semi-decidable and this means there exists a semi-decidable predicate 

𝑅(𝑢, 𝑥⃗) s.t. ¬𝑃(𝑥⃗) ≡ ∃𝑢. 𝑅(𝑢, 𝑥⃗).  
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Using diagonalization, we define 𝑆(𝑣) ≡ ¬𝑅(𝑣, 𝑣) which says this does not satisfy the property 𝑅(𝑣, 𝑣). 

Now we consider the relationship between 𝑆(𝑣) and 𝑄(𝑡, 𝑥⃗). If we could semi-decide ∃𝑣. 𝑆(𝑣), we would 

have a semi-decision for ¬𝑃(𝑥⃗). But this leads to a contradiction. 

By the smn-theorem, we define ∀𝑤.𝑄(ℎ(𝑤), 𝑤) ≡ 𝑆(𝑤) which maps 𝑤 to a term 𝑡 = ℎ(𝑤) s.t. 𝑄(𝑡, 𝑤) ≡

¬𝑅(𝑤, ). When 𝑤 = ℎ(𝑤) we have 𝑄(ℎ(𝑤), ℎ(𝑤)) ≡ ¬𝑅(ℎ(𝑤), ℎ(𝑤)) ≡ 𝑆(ℎ(𝑤)).  

This leads to a contradiction because 𝑆(ℎ(𝑤)) ≡ ¬𝑅(ℎ(𝑤), ℎ(𝑤)) and ¬𝑃(ℎ(𝑤)) ≡ ¬𝑅(ℎ(𝑤), ℎ(𝑤)) ≡

𝑅(ℎ(𝑤), ℎ(𝑤)). Since those cannot be simultaneously true, we conclude that if ¬𝑃(𝑥⃗) is not semi-

decidable. 

16.6 RECURSIVELY ENUMERABLE SETS AND REDUCIBILITY 
 

We want to adapt the reduction as a tool for recursive enumerability as we did already for recursiveness. 

Given two sets 𝐴, 𝐵 ⊆ ℕ and 𝐴 ≤𝑚 𝐵: 

1) if 𝐵 is r.e. then 𝐴 is r.e. 

2) if 𝐴 is not r.e. then 𝐵 is not r.e. 

Proof 

Let 𝐴 ≤𝑚 𝐵 there is 𝑓: ℕ → ℕ total computable 

∀𝑥,    𝑥 ∈ 𝐴    𝑖𝑓𝑓    𝑓(𝑥) ∈ 𝐵 

This is what the reduction is doing: 

 

 

 

 

 

(1) Let 𝐵 r.e. 

𝑠𝑐𝐵(𝑥) = {
1, 𝑥 ∈ 𝐵
↑, 𝑥 ∉ 𝐵

  𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

then  

𝑠𝑐𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
↑, 𝑥 ∉ 𝐴

 =         𝑠𝑐𝐵(𝑓(𝑥)) 

hence 𝑠𝑐𝐴 computable 

A is r.e. 

(2) equivalent to (1) 
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- Why recursively enumerable? 

We know what enumerable/countable means: our set has the cardinality of natural numbers (or smaller) 

 

i.e. there is 𝑓:𝑁 → 𝐴 surjective 

 

 

 

We want to show recursively enumerable sets are enumerable by a computable function. 

Proposition (in old italian notes indicated as “Etymology theorem”, because it explains why we say r.e.) 

Let 𝐴 ⊆ 𝑁 be a set. 

𝐴 is r.e.  𝑖𝑓𝑓 𝐴 = ∅ or there exists 𝑓:ℕ → ℕ total computable s.t. 𝐴 = 𝑐𝑜𝑑(𝑓).  

Proof 

(⇒) Let 𝐴 ⊆ 𝑁 be r.e., i.e. 

𝑠𝑐𝐴(𝑥) = {
1, 𝑖𝑓 𝑥 ∈ 𝐴

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

We can see it graphically as: 

 

 

 

𝑓(𝑥) = 𝑥 ∗ 𝑠𝑐𝐴(𝑥) computable 

𝑖𝑚𝑔(𝑓) = {𝑓(𝑥) | 𝑥 ∈ 𝑁} = 𝐴  

NOT total (which is not, because 𝑠𝑐𝐴(𝑥) is not total, given it is only if 𝑥 ∈ 𝐴, which is a limited case) 

Assume 𝐴 ≠ ∅, fix 𝑎0 ∈ 𝐴: 

𝑓(𝑥) = {
𝑥, 𝑖𝑓 𝑥 ∈ 𝐴
𝑎0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

is total, given 𝑖𝑚𝑔(𝑓) = 𝐴, but it’s not computable given we are distinguishing two cases, it’s only defined 

“for some values” (only semi-decidable). 

not computable 

We proceed as follows: fix 𝑒 ∈ 𝑁 𝑠. 𝑡. 𝜙𝑒 = 𝑠𝑐𝐴 
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We provide the input (𝑥), the number of steps (𝑡). Basically, if the steps are enough to terminate on 𝑥 (the 

function is defined), we give 𝑥 as output (hence, it provides a definite output). 

 

 

 

 

 

𝑓(𝑧) = {
(𝑧)1, 𝑖𝑓 𝐻(𝑒, (𝑧)1, (𝑧)2)
𝑎0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

= (𝑧)1 ∗ 𝜒𝐻(𝑒, (𝑧)1, (𝑧)2) + 𝑎0 ∗ 𝜒¬𝐻(𝑒, (𝑧)1, (𝑧)2) 

We check whether the program 𝑃𝑒 terminates over 𝑥 in 𝑡 steps, otherwise provide as output 𝑎0. This is 

computable given it is defined by cases, using composition and encoding in pairs over the halting set.  

𝑓 is: 

- computable (composition of computable functions) 

- total (composition of total functions) 

- 𝑖𝑚𝑔(𝑓) = 𝐴 

This last fact is not completely clear, we will prove it in two ways: 

(⊆) let 𝑥 ∈ 𝑖𝑚𝑔(𝑓) → 𝑥 ∈ 𝐴 

 there is 𝑧 𝑠. 𝑡. 𝑥 = 𝑓(𝑧) (this is just what the image is), hence there are two possibilities: 

- 𝑥 = 𝑓(𝑧) = (𝑧)1  with 𝐻(𝑒, (𝑧)1, (𝑧)2) 

 

hence 𝑃𝑒((𝑧)1) ↓ , thus 𝑠𝑐𝐴(𝑧)1) ↓ 1 

 

therefore 𝑥 = (𝑧)1 ∈ 𝐴 

 

- 𝑥 = 𝑓(𝑧) = 𝑎0 ∈ 𝐴 

(⊇) let 𝑥 ∈ 𝐴 →  𝑥 ∈ 𝑖𝑚𝑔(𝑓) 

 𝑠𝑐𝐴(𝑥) = 1 ↓ and thus 𝑃𝑒(𝑥) ↓ for a suitable number of steps 𝑡 

i.e. 𝐻(𝑒, 𝑥, 𝑡) is true 

Therefore, if we take 𝑧 ∈ ℕ 𝑠. 𝑡. (𝑧)1 = 𝑥, (𝑧)2 = 𝑡  

𝑓(𝑧) = (𝑧)1 = 𝑥   (e.g. 𝑧 = 2𝑥 ∗ 3𝑡…) 

thus 𝑥 ∈ 𝑖𝑚𝑔(𝑓) 
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(⇐) 

- if 𝐴 = ∅ then 𝐴 is r.e. (since ∅ is finite, hence recursive) 

 

- if 𝐴 = 𝑖𝑚𝑔(𝑓), where the function 𝑓 is total computable 

 

𝑥 ∈ 𝐴  𝑖𝑓𝑓  𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑧 ∈ ℕ 𝑠. 𝑡. 𝑓(𝑧) = 𝑥 

(we search for this input and to do so, we use minimalization) then: 

𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑧. |𝑓(𝑧) − 𝑥|) 

 

computable 

⇓  

𝐴 is r.e. (because 𝑠𝑐𝐴 is computable) 

Observation Let 𝐴 ⊆ ℕ 

𝐴 is r.e. iff 𝐴 = 𝑑𝑜𝑚(𝑓),  𝑓 computable 

(hence 

𝑊0,𝑊1,𝑊2, ………………  enumeration of r.e. sets) 

Proof 

(⇒) Let 𝐴 ⊆ ℕ be r.e., i.e. 

𝑠𝑐𝐴(𝑥) = {
1, 𝑖𝑓 𝑥 ∈ 𝐴

     ↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

hence, 𝐴 = 𝑑𝑜𝑚(𝑠𝑐𝐴), as desired.  

(⇐) Let 𝐴 = 𝑑𝑜𝑚(𝑓) with 𝑓 computable 

 

 

𝑠𝑐𝐴(𝑥) = 𝟏(𝑓(𝑥)) computable 

hence 𝐴 r.e. 

Exercise Let 𝐴 ⊆ ℕ 

𝐴 𝑟. 𝑒.  𝑖𝑓𝑓  𝐴 = 𝑖𝑚𝑔(𝑓)  computable  

My take on the solution 

(⇒) Let 𝐴 ⊆ 𝑁 be r.e. and we consider: 

𝑠𝑐𝐴(𝑥) = {
1, 𝑖𝑓 𝑥 ∈ 𝐴

     ↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

We consider for example 𝑓(𝑥) = 𝑥 ∗ 𝑠𝑐𝐴(𝑥) which is computable since it involves basic arithmetic 

operations on the semicharacteristic function.  
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For any 𝑥 ∈ ℕ, if 𝑥 ∈ 𝐴, then 𝑓(𝑥) = 𝑥 and if 𝑥 ∉ 𝐴, 𝑓(𝑥) is undefined.  

(⇐) Supposing 𝐴 = 𝑖𝑚𝑔(𝐹), we consider 𝑠𝑐𝐴(𝑥) to be as follows: 

𝑠𝑐𝐴(𝑥) = {
1, 𝑖𝑓 𝑓(𝑦) = 𝑥

     ↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

This one here respects the definition of being in the image and given the semicharacteristic function is 

computable, this is r.e.  
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17 RICE-SHAPIRO’S THEOREM 

The Rice-Shapiro theorem helps in proving that a set is not r.e.; in particular, the theorem says that any 

observation made about computable functions can be done by testing the values of the functions at finitely 

many arguments. 

More precisely, the only properties of the behavior of programs which can be semi-decidable are the 

“finitary properties” (properties which depend on the behaviour on a finite number/amount of inputs).  

 

 

 

 

Examples 

- the program 𝑃 on input ∅ outputs value 1 finitary  

- program 𝑃 is defined on at least two inputs finitary 

- program 𝑃 is defined on every input  not finitary 

- program 𝑃 produces infinitely many values  not finitary 

as outputs 

- the program 𝑃 computes the factorial  not finitary 

To formalize the notion of a finitary property, we can see from the function plot “we care on what the 

program is doing only for some inputs” (the blue part), the other parts (the red ones) we don’t care.  

 

 

 

 

 

We need some more tools, like: 

→ finite function (function defined only on a finite domain) 

A function 𝜃:ℕ → ℕ (this is “theta”) is finite if 𝑑𝑜𝑚(𝜃) is finite (considering only the finite inputs, the blue 

ones, while for the rest it is undefined):  

𝜃(𝑥) =

{
 
 

 
 
𝑦1, 𝑖𝑓 𝑥 = 𝑥1
𝑦2, 𝑖𝑓 𝑥 = 𝑥2

⋮,
𝑦𝑛, 𝑖𝑓 𝑥 = 𝑥𝑛
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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→ subfunction (part of the original function) 

We say that 𝑓 is a subfunction of 𝑔, written 𝑓 ⊆ 𝑔,  

if ∀𝑥 𝑖𝑓 𝑓(𝑥) ↓ then 𝑔(𝑥) ↓ and 𝑓(𝑥) = 𝑔(𝑥) (whenever 𝑓 is defined/undefined, so is 𝑔) 

 

 

 

 

 

17.1 DEFINITION 
 

Theorem (Rice-Shapiro) – consider this wonderful definition to get the idea, learn it well please 

Let 𝒜 ⊆ 𝒞 (where 𝐴 is a property of functions) be a set of computable functions and let 𝐴 = {𝑥 | 𝜙𝑥 ∈ 𝒜} 

Then if 𝐴 is r.e. then  

∀𝑓 (𝑓 ∈ 𝒜 ⇔ ∃𝜃 ⊆ 𝑓, 𝜃 finite s.t. 𝜃 ∈ 𝒜) 

 

(the validity of a property depends only on a finite part of the function) 

- We use it to prove only the way is not r.e./recursive (the blue arrow), not the contrary (red arrow 

going reverse in way), starting from a finitary property 

- So, if a property is r.e. then it is finitary, but the converse does not hold 

Note: on Wikipedia it was written wrong the definition, because it was 𝑓 ∈ 𝐴 ⇒ and not in the way “if and 

only if”, which is ⇔ as above, was corrected by prof. Baldan there. 

(I also did some contributions using terms of the course in Rice/Rice-Shapiro/smn-theorem English 

definitions in Wikipedia and also following ones like the recursion theorems, just to clarify the concepts if 

possible – of course, feel free to discredit/add your comments on those voices) 

Exercise 

Let 𝑓:ℕ → ℕ be a computable, let 𝑔 = 𝑓 almost everywhere (except for a finite set {𝑥 | 𝑓(𝑥) ≠ 𝑔(𝑥)} 

finite, then 𝑔 is computable. 

Proof 

Assume 𝑓 computable 

and 𝑔(𝑥) = 𝑓(𝑥)   ∀𝑥 ≠ 𝑥0    𝑓(𝑥0) ≠ 𝑔(𝑥0) 

(1) if 𝑔(𝑥0) ↑ hence 𝑓(𝑥0) ↓ 

then 𝑔(𝑥) = 𝑓(𝑥) + 𝜇𝑤. 𝑠𝑔|𝑥 − 𝑥0| 

computable. 

https://cs.stackexchange.com/questions/67722/rice-shapiro-theorem-in-computation-theory
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2) if 𝑔(𝑥0) = 𝑦0 ∈ ℕ 

let 𝑒 ∈ 𝑁 be s.t. 𝑓 = 𝜙𝑒   

𝑔(𝑥) =               𝜇𝑤. (𝑆(𝑒, 𝑥, (𝑤)1, (𝑤)2) ∧ (𝑥 ≠ 𝑥0) 

      (((𝑤)1 = 𝑦0)             ∧ (𝑥 = 𝑥0) 

computable. 

An inductive reasoning allows to conclude in the general case.  

Alternatively: 

𝐷 = {𝑥 ∈ ℕ | 𝑓(𝑥) ≠ 𝑔(𝑥)}    𝑓𝑖𝑛𝑖𝑡𝑒 

𝜃(𝑥) = {
𝑔(𝑥), 𝑥 ∈ 𝐷

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    𝑓𝑖𝑛𝑖𝑡𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 → 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

observe 

𝑔(𝑥) = {
𝑓(𝑥), 𝑥 ∉ 𝐷
𝜃(𝑥), 𝑥 ∈ 𝐷

 

 

 

computable since it is defined by cases using a decidable predicate and computable function.  

Exercise 

Define a total non-computable function 𝑓: ℕ → ℕ 𝑠. 𝑡. 𝑖𝑚𝑔(𝑓) = {2𝑛 | 𝑛 ∈ ℕ} 

Solution 

On this, there are two ideas than can be given by diagonalization; one which is a bit long and the other one 

which uses a simple/clever idea. Graphically, we are seeing if the image is the set of powers of 2, which 

corresponds to: 

 

 

 

 

 

We can use diagonalization on this based on the power of 2, which may be represented by: 

𝑓(𝑥) = {
2𝜙𝑥(𝑥), 𝑖𝑓 𝜙𝑥(𝑥) ↓

1, 𝑖𝑓 𝜙𝑥(𝑥)
 

- 𝑓 total 

- 𝑓 not computable, 𝑓 ≠ 𝜙𝑥(𝑥) ≠ 𝑓(𝑥) + 1 

- 𝑖𝑚𝑔(𝑓) = {2𝑛 = 𝑛 ∈ ℕ} 

o (⊆) ∀𝑥, 𝑓(𝑥) 

▪ 𝑥 + 1 → 2𝜙𝑥(𝑥) 

▪ 𝑥 = 0, 20 = 1 
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o (⊇) ∃𝑥 𝑠. 𝑡. 𝑓(𝑥) = 2𝑛, 𝑥 𝑠. 𝑡. 𝜙𝑥(𝑧) = 𝑛 ∀𝑧 
▪ 𝜙𝑥(𝑥) = 𝑛 ↓ 

 
We are interested, considering a program on I/O, for Rice-Shapiro’s theorem on different things: 

 

- program properties concerning I/O 
- properties of computable functions 𝒜 ⊆ 𝒞 

o 𝑇 = {𝑓 ∈ 𝒞 | 𝑓 𝑖𝑠 𝑡𝑜𝑡𝑎𝑙} = {𝑓 ∈ 𝒞 | 𝑑𝑜𝑚(𝑓) = ℕ} 
o 𝑂𝑁𝐸 = {𝟏} 
o ⋮ 

- program properties (extensional/saturated = all the problems computing the same function extend 
a property, that’s why they are called extensional) as sets of programs 𝒜 ⊆ ℕ 

o 𝑇 = {𝑥 | 𝜙𝑥 ∈ τ} 
o 𝑃𝑂𝑁𝐸 = {𝑥 | 𝜙𝑥 = 𝟏}  
o ⋮ 

On this aspect: 

- Rice’s theorem explicitly says “no meaningful I/O program property is decidable – only trivial 

extensional properties are decidable” – no property is decidable, but we can relax the hypotheses a 

bit with the following one 

- Rice-Shapiro tries to figure out “if properties of programs (extensional) can be semidecidable only if 

they are finitary (it talks about the behaviour of the program only on a finite set of inputs)” 

o Rice-Shapiro is used to check if something is not semidecidable, not “if it is” 

Remember the definition given here. Now we will give the full proof. 

For your reference in this section to not go up: 

 

 

17.2 PROOF 
 

We want to show that (∗) ⇒ (∗∗) 

For this we show ¬(∗∗) ⇒ ¬(∗) 

This amounts to: 

(note: 𝒜 corresponds to the “calligraphic A” (subset of computable functions), 𝐴  is the set) 

1)  ∃𝑓 𝑠. 𝑡. 𝑓 ∉ 𝒜 𝑎𝑛𝑑 ∃ 𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∈ 𝒜 ⇒ A not r.e. 

2)  ∃𝑓 𝑠. 𝑡. 𝑓 ∈ 𝒜 𝑎𝑛𝑑 ∀ 𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∉ 𝒜 ⇒ A not r.e. 

Now for the proofs: 

1) ∃𝑓, 𝑓 ∉ 𝒜 and ∃𝜃 ⊆ 𝑓, 𝜃 finite with 𝜃 ∈ 𝒜 ⇒ A not r.e. 

Let 𝑓 ∉ 𝒜 be s.t. where there is 𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∈ 𝒜. 
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We consider the set not r.e., which is the complement of halting set, specifically: 

𝐾 = {𝑥 | 𝑥 ∉ 𝑊𝑥} ≤𝑚 𝐴 

 

To do this, we need a reduction function, considering the halting set and its complement compared with 

the set itself:  

 

 

 

Define as usual a function of two arguments (we do this to parametrize it sooner or later, which will happen 

thanks to smn-theorem): 

𝑔(𝑥, 𝑦) = {
𝜃(𝑦), 𝑥 ∈ 𝐾
𝑓(𝑦), 𝑥 ∈ 𝐾

 

This seems not computable, but actually it is. We “explode” the cases this way: 

{

𝜃(𝑦), 𝑖𝑓 𝑥 ∈ 𝐾 𝑎𝑛𝑑 𝑦 ∈ 𝑑𝑜𝑚(𝜃)

↑, 𝑖𝑓 𝑥 ∈ 𝐾 𝑎𝑛𝑑 𝑦 ∉ 𝑑𝑜𝑚(𝜃)
𝑓(𝑦), 𝑖𝑓 𝑥 ∈ 𝐾 

 

= {
𝑓(𝑦), 𝑖𝑓 𝑥 ∈ 𝐾 𝑜𝑟 𝑦 ∈ 𝑑𝑜𝑚(𝜃)

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

       𝑄(𝑥, 𝑦) ≡ "𝑥 ∈ 𝐾 ∨ 𝑦 ∈ 𝑑𝑜𝑚(𝜃)" 

 

 

 

 

 

= 𝑓(𝑦) ∗ 𝑠𝑐𝑄(𝑥, 𝑦)      𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 𝑏𝑦 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

By the smn-theorem, there is a total computable function 𝑠: 𝑁 → 𝑁 𝑠. 𝑡. ∀𝑥, 𝑦: 

𝜙𝑠(𝑥) = 𝑔(𝑥, 𝑦) = {
𝜃(𝑦), 𝑥 ∈ 𝐾
𝑓(𝑦), 𝑥 ∈ 𝐾

 

We show that 𝑠 is the reduction function for 𝐾 ≤ 𝐴 (proving the picture is correct) 

- if 𝑥 ∈ 𝐾 → 𝑠(𝑥) ∈ 𝐴 

let 𝑥 ∈ 𝐾 then ∀𝑦, 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝜃(𝑦) hence 𝜙𝑠(𝑥) = 𝜃 ∈ 𝐴 ⇒

𝑠(𝑥) ∈ A (functions same on every input and the program is in the same set) 
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- if 𝑥 ∈ 𝐾 → 𝑠(𝑥) ∈ 𝐴 

let 𝑥 ∉ 𝐾 i.e. 𝑥 ∈ 𝐾 then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝑓(𝑦) hence 𝜙𝑠(𝑥) = 𝑓 ∉ 𝐴 ⇒ 𝑠(𝑥) ∉ A 

Hence 𝐾 ≤𝑚 𝐴 and since 𝐾 not r.e. we conclude A not r.e.  

2) if there is 𝑓 ∈ 𝐴 𝑠. 𝑡. ∀𝜃 ⊆ 𝑓, 𝜃 finite, 𝜃 ∉ 𝐴 ⇒ A not r.e. 

Let 𝑓 ∈ 𝐴 𝑎𝑛𝑑 𝑎𝑠𝑠𝑢𝑚𝑒 ∀𝜃 ⊆ 𝑓, 𝜃 finite, 𝜃 ∉ 𝐴 (all functions have not the property) 

The reduction considers the complement of halting set gives the function, then the halting set gives the 

finite subfunctions. So, we show 𝐾 ≤𝑚 𝐴 and we will conclude.  

  

 

 

 

The following is the intuition, considering the second argument exists if the index is fixed over the first 

argument: 

𝑔(𝑥, 𝑦) = ” {
𝑓(𝑦), 𝑥 ∈ 𝐾

𝜃(𝑦), 𝑥 ∈ 𝐾
”   

 

We use 𝑦 as counter, checking if program does not or does terminate in 𝑦 steps. 

𝑔(𝑥, 𝑦) = {
𝑓(𝑦), 𝑖𝑓 ¬𝐻(𝑥, 𝑥, 𝑦)

↑, 𝑖𝑓 𝐻(𝑥, 𝑥, 𝑦)
 

(if we are in first case, the computation will always continue and always be in first case, obtaining 𝑓, 

otherwise if it stops in the defined number of steps, this is undefined – we use a characteristic function for 

the halting set property just defined here) 

= 𝑓(𝑦) + 𝜇𝑧. 𝜒𝐻(𝑥, 𝑥, 𝑦) 

 

 

 

(we use a fake minimalization just to say “it may halt or not according to the underlying predicate”) 

Hence, by the smn-theorem, ∃𝑠:ℕ → ℕ total computable s.t. ∀𝑥, 𝑦: 

𝜙𝑆(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = {
𝑓(𝑦), 𝑖𝑓 ¬𝐻(𝑥, 𝑥, 𝑦)

↑, 𝑖𝑓 𝐻(𝑥, 𝑥, 𝑦)
 

We show that 𝑠 is the reduction function for 𝐾 ≤𝑚 𝐴. 

𝑃𝑥(𝑥) ↑    ← 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 

𝑃𝑥(𝑥) ↑    ← 𝑓𝑖𝑛𝑖𝑡𝑒     
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- 𝑥 ∈ 𝐾 → 𝑠(𝑥) ∈ 𝐴 

𝑖𝑓 𝑥 ∈ 𝐾, 𝑡ℎ𝑒𝑛 𝜙𝑥(𝑥) ↑ i.e. 𝑃𝑥(𝑥) ↑ 

Then ∀𝑦 ¬𝐻(𝑥, 𝑥, 𝑦).  

Thus ∀𝑦, 𝜙𝑆(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝑓(𝑦)  

Therefore, 𝜙𝑆(𝑥) = 𝑓 ∈ 𝐴 𝑎𝑛𝑑 𝑡ℎ𝑢𝑠 𝑠(𝑥) ∈ 𝐴  

- 𝑥 ∈ 𝐾 → 𝑠(𝑥) ∈ 𝐴 

𝑖𝑓 𝑥 ∈ 𝐾 𝑡ℎ𝑒𝑛 𝜙𝑥(𝑥) ↓ i.e. 𝑃𝑥(𝑥) ↓ 

Then ∃𝑦0 ∈ 𝑁 𝑠. 𝑡.     ∀𝑦 < 𝑦0  ¬𝐻(𝑥, 𝑥, 𝑦) (the computation is still going) 

𝑦 ≥ 𝑦0  𝐻(𝑥, 𝑥, 𝑦) (the computation has stopped) 

thus  

𝜙𝑆(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = {
𝑓(𝑦), 𝑖𝑓 𝑦 < 𝑦0

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Then 𝜙𝑆(𝑥) ⊆ 𝑓    

𝑑𝑜𝑚(𝜙𝑆(𝑥)) ⊆ [0, 𝑦0)    𝜙𝑆(𝑥) 𝑓𝑖𝑛𝑖𝑡𝑒  

i.e. 𝜙𝑠(𝑥) is a finite subfunction of 𝑓, hence 𝜙𝑠(𝑥) ∈ 𝐴 hence 𝑠(𝑥) ∈ 𝐴 

Thus  𝐾 ≤𝑚 A and, since 𝐾 not r.e., A not r.e. 

Typical use of Rice-Shapiro: Prove that A ⊆ 𝑁 not r.e. 

1)  ∃𝑓 𝑠. 𝑡. 𝑓 ∉ 𝐴 𝑎𝑛𝑑 ∃ 𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∈ 𝐴 ⇒ A not r.e.  

(there exists a function which is not in the set and there is a finite subfunction which is in the set) 

2)  ∃𝑓 𝑠. 𝑡. 𝑓 ∈ 𝐴 𝑎𝑛𝑑 ∀ 𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∉ 𝐴 ⇒ A not r.e.  

(there exists a function which is in the set and, for all finite subfunctions (be precise here, don’t do the 

mistake I did) there is a finite subfunction which is not the set) 

So, here that I wrote it, you see what’s the point of this; use subfunctions to prove your own thing each 

time working always for saturated sets, given we think about extensional/saturated properties.  

Rice-Shapiro provides a general framework for proving undecidability based on properties of functions. It 

doesn't require constructing intricate functions for specific cases each time. 

- The key idea is to leverage the existence of finite subfunctions to show undecidability.  
- The theorem captures the essence that for certain properties, whether a function is total or not, 

there always exists a finite subfunction over which the property can be defined, or vice versa. 
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17.3 EXAMPLES 
 

Example (Totality) 

Consider the following example, for set of total functions: 

𝜏 = {𝑓 | 𝑓 𝑖𝑠 𝑡𝑜𝑡𝑎𝑙} 

𝑇 = {𝑥 | 𝑥 ∈ 𝜏} = {𝑥 | 𝜙𝑥  𝑖𝑠 𝑡𝑜𝑡𝑎𝑙} 

We can use Rice-Shapiro (1) and (2) present above; find finite subfunctions over which can be defined even 

if set is not totally defined or viceversa. 

- 𝑇 is not r.e. 

Consider the identity or any other total function (the identity is always defined) 

𝑖𝑑 ∈ 𝜏   𝑑𝑜𝑚(𝑖𝑑) = ℕ   

∀𝜃 ⊆ 𝑖𝑑   𝜃 𝑓𝑖𝑛𝑖𝑡𝑒   𝑑𝑜𝑚(𝜃) 𝑓𝑖𝑛𝑖𝑡𝑒 ≠ ℕ ⇒ 𝜃 ∉ 𝜏  

⇒ 𝑇 is not r.e. (by Rice-Shapiro) 

- 𝑇 is not r.e. 

𝑖𝑑 ∉ 𝜏  𝑎𝑛𝑑 𝜃 = ∅ 𝑓𝑖𝑛𝑖𝑡𝑒    ∅(𝑥) ↑ ∀𝑥   𝜃 ⊆ 𝑖𝑑   𝜃 ∈ 𝜏  

⇒ 𝑇 is not r.e. 

Example 

𝑂𝑁𝐸 = {𝑥 | 𝜙𝑥 = 𝟏}  

= {𝑥 | 𝜙𝑥 ∈ {𝟏}}  

→ 𝑂𝑁𝐸 𝑖𝑠 𝑛𝑜𝑡 𝑟. 𝑒.   

𝟏 ∈ {𝟏} and ∀𝜃 ⊆ 𝟏, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∉ {𝟏}  ⇒ by Rice-Shapiro, this is enough to say 𝑂𝑁𝐸 is not r.e. 

→ 𝑂𝑁𝐸 𝑖𝑠 𝑛𝑜𝑡 𝑟. 𝑒.   

𝟏 ∉ {𝟏} and 𝜃 = ∅ ⊆ 𝟏, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∈ {𝟏}  ⇒ by Rice-Shapiro, 𝑂𝑁𝐸 is not r.e. 

Observation: The converse implication of Rice-Shapiro is false 

𝐴 ⊆ 𝐶     A = {𝑥 | 𝜙𝑥 ∈ 𝐴} 

∀𝑓 (𝑓 ∈ 𝐴  ⇔ ∃𝜃 ⊆ 𝑓   𝜃 𝑓𝑖𝑛𝑖𝑡𝑒    𝜃 ∈ 𝐴 

⇓ 

𝐴 𝑟. 𝑒. 

Counterexample 

𝐴 ⊆ 𝐶 𝑠. 𝑡.  

a) ∀𝑓 (𝑓 ∈ 𝐴 ⇔  ∃𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∈ 𝐴) 

b) A = {𝑥 | 𝜙𝑥 ∈ 𝐴} 𝑛𝑜𝑡 𝑟. 𝑒. 
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We claim 𝐴 = {𝑓 | 𝑑𝑜𝑚(𝑓) ∩ 𝐾 ≠ ∅} satisfies (a) and (b) 

1) let 𝑓 be a function 

- 𝑓 ∈ 𝐴 ⇒ 𝑑𝑜𝑚(𝑓) ∩ 𝐾 ≠ ∅  𝑖. 𝑒.  ∃ 𝑥0 ∈ 𝑑𝑜𝑚(𝑓) ∩ 𝐾  

𝑖𝑓 𝑤𝑒 𝑑𝑒𝑓𝑖𝑛𝑒 𝜃(𝑥) = {
𝑓(𝑥), 𝑥 = 𝑥0

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒,     𝑑𝑜𝑚(𝜃) = {𝑥0} 

        → 𝑑𝑜𝑚(𝜃) ∩ 𝐾 = {𝑥0} ≠ ∅ 

- if there is 𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∈ 𝐴 

𝑑𝑜𝑚(𝜃) ∩ 𝐾 ≠ ∅  

 

→ 𝑑𝑜𝑚(𝑓) ∩ 𝐾 ⊆ 𝑑𝑜𝑚(𝜃) ∩ 𝐾 ≠ ∅  

→ 𝑑𝑜𝑚(𝑓) ∩ 𝐾 ≠ ∅   → 𝑓 ∈ 𝐴 

b) 𝐴 = {𝑥 | 𝜙𝑥 ∈ 𝐴} = {𝑥 | 𝑑𝑜𝑚(𝜙𝑥) ∩ 𝐾 ≠ ∅} not r.e. 

Intuition:  Assume that you can semidecides if 𝑥 ∈ 𝐴 

  in order to check 𝑥 ∈ 𝐾 create 

 

 

 

We show 𝐾 ≤𝑚 A 

define 𝑔(𝑥, 𝑦) = 𝜇𝑧. |𝑦 − 𝑥| = {
0, 𝑦 = 𝑥
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  computable 

by the smn-theorem, there exists a function 𝑠: ℕ → ℕ total computable s.t. 

𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) 

𝑠 is the reduction function for 𝐾 ≤𝑚 A 

𝑥 ∈ 𝐾  ⇔ 𝑑𝑜𝑚(𝜙𝑠(𝑥)) ∩ 𝐾 ≠ ∅ ⇔ 𝑠(𝑥) ∈ 𝐴 

 

since 𝐾 not r.e. then 𝐴 is not r.e.  
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18 FIRST RECURSION THEOREM 

In programming languages, we have higher-order functions that take other functions as arguments and 

produce functional results.  

For example consider this functional type, in which a function takes in input a function of same type and 

gives as output another function of same type. Our computational model is not able to represent that, 

considering the output function are likely to be infinite objects and hence incapable of being given in a 

finite time. Consider the following example, written in Go language: 

𝑡𝑦𝑝𝑒 𝑇 = 𝑓𝑢𝑛𝑐 (𝑖𝑛𝑡) 𝑖𝑛𝑡 

𝑓𝑢𝑛𝑐 𝑠𝑢𝑐𝑐 (𝑓: 𝑇) 𝑇 

𝑟𝑒𝑠 = 𝑓𝑢𝑛𝑐 (𝑥: 𝑖𝑛𝑡) 𝑖𝑛𝑡 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑓(𝑥) + 1 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑟𝑒𝑠 

These in computability can be defined as operators (as in the book) or functionals (as the professor, prefers, 

this is used here). Specifically here, we take an integer, and we map the sum of the same type, as integer, 

incrementing by 1 the function as you can see.  

This means a functional takes “functions as input” and “produces functions as output”. A key characteristic 

is its effectiveness, meaning it can handle infinite inputs and outputs. They calculate in finite time “using 

only a finite part of the finite function” (hence, they are called operators because of this – the definition 

comes from Cutland, more later) 

Consider functionals as higher-order functions that take functions as arguments and returns functions as 

results. 

Φ: 𝐹(ℕ𝑘) → 𝐹(ℕℎ)  

in which 𝐹 is defined as the set of functions this way over 𝑘/ℎ tuples: 

𝐹(ℕ𝑘) = {𝑓 | 𝑓: ℕ𝐾 → ℕ} 

Both present above are total.  

What is a functional Φ recursive (computable)? 

Example: successor (from now on, functionals are written in mathematical language) 

𝑠𝑢𝑐𝑐: 𝐹(ℕ1) → 𝐹(ℕ1) 

𝑓 ↦ 𝑠𝑢𝑐𝑐(𝑓) 

𝑤ℎ𝑒𝑟𝑒 𝑠𝑢𝑐𝑐(𝑓)(𝑥) = 𝑓(𝑥) + 1 

Example: factorial 

𝑓𝑎𝑐𝑡: ℕ → ℕ 

𝑓𝑎𝑐𝑡(𝑥) = {
1, 𝑖𝑓 𝑥 = 0

𝑥 ∗ 𝑓𝑎𝑐𝑡(𝑥 − 1), 𝑖𝑓 𝑥 > 0
 

Φ𝑓𝑎𝑐𝑡: 𝐹(ℕ
1) → 𝐹(ℕ1) 
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𝑓 ↦ Φ𝑓𝑎𝑐𝑡(𝑓) 

where 

Φ𝑓𝑎𝑐𝑡(𝑓)(𝑥) = {
1, 𝑖𝑓 𝑥 = 0

𝑥 ∗ 𝑓(𝑥 − 1), 𝑖𝑓 𝑥 > 0
 

 

 

then the factorial 𝑓𝑎𝑐𝑡:ℕ → ℕ is a fixed point/fixpoint of Φ𝑓𝑎𝑐𝑡 (a function which is not changed from the 

transformation and is an element mapped to itself by the function) , i.e. 𝑓: ℕ → ℕ 𝑠. 𝑡. Φ𝑓𝑎𝑐𝑡(𝑓) = 𝑓. 

Looking here, a fixed point 𝑥 in a set 𝑋 s.t. 𝑥 ∈ 𝑋 is a fixed point with a map to itself such that 𝑓(𝑥) = 𝑥. 

We won’t prove the fixed point yet; assume, in this case, the fixpoint exists and it is unique. 

Example 

𝑓:ℕ → ℕ 

𝑓(𝑥) = {
0, 𝑖𝑓 𝑥 = 0

𝑓(𝑥 + 1), 𝑖𝑓 𝑥 > 0
 

𝑓(0) = 0 

𝑓(2) = ? 

(this can go on, so 𝑓(2) is 𝑓(3), 𝑓(3) is 𝑓(4)… so it will be defined for all natural numbers or just 

undefined). 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙      Φ: 𝐹(ℕ1) → 𝐹(ℕ1) 

Φ(𝑓)(𝑥) = {
0, 𝑖𝑓 𝑥 = 0

𝑓(𝑥 + 1), 𝑖𝑓 𝑥 > 0
 

there are (infinitely) many fixed points for Φ 

𝑓(𝑛) = {
0, 𝑖𝑓 𝑥 = 0

↑, 𝑖𝑓 𝑥 > 0
 

𝑓𝑘(𝑛) = {
0, 𝑖𝑓 𝑥 = 0  
𝑘, 𝑖𝑓 𝑥 > 0

        𝑓𝑜𝑟 𝑘 ∈ 𝑁 

Example (Ackermann’s function – just to refresh, it was defined here – definition by cases recursively): 

Ψ:ℕ2 → ℕ 

{

Ψ(0, 𝑦) = 𝑦 + 1

Ψ(𝑥 + 1, 0) = Ψ(𝑥, 1)

Ψ(𝑥 + 1, 𝑦 + 1) = Ψ(𝑥, Ψ(𝑥 + 1, 𝑦))

 

(I do remember you by courtesy, Ψ is uppercase psi). We introduce the corresponding functional: 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙: Ψ: 𝐹(ℕ2) → 𝐹(ℕ2) 

{

𝛹(𝑓)(0, 𝑦) = 𝑦 + 1

𝛹(𝑓)(𝑥 + 1, 0) = 𝑓(𝑥, 1)

𝛹(𝑓)(𝑥 + 1, 𝑦 + 1) = 𝑓(𝑥 + 1, 𝑓(𝑥, 𝑦 + 1))

 

https://www.karlin.mff.cuni.cz/~prazak/vyuka/101/Literatura/vittorino-FP.pdf
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Ψ Ackermann’s function is some “special” fixpoint of Ψ.  

In simpler terms, the statement is asserting that when you apply the functional transformation 𝛹 to 

Ackermann’s function, the result is Ackermann’s function itself. This makes Ackermann’s function a fixed 

point of Ψ, which is special because it behaves as the fixed point of itself. 

So, we ask: What is a recursive (computable) functional? 

Idea: Given Φ:𝐹(ℕ𝑘) → 𝐹(ℕℎ) we ask that ∀ 𝑥⃗ ∈ ℕℎ, (all the tuples) 

Φ(𝑓)(𝑥⃗) is computable (so, value of transformed function is computable) 

→ using a finite amount of information on 𝑓  

i.e. values of 𝑓 over a finite number of inputs 

→ the finite amount of information is processed in an “effective way”, so in a computable way 

More precisely, in order to compute Φ(𝑓)(𝑥⃗)  

→ we use a finite subfunction 𝜃 ⊆ 𝑓  

in a computable way i.e. there is 𝜙 computable (in the old sense) 

Φ(𝑓)(𝑥) = 𝜙(𝜃, 𝑥⃗) 

= 𝜙(𝜃̃, 𝑥⃗) 

(we refer to a number of points which can be referred to as finite subfunctions in order to compute other 

computable functions; here, the problem is that we have functions, not numbers) 

Note: finite functions can be encoded as numbers (encoding of finite functions) 

𝜃 →  𝜃̃ ∈ ℕ 

𝜃(𝑥) =

{
 
 

 
 
𝑦1, 𝑖𝑓 𝑥 = 𝑥1
𝑦2, 𝑖𝑓 𝑥 = 𝑥2

⋮
𝑦𝑛, 𝑖𝑓 𝑥 = 𝑥𝑛
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝜃̃ =∏𝑃𝑥𝑖+1
𝑦𝑖+1

𝑛

𝑖=1

 

(the productory represents uniqueness of the composition of numbers into prime functions) 

given the above encoding, we can check if values are or not inside the domain: 

𝑥 ∈ 𝑑𝑜𝑚(𝜃) 𝑖𝑓𝑓 (𝜃̃)
𝑥+1

≠ 0 

𝑖𝑓 𝑥 ∈ 𝑑𝑜𝑚(𝜃) 𝑡ℎ𝑒𝑛 𝜃(𝑥) = (𝜃̃)
𝑥+1
−. 1 
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18.1 RECURSIVE FUNCTIONALS 
 

Definition (Recursive functional) 

A functional 𝛷: 𝐹(ℕ𝑘) → 𝐹(ℕℎ) is recursive if there is a total computable function 

𝜙:ℕℎ+1 → 𝑁 𝑠. 𝑡.   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝐹(ℕ𝑘) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥⃗ ∈ ℕℎ 

Φ(𝑓)(𝑥⃗) = 𝑦       𝑖𝑓𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝜃 ⊆ 𝑓 𝑠. 𝑡. 𝜙(𝜃̃, 𝑥⃗) = 𝑦 

In simpler terms, recursive functionals essentially produce outputs of the same type as a finite part of the 

input function, acting as both input and output themselves. 

All the functionals that we considered above are recursive (given they are finite only on limited number of 

points). 

- In simple terms, a recursive functional is a higher-order function that can be effectively computed 

by a total computable function.  

- You only need the value of the function on a single point and then, given it is defined on a finite 

number of points, it is recursive only from specified set of functions to other sets of the same kind 

Observation: Let Φ:𝐹(ℕ𝑘) → 𝐹(ℕℎ) be a recursive functional and 𝑓 ∈ 𝐹(ℕ𝑘).  

If 𝑓 is computable then Φ(𝑓) is computable.  

Observation: Let Φ:𝐹(ℕ1) → 𝐹(ℕ1) be a recursive functional and let 𝑓 ∈ 𝐹(ℕ𝑘) be computable. 

If 𝑓:𝑁 → 𝑁 is computable, then Φ(𝑓):ℕ → ℕ is computable  

 

 

(everything can be computed by programs, from a starting to a target function) 

hence Φ induces a function over programs 

ℎΦ: ℕ → ℕ 

𝑒 ↦ ℎΦ(𝑒) = 𝑎   𝑠. 𝑡.   Φ(𝜙𝑒) = 𝜙ℎΦ(𝑒) 

(so, from the image of the functional of program computed by program 𝑒, what you get is a function 

computed by the transformed property) 

This is defined as extensional function: ∀𝑒, 𝑒′ ∈ ℕ 𝑠. 𝑡. 𝜙𝑒 = 𝜙𝑒′  𝑡ℎ𝑒𝑛 𝜙ℎΦ(𝑒) = 𝜙ℎ(Φ)(𝑒′) 

(from programs which compute the same function, if you apply the functional transformation, the two 

programs will compute the same function) 

It should be noted that the book defines precisely the functional as continuous and monotone; I add this 

because the professor notions given up until this last one precisely state this. 
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18.2 MYHILL-SHEPHERDSON’S THEOREM 
 

Definition 

(1) Let Φ: 𝐹(ℕ𝑘) → 𝐹(ℕ𝑖) be a recursive function. Then, there exists a total computable function ℎΦ: ℕ →

ℕ 𝑠. 𝑡. ∀𝑒 ∈ ℕ,Φ(𝜙𝑒
(𝑘)
) = 𝜙ℎ(Φ)(𝑒)

(𝑖)
 and ℎΦ is extensional. 

(For this first part - intuitively, the behaviour of the recursive functional on computable functions is 

captured by a total extensional function on the indices) 

(2) Let ℎ:ℕ → ℕ be a total computable function and ℎ extensional.  

Then, there is a unique recursive functional Φ: 𝐹(ℕ𝑘) → 𝐹(ℕ𝑖) s.t. for all 𝑒 ∈ ℕ (possible programs) 

Φ(𝜙𝑒
(𝑘)
) = 𝜙ℎ(𝑒)

(𝑖)
 

(For this second part - Computable extensional functions uniquely identify computable functions through 

program transformations. In contrast, recursive functionals extend this identification to non-computable 

functions, highlighting that all functions, even non-computable ones, can be approximated precisely by 

computable functions, like finite subfunctions). 

In Wikipedia, I see this can generally extended as “Myhill isomorphism theorem”, which provides a 

characterization for two numberings (assignments of natural numbers to sets of similar objects) to induce 

the same notion of computability on a set. Basically, there exists a total computable bijection, which maps 

elements reducible to each other in both directions, given the functions are extensional. 

The Myhill-Shepherdson Theorem, stemming from the Rice-Shapiro Theorem, defines the computable type 

2 functionals. These functionals operate on computable partial functions, yielding numbers as results in 

cases of termination. Notably, they adhere to a specific effectiveness criterion and exhibit continuity as 

functionals. This can be also found here. 

Transforming a function means transforming the program in an effective way, basically. 

Consider then the extensional program transformation ℎ (which never uses the syntax, only calls the 

program over some inputs) 

 

 

 

 

 

 

 

 

 

  

We can characterize a 

topological structure in order 

to represent the computable 

functions, which are the small 

minority, defining functionals 

as unique over the naturals. 

https://www2.mathematik.tu-darmstadt.de/~streicher/LOGIK2/turi.pdf
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18.3 DEFINITION  
 

Definition (First Recursion Theorem – Kleene) 

Let Φ:𝐹(ℕ𝑘) → (ℕ𝑘) be a recursive functional. Then Φ has a least fixed point 𝑓Φ: ℕ
𝑘 → ℕ which is 

computable i.e. 

(i) Φ(𝑓𝜙) = 𝑓Φ 

(ii) ∀𝑔 ∈ 𝐹(ℕ𝑘) 𝑠. 𝑡. Φ(𝑔) = 𝑔 it holds that 𝑓Φ ⊆ 𝑔 

(ii) 𝑓Φ is computable  

This is also called “Kleene’s First Recursion Theorem” or Fixed-point theorem (of recursion theory). The 

Cutland Computability book specifies it is used to give “meaning” to programs, computing a recursive 

program, ensuring implementing the program will be defined rigorously over its inputs in a correct way. 

Example: Ackermann function 

Ψ: 𝐹(ℕ2) → 𝐹(ℕ2) 

{

𝛹(𝑓)(0, 𝑦) = 𝑦 + 1

𝛹(𝑓)(𝑥 + 1, 0) = 𝑓(𝑥, 1)

𝛹(𝑓)(𝑥 + 1, 𝑦 + 1) = 𝑓(𝑥 + 1, 𝑓(𝑥, 𝑦 + 1))

  𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 

the Ackermann function 𝜓 is the least fixed point of 𝜓 which exists and is computable by the First 

Recursion Theorem (fixpoint is unique since it is total and means applying the functional a certain number 

of times to get eventually to a base case). 

Example 

𝑓(𝑥) = {
0, 𝑖𝑓 𝑥 = 0

𝑓(𝑥 + 1), 𝑖𝑓 𝑥 > 0
 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 Φ: 𝐹(ℕ1) → 𝐹(ℕ1)  

Φ(𝑓)(𝑥) = {
0

𝑓(𝑥 + 1)
 

there are many fixed points for Φ: 

𝑓(𝑛) = {
0, 𝑖𝑓 𝑥 = 0

↑, 𝑖𝑓 𝑥 > 0
 

𝑓𝑘(𝑛) = {
0, 𝑖𝑓 𝑥 = 0  
𝑘, 𝑖𝑓 𝑥 > 0

        𝑓𝑜𝑟 𝑘 ∈ ℕ 

Example: minimalisation 

𝑓: ℕ𝑘+1 → ℕ 

𝜇𝑦. 𝑓(𝑥⃗, 𝑦): ℕ𝑘 → ℕ 

can be seen as a least fixed point (because it uses 𝑓 on a finite number of points). The important thing is 

that the recursive functional is defined using only a finite number of times the function it receives as an 

argument. 

Φ: 𝐹(ℕ𝑘+1) → 𝐹(ℕ𝑘+1) 
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Φ(𝑔)(𝑥⃗, 𝑦) = {

𝑦, 𝑖𝑓 𝑓(𝑥⃗, 𝑦) = 0

𝑔(𝑥⃗, 𝑦 + 1), 𝑖𝑓 𝑓(𝑥⃗, 𝑦) ↓ 𝑎𝑛𝑑 ≠ 0
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

least fixed point is 𝑚:𝑁𝑘+1 → 𝑁 

𝑚(𝑥⃗, 𝑦) = 𝜇𝑧 ≥ 𝑦. 𝑓(𝑥⃗, 𝑧) 

hence 

𝑚(𝑥⃗, 0) = 𝜇𝑧. 𝑓(𝑥⃗, 𝑧) 
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19 SECOND RECURSION THEOREM 

Let 𝑓:ℕ → ℕ be computable, total and extensional (which takes in input a program and provides in output 

a transformed program – if the starting program computes a function, the output program computes again 

the same function, as you can see here): 

 

 

 

by Myhill-Shepherdson’s theorem, there exists a (unique) recursive functional Φ:𝐹(ℕ) → 𝐹(ℕ) which has 

the same behavior as 𝑓: 

∀𝑒 ∈ ℕ      Φ(𝜙𝑒) = 𝜙𝑓(𝑒) 

By the First Recursion Theorem, Φ has a least fixed point 𝑓Φ: ℕ → ℕ computable. Therefore, there is a 

program 𝑒0 ∈ ℕ 𝑠. 𝑡. 

{
Φ(𝑓Φ) = 𝑓Φ

∃𝑒0 ∈ ℕ 𝑠. 𝑡. 𝑓Φ = 𝜙𝑒0
 

Φ𝑒0 = 𝑓Φ = Φ(𝑓Φ) = Φ(𝜙𝑒0) = Φ𝑓(𝑒0) 

In summary, given 𝑓:ℕ → ℕ computable total extensional, there is 𝑒0 ∈ 𝑁 𝑠. 𝑡. 𝜙𝑒0 = 𝛷𝑓(𝑒0)  

(we are saying that we take a program, we apply an effective transformation in an extensional way [say, 

replace instructions such as successor, jump, remove lines], there will always be a program which is not 

changed by the transformation of the function, even before and after) 

 

 

In practice:  

- same hypotheses as the first recursion theorem, but without the assumption of extensionality 

- first recursion theorem gives meaning to a program over a certain number of inputs which are 

confined finitely on some sets/number of points (this is the point of Myhill-Shepherdson) 

19.1 DEFINITION AND PROOF IDEA 
 

Definition (2nd Recursion Theorem) 

Let 𝑓:ℕ → ℕ be a total computable function. Then, there exists a program 𝑒0 ∈ ℕ 𝑠. 𝑡. 𝜙𝑒0 = 𝜙𝑓(𝑒0)  

(the key is that is the program is transformed, so not the same before and after the transformation; the 

function, instead, remains the same – this theorem states that this holds also when 𝑓 is not extensional) 

It is also called Kleene’s Second Fixed Point Theorem (aka Second Recursion Theorem) and: 

- If two programs compute the same thing, that is, with the same input they give the same output, 

then both programs compute the same function 

- As Cutland writes, it has its name because it justifies very general definitions “by recursion”  
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Proof 

Let 𝑓:ℕ → ℕ be total computable. 

Observe 𝑥 ↦  𝜙𝑥(𝑥) computable 

 

𝑥 ↦  𝑓(𝜙𝑥(𝑥)) computable 

define 

𝑔(𝑥, 𝑦) = 𝜙𝑓(𝜙𝑥(𝑥))(𝑦)                           𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝜙↑ =↑ 

= Ψ𝑈(𝑓(𝜙𝑥(𝑥)), 𝑦)                                        

= Ψ𝑈(𝑓(Ψ𝑈(𝑥, 𝑥), 𝑦)               𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

By the smn-theorem, there is 𝑠: ℕ → ℕ total and computable s.t. ∀𝑥, 𝑦 

𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝜙𝑓(𝜙𝑥(𝑥))(𝑦)       (∗) 

Since 𝑠 is computable, there is 𝑚 ∈ ℕ 𝑠. 𝑡. 𝑆 = 𝜙𝑚.  

Substituting in (∗) 

𝜙𝜙𝑚(𝑥)(𝑦) = 𝜙𝑓(𝜙𝑥(𝑥))(𝑦)    ∀ 𝑥, 𝑦 

In particular, for 𝑥 = 𝑚 

𝜙𝜙𝑚(𝑚)(𝑦) = 𝜙𝑓(𝜙𝑚(𝑚))(𝑦)     ∀𝑦 

Hence 

𝜙𝜙𝑚(𝑚) = 𝜙𝑓(𝜙𝑚(𝑚)) 

If we let 𝑒0 = 𝜙𝑚(𝑚) ↓ and replace in the previous equation, we conclude 

𝜙𝑒0 = 𝜙𝑓(𝑒0) 

(note that 𝜙𝑚 = 𝑠 total, hence 𝜙𝑚(𝑚) ↓) 

This theorem can therefore be interpreted in the following manner “given any effective procedure to 

transform programs, there is always at a program such that, when modified by the procedure, it does 

exactly what it did before, or it is impossible to write a program that changes the extensional behaviour of 

all programs”. 

Idea  

(We discuss the idea behind the proof given, according 

to the professor, the “mysterious” nature of the 

statement and the proof itself – a possible 

interpretation comes from a diagonalization argument. 

This theorem is pretty deep and like the other 

recursion theorem by Kleene itself, is a really 

important result) 
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(you can use this enumeration to transform it to a different enumeration; the second one might not be an 

enumeration of computable functions, but only some of them) 

you can do the above for ℎ = 𝜙𝑖     𝑖 = 0,1,2….  (doing it for all the possible computable functions) 

 

 

 

 

 

 

In the proof we took the diagonal transformed by 𝑓: 

ℎ(𝑥) = 𝑓(𝜙𝑥(𝑥)) = 𝑓(Ψ𝑈(𝑥, 𝑥)) = 𝜙𝑚(𝑥) 

 

 

 

 

 

 

 

(Since everything is computable, also is the enumeration and so the program must be somewhere, defined 

as 𝐸𝑚 – via the diagonal transformation, we find the right element because the sets are saturated and so 

the element is the same) 

Let’s consider again Rice’s theorem; what the next part is essentially saying is that using Second Recursion 

Theorem, the proof is much shorter, proving it directly in a few lines. 

19.2 APPLICATION EXAMPLES 
 

Rice’s Theorem 

Let 𝐴 ⊆ ℕ saturated, 𝐴 ≠ ∅,𝐴 ≠ ℕ, then 𝐴 is not recursive 

Proof (alternative proof using 2nd Recursion Theorem) 

Let 𝐴 ⊆ ℕ, 𝐴 ≠ ∅, 𝐴 ≠ ℕ saturated  

(it means all programs inside a set are computing the same functions, so if you have a program, in either 

sets each one computes the same thing) 
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Assume by contradiction 𝐴 is recursive and define 𝑓: ℕ → ℕ 

𝑓(𝑥) = {
𝑒0, 𝑥 ∈ 𝐴
𝑒1, 𝑥 ∉ 𝐴

 

= 𝑒0 ∗ 𝜒𝐴 + 𝑒1 ∗ 𝜒𝐴(𝑥) 

(
𝑖𝑓 𝑥 ∈ 𝐴 →  𝜒𝐴(𝑥) = 1    𝜒𝐴(𝑥) = 0   𝑒0 ∗ 1 + 𝑒1 ∗ 0 = 𝑒0 

𝑖𝑓 𝑥 ∉ 𝐴 → 𝑥𝐴(𝑥) = 0     𝜒𝐴(𝑥) = 1    𝑒0 ∗ 0 + 𝑒1 ∗ 1 = 𝑒1
) 

If 𝐴 recursive, 𝑓 computable total but for all 𝑒 ∈ 𝑁,𝜙𝑒 ≠ 𝜙𝑓(𝑒) 

- 𝑒 ∈ 𝐴 ⇒ 𝑓(𝑒) = 𝑒0 ∉ 𝐴 and since 𝐴 is saturated (they can’t compute the same function, otherwise 

they would be both in the same set), so 𝜙𝑒 ≠ 𝜙𝑓(𝑒) 

- 𝑒 ∉ 𝐴 ⇒ 𝑓(𝑒) = 𝑒1 ∈ 𝐴, thus since 𝐴 is saturated, 𝜙𝑒 ≠ 𝜙𝑓(𝑒) 

This is absurd, given it contradicts the 2nd Recursion Theorem → 𝐴 not recursive 

(and this arises by the fact we considered 𝐴 recursive, but actually it is not).  

Proposition: The halting set 𝐾 = {𝑥 ∈ ℕ | 𝜙𝑥(𝑥) ↓} 

Proof (alternative proof using 2nd Recursion Theorem – which again is shorter and easier) 

 

 

 

 

 

 

Define 𝑓:ℕ → ℕ s.t. 

𝑓(𝑥) = {
𝑒0, 𝑖𝑓 𝑥 ∈ 𝐾
𝑒1, 𝑖𝑓 𝑥 ∉ 𝐾

 

= 𝑒0 ∗ 𝜒𝐾(𝑥) + 𝑒1 ∗ 𝑥𝐾(𝑥) 

If 𝐾 were recursive, then 𝜒𝐾 , 𝜒𝐾 would be computable and 𝑓 would be computable.  

Since 𝑓 is total (it also means it has a fixed point), by 2nd Recursion Theorem there is 𝑒 ∈ ℕ 𝑠. 𝑡. 𝜙𝑒 = 𝜙𝑓(𝑒) 

(which is impossible this last one, but we assume it is): 

→ 𝑒 ∈ 𝐾 ⇒ 𝑓(𝑒) = 𝑒0, so 𝜙𝑒(𝑒) ↓ ≠  𝜙𝑓(𝑒)(𝑒) = 𝜙𝑒0(𝑒) ↑ 

→ 𝑒 ∉ 𝐾 ⇒ 𝑓(𝑒) = 𝑒1, so 𝜙𝑒(𝑒) ↑ ≠  𝜙𝑓(𝑒)(𝑒) = 𝜙𝑒1(𝑒) = 1 ↓ 
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there is a contradiction again because we assume 𝐾 to be recursive. 

Hence, 𝐾 is not recursive.  

* 𝐾 is not saturated 

𝐾 = {𝑥 ∈ ℕ | 𝜙𝑥(𝑥) ↓} 

We want to show that there are 𝑒, 𝑒′ ∈ 𝑁 𝑠. 𝑡. 

𝜙𝑒 = 𝜙𝑒
′  

𝑒 ∈ 𝐾, 𝑒′ ∉ 𝐾 

* Assume that there is 𝑒 ∈ 𝑁 𝑠. 𝑡. 

𝜙𝑒(𝑥) = {
0, 𝑖𝑓 𝑥 = 𝑒

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

then 

- 𝑒 ∈ 𝐾 since 𝜙𝑒(𝑒) = 0 ↓ 

- there exists 𝑒′ ∈ ℕ, 𝑒′ ≠ 𝑒 𝑠. 𝑡. 𝜙𝑒 = 𝜙𝑒′ 

- 𝑒′ ∉ 𝐾 𝜙𝑒′(𝑒
′) = 𝜙𝑒(𝑒

′) ↑ 

 

* We need to show that there exists 𝑒 ∈ 𝑁 𝑠. 𝑡. 

𝜙𝑒(𝑥) = {
0, 𝑖𝑓 𝑥 = 𝑒

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(the notes here try to observe that there is an 𝑒0 𝑠. 𝑡. 𝜙𝑒0 = {(𝑒0, 𝑒0)}, which I think is clear) 

We think of a possible program which checks if the input is the program itself, otherwise loop (this is called 

“quine” if you look in Wikipedia – where I also wrote more notes about the two recursion theorems, 

basically extending the notion of computable functions and writing the definition of our course).  

In words, this theorem essentially proves the existence of such a program, considering it will match any 

input as its code with no problems. 

 

 

 

 

 

 

Formally, we define a function parametrized: 

𝑔(𝑒, 𝑥) = {
0, 𝑖𝑓 𝑥 = 𝑒

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

= 𝜇𝑧. |𝑥 − 𝑒|     𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 
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By the smn-theorem, there is 𝑠: ℕ → ℕ total computable s.t. 

𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = {
0, 𝑖𝑓 𝑥 = 𝑒

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

since 𝑠 is total computable, by the 2nd Recursion Theorem, there is 𝑒0 ∈ 𝑁 𝑠. 𝑡. 𝜙𝑒0 = 𝜙𝑠(𝑒0). Hence: 

𝜙𝑒0(𝑥) = 𝜙𝑠(𝑒0)(𝑥) = 𝑔(𝑒0, 𝑥)) = {
0, 𝑖𝑓 𝑥 = 𝑒0
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Observe that 𝑒0 ∈ 𝐾 and we also know that there are infinitely many indices for the same function. Thus, 

let 𝑒 ≠ 𝑒0 𝑠. 𝑡. 𝜙𝑒 = 𝜙𝑒0. Then 𝜙𝑒(𝑥) = 𝜙𝑒0(𝑥) ↑.  

So, 𝑒0 is the desired program and 𝑒 ∉ 𝐾. Thus, 𝐾 is not saturated. 

Exercise: Random Numbers (from the 1st Lesson) 

→ 𝑛 ∈ ℕ is random if all programs producing 𝑛 in output are “larger” than 𝑛 

There were specifically two questions: 

→ there are infinitely many random numbers 

→ the property of being random is not decidable 

Try again to solve this one: 

→ size of a program?      |𝑃𝑒| = 𝑒   (combinatorial, many programs computing the same function) 

→ define 𝑛 ∈ ℕ random if for all 𝑒 ∈ ℕ 𝑠. 𝑡. 𝜙𝑒(0) = 𝑛 it holds 𝑒 > 𝑛  

(here we need 2nd Recursion Theorem) 

Solution 

It can be found here. 

Exercise 

Let 𝑓:ℕ → ℕ be a function and consider 𝐵𝑓 = {𝑒 ∈ ℕ | 𝜙𝑒 = 𝑓} 

Are 𝐵𝑓 , 𝐵𝑓 recursive/r.e.? 

1) 𝑓 not computable 

𝐵𝑓 = ∅, 𝐵𝑓 = ℕ   𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 (ℎ𝑒𝑛𝑐𝑒 𝑟. 𝑒. ) 
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2) 𝑓 computable 

𝐵𝑓 is saturated, 𝐵𝑓 ≠ ∅,𝐵𝑓 ≠ ℕ  ⇒    𝑏𝑦 𝑅𝑖𝑐𝑒, 𝐵𝑓 𝑎𝑛𝑑 𝐵𝑓 𝑛𝑜𝑡 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 

Can it be r.e.? Yes, sometimes it is. 

Suppose we have the always undefined function: 

𝑓 = ∅     (𝑓(𝑥) ↑   ∀𝑥) 

𝐵𝑓 = {𝑒 | 𝜙𝑒 ≠ ∅} 

= {𝑒 | ∃𝑥. 𝜙𝑒(𝑥) ↓} 

 

𝑠𝑐𝐵𝑓(𝑥) = 𝟏(𝜇𝑤.𝐻(𝑥, (𝑤)1, (𝑤)2) 

Complete solution (exercise completion and conclusions) 

- More generally, if 𝑓 = 𝜃 finite, take any total 𝑔 such that 𝜃 ⊆ 𝑔 

𝑔 ≠ 𝐵𝑓 , 𝑓: 𝜃 ⊆ 𝑔 𝑓𝑖𝑛𝑖𝑡𝑒   𝜃 ∈ 𝐵𝑓 ⇒ by Rice-Shapiro, 𝐵𝑓 is not r.e. 

- If 𝑓 is infinite 

𝑓 ∈ 𝐵𝑓 = {𝑓}  ∀𝜃 ⊆ 𝑓, 𝜃 ≠ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∉ 𝐵𝑓 ⇒ 𝐵𝑓 is not r.e. 

Also, 𝐵𝑓 is not r.e. 

- if 𝑓 = ∅ then 𝐵𝑓 is r.e. (because of what was said above) 

- if 𝑓 ≠ ∅ then 𝑓 ≠, 𝐵𝑓 = {𝑓}, 𝜃 = ∅ ⊆ 𝑓, 𝜃 ∈ 𝐵𝑓 → by Rice-Shapiro, 𝐵𝑓 is not r.e. 
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20 ENDING LESSONS – EXERCISES 

20.1 EXAM OF 19/01/2022 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On this exam just taken as an example, some comments in general (each exercise weights 8 points): 

- this is the structure more or less 

- you have to try to be as much precise as possible, taking nothing for granted or saying, “this is 

obvious”, says Baldan – try to articulate proofs and exercises 
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In case you are (masochist and insane) interested in the oral exam: 

 

 

 

 

 

 

 

 

(a) We say 𝐴 ≤𝑚 𝐵 if there exists a total computable function 𝑓: ℕ → ℕ 𝑠. 𝑡. ∀𝑥 ∈ ℕ, 𝑥 ∈ 𝐴 𝑖𝑓𝑓 𝑓(𝑥) ∈ 𝐵 (∗) 

(b) We prove the counternominal, i.e. if 𝐴 ≤𝑚 𝐵 and 𝐵 recursive, then 𝐴 is recursive.  

Assume 𝐵 recursive, i.e. 

𝜒𝐵(𝑥) = {
1, 𝑥 ∈ 𝐵
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  𝑖𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

observe that 

𝜒𝐵(𝑥) = {
1, 𝑥 ∈ 𝐴
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 = {
1, 𝑓(𝑥) ∈ 𝐵
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

= 𝜒𝐵(𝑓(𝑥)) 

since 𝜒𝐴 is the composition of computable functions, it is computable ⇒ 𝐴 is recursive 

(c) A is recursive ⇒ 𝐴 ≤𝑚 {1}  

If 𝐴 is recursive, then 

𝜒𝐴: ℕ → ℕ 

𝜒𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

= 𝜒𝐵(𝑥) 

is computable and total 

𝑥 ∈ 𝐴 𝑖𝑓𝑓 𝜒𝐴(𝑥) = 1 𝑖𝑓𝑓 𝜒𝐴(𝑥) ∈ {1} 

hence 𝜒𝐴 is the reduction function for 𝐴 ≤𝑚 {1} 

Extra question: Does the converse hold? 

𝐴 ≤𝑚 {1} then 𝐴 is recursive 

Yes, since {1} is finite, hence it is recursive. 

Alternatively: let 𝑓: ℕ → ℕ be the reduction function for 𝐴 ≤𝑚 {1}.  
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Then, ∀𝑥 

𝑥 ∈ 𝐴 𝑖𝑓𝑓 𝑓(𝑥) = {1} 𝑖𝑓𝑓 𝑓(𝑥) = 1 

thus  

𝜒𝐴(𝑥) = 𝑠𝑔(|𝑓(𝑥) − 1|) = {
1, 𝑖𝑓 𝑓(𝑥) = 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= {
1, 𝑥 ∈ 𝐴
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

 

Idea (bruteforce one (1 = diagonalization) – more elegant one (2)) 

 

 

 

 

 

 

 

 

 

 

 

𝑔(𝑥) = {
𝜙𝑦(𝑥) + 1, 𝑖𝑓 𝑥 = 3𝑦 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦 𝑎𝑛𝑑 𝜙𝑦(𝑥) ↓

0, 𝑖𝑓 (𝑥 = 3𝑦 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦 𝑎𝑛𝑑 𝜙𝑦(𝑥) ↑) 𝑜𝑟 𝑥 ≠ 3𝑦   ∀𝑦
 

Note that 𝑔 is: 

→ total 

→ not computable since ∀𝑦, 𝜙𝑦(3𝑦) ≠ 𝑔(3𝑦) 

- if 𝜙𝑦(3𝑦) ↓ then 𝑔(3𝑦) = 𝜙𝑦(3𝑦) + 1 

- if 𝜙𝑦(3𝑦) ↑ then 𝑔(3𝑦) = 0 

→ there are infinitely many 𝑥 𝑠. 𝑡. 𝑔(𝑥) = 𝑔(𝑥 + 1) 

∀𝑦    𝑖𝑓 𝑥 = 3𝑦 + 1 

neither 𝑥 nor 𝑥 + 1 are multiples of 3, hence 𝑔(𝑥) = 𝑔(𝑥 + 1) = 0 by construction. 

(Trying the same argument with multiples of 2 can work – but actually, it’s easier to define the function but 

more difficult to prove it correct, since it would require showing the function differs each time from an 

even number of arguments – arguably more difficult to prove) 
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2) alternative solution 

Can I use 𝜒𝐾? (characteristic function of the halting set) 

 

 

Observation:  

Let 𝑓:𝑁 → 𝑁 be a function s.t. 𝑐𝑜𝑑(𝑓) = {0,1} and there is 𝑑 ∈ ℕ s.t. ∀𝑥 > 𝑑, 𝑓(𝑥) ≠ 𝑓(𝑥 + 1) 

 

 

 

Then, 𝑓 is computable.  

In fact, let: 

𝑓(𝑥) = 𝑣𝑥      𝑥 ≤ 𝑑       𝑎𝑛𝑑 𝑣𝑑 = 0 

(assuming it stops until a point and then it will start alternating) 

and define 𝑔:ℕ → ℕ by primitive recursion: 

{
𝑔(0) = 0

𝑔(𝑦 + 1) = 𝑠𝑔(𝑔(𝑦))
     𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

then 

𝑓(𝑥) =∏𝑠𝑔(|𝑥 − 𝑖|

𝑑−1

𝑖=0

) ∗ 𝑣𝑖 + 𝑔(𝑥 −
. 𝑑) 

computable. 

(trick we used for all the finite functions is to use the productory; the sign function tells us “I want to find 

exactly 𝑥” and then, one multiplies by the right value, subtracting the upper bound) 

Hence, the desired function in the exercise can be 𝑓 = 𝜒𝐾 

- 𝜒𝐾 total 

- 𝜒𝐾 non-computable 

- ∀𝑑, ∃𝑥 ≥ 𝑑 𝑠. 𝑡. 𝜒𝐾(𝑥) = 𝜒𝐾(𝑥 + 1)  (otherwise, it would be computable) 

Again, a diagonalization argument – there are infinitely many inputs and there will always be fixed points 

such that you can’t possibly compute them all, so the condition 𝑥 ≤ 𝑑 will totally hold, but not effectively) 

⇒ {𝑥 ∈ ℕ | 𝜒𝐾(𝑥) = 𝜒𝐾(𝑥 + 1)}     𝑖𝑠 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 
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Conjecture: 

Being quasi-total means it has to be defined on an infinite number of inputs (because it is undefined on a 

finite number of inputs); because of this, it is not r.e. since you can’t write the semicharacteristic function – 

the complement will be undefined on an infinite number of inputs; on the complement, again for same 

conclusion on normal set, it is not r.e. 

A 𝑛𝑜𝑡 𝑟. 𝑒.   A 𝑛𝑜𝑡 𝑟. 𝑒. 

A is saturated: 

A = {𝑥 ∈ ℕ | 𝜙𝑥 ∈ 𝐴} 

𝐴 = {𝑓 | 𝑓 𝑖𝑠 𝑞𝑢𝑎𝑠𝑖 𝑡𝑜𝑡𝑎𝑙} = {𝑓 | 𝑑𝑜𝑚(𝑓) 𝑓𝑖𝑛𝑖𝑡𝑒} 

- 𝐴 is not r.e. 

Observe that 𝑖𝑑 ∈ 𝐴 since 𝑑𝑜𝑚(𝑖𝑑) = ℕ and so 𝑑𝑜𝑚(𝑖𝑑) = ℕ = ∅ is finite and for all 𝜃 ⊆ 𝑖𝑑, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∉

𝐴 (so, we’re saying this is not quasi-total), since 𝑑𝑜𝑚(𝜃) is finite ⇒ 𝑑𝑜𝑚(𝜃) infinite.  

Hence, A is not r.e., by Rice-Shapiro. 

* A is not r.e. (𝐴 = {𝑓 | 𝑓 𝑛𝑜𝑡 𝑞𝑢𝑎𝑠𝑖 − 𝑡𝑜𝑡𝑎𝑙} = {𝑓 | 𝑑𝑜𝑚(𝑓) 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒} 

note that 𝑖𝑑 ∉ 𝐴 and 𝜃 = ∅ ⊆ 𝑖𝑑 finite and 𝜃 ∈ 𝐴 since 𝑑𝑜𝑚(𝜃) = ∅ = ℕ infinite. 

Hence, by Rice-Shapiro, 𝐴 is not r.e. 

(Professor suggests to not proceed by reduction, given you would have to prove Rice-Shapiro again, 

definitely making the proof longer) 

 

 

Conjecture: 𝐵 is r.e., not recursive ⇒ 𝐵 not r.e. (otherwise, 𝐵 recursive) and thus 𝐵 not recursive.  

- 𝐵 is r.e. 

In fact 

𝑠𝑐𝐵(𝑥) = 𝟏(𝜇(𝑧, 𝑦, 𝑡). (𝑆(𝑥, 𝑧, 𝑦, 𝑡) ∧ 𝑦 > 2𝑥))) 

= 𝟏(𝜇(𝑧, 𝑑, 𝑡). (𝑆(𝑥, 𝑧, 2𝑥 + 1 + 𝑑, 𝑡)) 

= 𝟏(𝜇𝑤. 𝑆(𝑥, (𝑤)1, 2𝑥 + 1 + (𝑤)2, (𝑤)3)) 

= 𝟏(𝜇𝑤. |𝑋𝑆(𝑥, (𝑤)1, 2𝑥 + 1 + (𝑤)2, (𝑤)3) − 1|) 

computable, hence 𝐵 is r.e. 
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- 𝐵 is not recursive 

We should that 𝐾 ≤𝑚 𝐵 we need a total computable function 𝑓:ℕ → ℕ 𝑠. 𝑡. 𝑥 ∈ 𝐾 𝑖𝑓𝑓 𝑆(𝑥) ∈ 𝐵 

 

define 

𝑔(𝑥, 𝑧) = {
𝑧, 𝑥 ∈ 𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

= 𝑧 ∗ 𝑠𝑐𝐾(𝑥) 

hence, 𝑔 is computable.  

By the smn-theorem, there is 𝑠: ℕ → ℕ total and computable s.t. ∀𝑥, 𝑧 

𝜙𝑠(𝑥)(𝑧) = 𝑔(𝑥, 𝑧) = {
𝑧, 𝑖𝑓 𝑥 ∈ 𝐾

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

We claim that 𝑠 is the reduction function for 𝐾 ≤𝑚 𝐵.  

- if 𝑥 ∈ 𝐾 then 𝑠(𝑥) ∈ 𝐵.  

Let 𝑥 ∈ 𝐾. Then, 𝜙𝑠(𝑥)(𝑧) = 𝑧  ∀𝑧  

hence 𝜙𝑆(𝑥)(2𝑠(𝑥) + 1) = 2𝑠(𝑥) + 1 > 2𝑠(𝑥) 

thus 𝑠(𝑥) ∈ 𝐵 

- if 𝑥 ∉ 𝐾 then 𝑠(𝑥) ∉ 𝐵 

Let 𝑥 ∉ 𝐾. Hence 𝜙𝑆(𝑥)(𝑧) ↑   ∀𝑧 

Thus we have 𝐸𝑆(𝑥) = ∅, hence there is no 𝑦 ∈ 𝐸𝑆(𝑥) 𝑠. 𝑡. 𝑦 > 2𝑆(𝑥) hence 𝑆(𝑥) ∉ 𝐵 

Consequently, 𝐵 is not recursive.  

Since 𝐵 is r.e. and not recursive, then 𝐵 not r.e. (otherwise, if 𝐵, 𝐵 r.e. we would have 𝐵 recursive). In turn, 

this implies that 𝐵 not recursive. 

* Extra question (not part of the exam) 

If 𝐵 = {𝑥 ∈ 𝑁 | ∃𝑦 > 2𝑥. 𝑦 ∈ 𝐸𝑥} saturated? 

Apparently, it is not since it “refers to 𝑥 in the property”. Let’s prove it by showing that there are  

𝑒 ∈ 𝐵    𝑒′ ∉ 𝐵    𝑤𝑖𝑡ℎ 𝜙𝑒 = 𝜙𝑒
′  

We show that there is 𝑒 ∈ ℕ 𝑠. 𝑡. 

𝜙𝑒(𝑥) = 2𝑒 + 1 

Define: 

𝑔(𝑛, 𝑥) = 2𝑛 + 1 

computable, hence by smn-theorem about there is 𝑠: ℕ → ℕ total and computable 𝑠. 𝑡. ∀𝑛, 𝑥: 

𝜙𝑠(𝑛)(𝑥) = 𝑔(𝑛, 𝑥) = 2𝑛 + 1 

 



212   Computability simple (for real) 
 

Written by Gabriel R. 

Since 𝑠 is total and computable, there is 𝑒 ∈ ℕ 𝑠. 𝑡.  

𝜙𝑆(𝑒) = 𝜙𝑒 

Thus 

𝜙𝑒(𝑥) = 𝜙𝑆(𝑒)(𝑥) = 2𝑒 + 1 

Hence 

𝑒 ∈ 𝐵      𝑠𝑖𝑛𝑐𝑒 2𝑒 + 1 ∈ 𝐸𝑒  

 

Now, there are infinitely many indexes for 𝜙𝑒 , thus we can take 𝑒′ ∈ 𝑁, 𝑒′ > 𝑒 𝑠. 𝑡. 𝜙𝑒 = 𝜙𝑒
′ .  

Note that 𝐸𝑒
′ = 𝐸𝑒 = {2𝑒 + 1} and 2𝑒 + 1 < 2𝑒′ thus 𝑒′ ∉ 𝐵. 

Summing up, 𝑒, 𝑒′ ∈ 𝑁, 𝑒 ∈ 𝐵, 𝑒′ ∉ 𝐵,𝜙𝑒 = 𝜙𝑒
′ ⇒ 𝐵 is not saturated 

20.2 VARIOUS EXERCISES SOLVED (1/2) 
 

Exercise 

Given 𝑓:ℕ → ℕ a fixed function and define 𝐵𝑓 = {𝑒 ∈ ℕ | 𝜙𝑒 = 𝑓}. Classify this set from the point of view 

of recursiveness 

Solution  

The set 𝐵𝑓 is saturated, because 𝐵𝑓 = {𝑒 ∈ ℕ | 𝜙𝑒 ∈ 𝐵𝑓}, 𝐵𝑓 = {𝑓} 

We have two cases: 

1) 𝑓 is not computable, so 𝐵𝑓 = ∅,𝐵𝑓 = ℕ recursive 

2) 𝑓 is computable 

We are using Rice-Shapiro in this case: 

- 𝐵𝑓 is not r.e. 

2.a) if 𝑓 is finite, 𝑓 = 𝜃. Let 𝑔 be a total function 𝑠. 𝑡. 𝑓 ⊆ 𝑔. 

We are assuming it is a finite function and then we take another function 

defined in the same points the other one is defined, only on a subset of points, 

like you see in figure. 

Then, we have 𝑔 ∉ 𝐵𝑓 and 𝑓 = 𝜃 ⊆ 𝑔 and 𝑓 ∈ 𝐵𝑓 

(so, we define a finite subfunction which is in the set, the function is not in there – this holds when the 

function is finite, otherwise we use the other part of Rice-Shapiro). 

hence by Rice-Shapiro, 𝐵𝑓 not r.e. (hence not recursive) 

2.b) if 𝑓 is not finite, not that 𝑓 ∈ 𝐵𝑓 and ∀𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∉ 𝐵𝑓  then 𝐵𝑓 not r.e. by Rice-Shapiro (hence, 

𝐵𝑓 not recursive) 
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- 𝐵𝑓 is not r.e. 

Again we have two cases 

1) 𝑓 = ∅ (𝑓(𝑥) ↑ ∀𝑥) 

𝐵𝑓 is r.e. since 𝑒 ∈ 𝐵𝑓 iff there is some input 𝜙𝑒(𝑥) ↓ hence 𝑠𝑐𝐵𝑓(𝑒) = 𝟏(𝜇(𝑥, 𝑡). 𝐻(𝑒, 𝑥, 𝑡)) =

𝟏(𝜇𝑤.𝐻(𝑒, (𝑤)1, (𝑤)2) 

(hence, we look for a single point on which the program terminates in 𝑡 steps, then characterizing it with 

the encoding in tuples). 

This is computable, hence 𝐵𝑓 is r.e. 

2) 𝑓 ≠ ∅ 

𝐵𝑓 is not r.e by Rice-Shapiro, 𝑓 ∈ 𝐵𝑓 and 𝜃 = ∅ ⊆ 𝑓, 𝜃 ∉ 𝐵𝑓 hence 𝜃 ∈ 𝐵𝑓 hence by Rice-Shapiro, 𝐵𝑓 is not 

r.e. 

Exercise 

Show that 𝑔𝑐𝑑: ℕ2 → ℕ, defined as: 

gcd(𝑥, 𝑦) = greatest common divisor of 𝑥 and 𝑦  

is computable (primitive recursive) 

Solution 

Define: 

gcd(𝑥, 𝑦) = max 𝑧 . 𝑧 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑜𝑓 𝑥 𝑎𝑛𝑑 𝑧 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑜𝑓 𝑦 

This can be expressed as 𝑟𝑚(𝑥, 𝑧) = 0 for "𝑧 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑜𝑓 𝑥" and 𝑟𝑚(𝑧, 𝑦) = 0 for "𝑧 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑜𝑓 𝑦". 

= max 𝑧 ≤ min(𝑥, 𝑦) . (𝑟𝑚(𝑥, 𝑧) + 𝑟𝑚(𝑧, 𝑦) = 0 

(we know that this is bounded, given there exists a minimum in order to find the largest value) 

What we would want is to find a minimum value subtracted to the bound to find the right value: 

 

 

 

 

 

= min(𝑥, 𝑦) − (𝜇𝑤 ≤ min(𝑥, 𝑦) . (𝑧 = min(𝑥, 𝑦) − 𝑤 ∧ 𝑟𝑚(𝑧, 𝑥) + 𝑟𝑚(𝑧, 𝑦) = 0)) 

= min(𝑥, 𝑦) − (𝜇𝑤 ≤ min(𝑥, 𝑦) . (𝑟𝑚(min(𝑥, 𝑦) − 𝑤, 𝑥) + 𝑟𝑚(min(𝑥, 𝑦) − 𝑤, 𝑦)) = 0 
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hence 𝑔𝑐𝑑 is primitive recursive.  

Exercise 

Show there are 𝑚, 𝑛 ∈ 𝑁 such that 

1) 𝜙𝑛 = 𝜙𝑛+1 

2) 𝜙𝑚 ≠ 𝜙𝑚+1 

Solution 

(We just need to apply the Second Recursion Theorem, observing that at least in one case, the program 

behavior won’t change, and this happens for the successor). 

1) Observe that 𝑠(𝑛) = 𝑛 + 1 is total and computable, hence by the second recursion theorem, there is 𝑛 ∈

𝑁, 𝜙𝑛 = 𝜙𝑠(𝑛) = 𝜙𝑛+1 

2) (one can just try to negate here) 

if it were that ∀𝑚,𝜙𝑚 = 𝜙𝑚+1 then inductively 𝜙0 = 𝜙1 = 𝜙2 = 𝜙3 = ⋯ 

i.e. all computable unary functions would be the same and this is not the case (e.g. 𝟏 ≠ 𝑠𝑢𝑐𝑐) 

Exercise 

Define the class of 𝑃𝑅 and using only the definition show that 

𝑚𝑎𝑥2: 𝑁 → 𝑁,𝑚𝑎𝑥2(𝑥) = 𝑚𝑎𝑥(2, 𝑥) is 𝑃𝑅 

Two ways: 

1) Rebuild 𝑚𝑎𝑥 

Define the sum by primitive recursion: 

𝑠𝑢𝑚 (𝑥 + 𝑦) 

{
𝑥 + 0 = 𝑥

𝑥 + (𝑦 + 1) = (𝑥 + 𝑦) + 1
 

Then, define the predecessor by primitive recursion: 

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑦−.1 

{
0−.1 = 0

𝑦 + 1−.1 = 𝑦
 

Then, define the difference by primitive recursion: 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑥−.𝑦 

{
𝑥−.0 = 𝑥

𝑥−.(𝑦 + 1) = (𝑥−.𝑦)−.1
 

𝑚𝑎𝑥       𝑚𝑎𝑥(𝑥, 𝑦) = 𝑥 + (𝑦−. 𝑥) 

𝑚𝑎𝑥2(𝑥) = 𝑚𝑎𝑥(2, 𝑥) = 𝑚𝑎𝑥 (((0 + 1) + 1), 𝑥) 
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2) Define what you really need 

𝑚𝑎𝑥2(0) = 2 

𝑚𝑎𝑥2(𝑦 + 1) = {
2, 𝑖𝑓 𝑦 = 0

𝑦 + 1, 𝑖𝑓 𝑦 > 0
= 𝑦 + 1 + 𝑠𝑔(𝑦) 

sum as above 

𝑠𝑔(𝑦) 

{
𝑠𝑔(0) = 1

𝑠𝑔(𝑦 + 1) = 0
 

3) An even faster way: if you consider 2 as 2 = 1 + 1 you can write: 

{
𝑚𝑎𝑥2(0) = 2

𝑚𝑎𝑥2(𝑦 + 1) = 𝑚𝑎𝑥1(𝑦) + 1
 

𝑚𝑎𝑥1 = 𝑚𝑎𝑥(1, 𝑦) 

{
𝑚𝑎𝑥1(0) = 1

𝑚𝑎𝑥1(𝑦 + 1) = 𝑦 + 1
 

Exercise 

1) 𝐴 = {𝑥 | 𝜙𝑥(𝑥) = 𝑥
2} 

2) 𝐵 = {𝑥 | 𝜙𝑥(𝑦) = 𝑦
2 𝑓𝑜𝑟 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑚𝑎𝑛𝑦 𝑦′𝑠} 

Questions: 

1) Classify 𝐴, 𝐵 according to recursiveness 

2) Are 𝐴, 𝐵 saturated? 

 

(1) Conjecture  𝐴 r.e. and not recursive → 𝐴 not r.e. (hence not recursive) 

- A r.e. 

𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑧. |𝜙𝑥(𝑥) − 𝑥
2|) = 𝟏(𝜇𝑧. |Ψ𝑈(𝑥, 𝑥) − 𝑥

2|) 
 

 

 

 

 

computable → 𝐴 r.e. 
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- 𝐴 is not recursive 

Define a function over itself: when it terminates, it will always work and then use the reduction from the 

halting problem. 

 

 

 

 

define 

𝑔(𝑥, 𝑦) = 𝟏(𝜙𝑥(𝑥)) ∗ 𝑦
2 = 𝟏(Ψ𝑈(𝑥, 𝑥)) ∗ 𝑦

2 = {
𝑦2, 𝑖𝑓 𝜙𝑥(𝑥) ↓
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

computable, hence by the smn-theorem, there is 𝑠: 𝑁 → 𝑁 total and computable s.t. 

𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = {
𝑦2, 𝜙𝑥(𝑥) ↓
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and 𝑠 is the reduction function for 𝐾 ≤𝑚 𝐴. 

- if 𝑥 ∈ 𝐾 then 𝜙𝑠(𝑥) = 𝑦
2 ∀𝑦,  hence in particular 𝜙𝑠(𝑥)(𝑠(𝑥)) = (𝑠(𝑥))

2
 → 𝑠(𝑥) ∈ 𝐴 

- if 𝑥 ∉ 𝐾 then 𝜙𝑠(𝑥)(𝑦) ↑ ∀𝑦, hence 𝜙𝑠(𝑥)(𝑠(𝑥)) ≠ (𝑠(𝑥))
2

 → 𝑠(𝑥) ∉ 𝐴 

hence 𝐾 ≤𝑚 𝐴 and since 𝐾 not recursive, 𝐴 is not recursive 

2)  

2.a) Is 𝐴 = {𝑥 | 𝜙𝑥(𝑥) = 𝑥
2} saturated?  

No, it’s not. Let 𝑒 ∈ 𝑁 𝑠. 𝑡. 𝜙𝑒(𝑥) = {
𝑒2, 𝑖𝑓 𝑥 = 𝑒

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 In fact define 

𝑔(𝑧, 𝑥) = {
𝑧2, 𝑖𝑓 𝑥 = 𝑧
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= 𝑧2. 𝜇𝑤. |𝑥 − 𝑧| 

 

 

computable. By the smn-theorem, there exists 𝑠: ℕ → ℕ total computable function s.t.  

𝜙𝑠(𝑥) = 𝑔(𝑧, 𝑥) = {
𝑧2, 𝑖𝑓 𝑥 = 𝑧

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

By the 2nd recursion theorem, there is 𝑒 ∈ ℕ 𝑠. 𝑡. 𝜙𝑒 = 𝜙𝑠(𝑒) 

𝜙𝑒(𝑥) = 𝜙𝑠(𝑒)(𝑥) = 𝑔(𝑒, 𝑥) = {
𝑒2, 𝑖𝑓 𝑥 = 𝑒
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Given this: 

- 𝑒 ∈ 𝐴 (since 𝜙𝑒(𝑒) = 𝑒
2) 

- 𝑙𝑒𝑡 𝑒′ ≠ 𝑒 𝑠. 𝑡. 𝜙𝑒 = 𝜙𝑒
′  

𝜙𝑒
′(𝑒′) = 𝜙𝑒(𝑒

′) ↑≠ 𝑒′2 ⇒ 𝑒′ ∉ 𝐴 

So, 𝐴 is not saturated.  

2.b) Is B = {𝑥 |𝜙𝑥(𝑦) = 𝑦
2 𝑓𝑜𝑟 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑚𝑎𝑛𝑦 𝑦′𝑠} saturated? 

B is saturated, infact 

B = {𝑥 | 𝜙𝑥 ∈ 𝐵}  

with 𝐵 = {𝑓 | 𝑓(𝑦) = 𝑦2 𝑓𝑜𝑟 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑚𝑎𝑛𝑦 𝑦′𝑠} 

conjecture: 𝐵, 𝐵 not r.e. (hence not recursive) 

- 𝐵 is not r.e. 

Let 𝑓:𝑁 → 𝑁, 𝑓(𝑦) = 𝑦2 then 𝑓 ∈ 𝐵 (since {𝑦 | 𝑓(𝑦) = 𝑦2} = 𝑁 infinite) 

for all 𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, {𝑦 | 𝜃(𝑦) = 𝑦2} = 𝑑𝑜𝑚(𝜃) 𝑓𝑖𝑛𝑖𝑡𝑒 → 𝜃 ∉ 𝐵  

hence, by Rice-Shapiro, 𝐵 not r.e. 

- 𝐵 is not r.e. 

Note that 𝑓 as defined above 𝑓 ∉ 𝐵 and 𝜃 = ∅ ⊆ 𝑓, 𝜃 ∈ 𝐵 

hence, by Rice-Shapiro, 𝐵 is not r.e.  

20.3 VARIOUS EXERCISES SOLVED (2/2) 
 

Exercise 

Classify from the point of view of recursiveness set 𝐴 = {𝑥 ∈ ℕ | 𝑊𝑥 ⊆ 𝐸𝑥} 

Solution 

- 𝐴 is saturated 

A = {𝑥 | 𝜙𝑥 ∈ 𝐴}    𝐴 = {𝑓 | 𝑑𝑜𝑚(𝑓) ⊆ 𝑐𝑜𝑑(𝑓)} 

- 𝐴 is not r.e. 

Observe 𝟏 ∉ 𝐴,  𝑑𝑜𝑚(𝟏) ⊈ 𝑐𝑜𝑑(𝟏) 

 

but 𝜃 = ∅ ⊆ 𝟏 𝑎𝑛𝑑 𝜃 ∈ 𝐴 

hence A is not r.e. by Rice-Shapiro. 
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- 𝐴 is not r.e. 

Take 𝑝𝑟𝑒𝑑(𝑥) = 𝑥 −. 1 

𝑑𝑜𝑚(𝑝𝑟𝑒𝑑) = 𝑐𝑜𝑑(𝑝𝑟𝑒𝑑) = 𝑁  

hence 𝑝𝑟𝑒𝑑 ∈ 𝐴 → 𝑝𝑟𝑒𝑑 ∉ 𝐴 

but if you take 𝜃 ⊆ 𝑝𝑟𝑒𝑑 

𝜃(𝑥) = {
0, 𝑥 ≤ 1
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

𝑑𝑜𝑚(𝜃) = {0,1} ⊈ 𝑐𝑜𝑑(𝜃) = {0}  

hence 𝜃 ∉ 𝐴 → 𝜃 ∈ 𝐴 

Therefore, by Rice-Shapiro, 𝐴 not r.e. (hence 𝐴 not recursive) 

Exercise 

Call 𝑓:ℕ → ℕ injective if ∀𝑥, 𝑦 ∈ 𝑑𝑜𝑚(𝑓)  𝑓(𝑥) = 𝑓(𝑦) 𝑡ℎ𝑒𝑛 𝑥 = 𝑦 

𝐴 = {𝑥 | 𝜙𝑥  𝑖𝑠 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒}  

Conjecture: 𝐴 r.e., not recursive → 𝐴 not r.e. (hence not recursive) 

- 𝐴 is r.e. 

𝑠𝑐𝐴(𝑥) = 𝑙𝑜𝑜𝑘 𝑓𝑜𝑟 𝑦, 𝑧 𝑠. 𝑡. 𝜙𝑥(𝑦) = 𝜙𝑥(𝑧) 

= 𝟏(𝜇(𝑦, 𝑧, 𝑡, 𝑣). 𝑆(𝑥, 𝑦, 𝑣, 𝑡) ∧ 𝑆(𝑥, 𝑧, 𝑣, 𝑡)) 

 

= 𝟏(𝜇𝑤. 𝑆(𝑥, (𝑤)1, (𝑤)4, (𝑤)3) ∧ 𝑆(𝑥, (𝑤)2, (𝑤)4, (𝑤)3) ∧ (𝑤)1 ≠ (𝑤)2)   

= 𝟏(𝜇𝑤. 𝑆(𝑥, (𝑤)1, (𝑤)4, (𝑤)3) ∧ 𝑆(𝑥, (𝑤)1 + 1 + (𝑤)2, (𝑤)4, (𝑤)3)) 

computable → 𝐴 r.e. 

- 𝐴 not recursive 

(1st possibility) 

Reduction 𝐾 ≤𝑚 𝐴 

define  

𝑔(𝑥, 𝑦) = {
𝑛𝑜𝑡 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛 𝑦  1, 𝑥 ∈ 𝐾

𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 ↑, 𝑥 ∉ 𝐾
 

= 𝑠𝑐𝐾(𝑥) 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

By the smn-theorem, there is 𝑠: ℕ → ℕ total computable such that ∀𝑥 

𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = {
1, 𝑖𝑓 𝑥 ∈ 𝐾

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Now 𝑠 is the reduction function for 𝐾 ≤𝑚 𝐴 

- 𝑖𝑓 𝑥 ∈ 𝐾 then 𝜙𝑠(𝑥)(𝑦) = 1   ∀𝑦  ℎ𝑒𝑛𝑐𝑒 𝜙𝑠(𝑥) = 𝟏 ∈ 𝐴 and thus 𝑠(𝑥) ∈ 𝐴 

- 𝑖𝑓 𝑥 ∉ 𝐾 then 𝜙𝑠(𝑥)(𝑦) = ↑   ∀𝑦  ℎ𝑒𝑛𝑐𝑒 𝜙𝑠(𝑥) = ∅ ∉ 𝐴 and thus 𝑠(𝑥) ∉ 𝐴 

Since 𝐾 ≤ 𝐴 and 𝐾 not recursive then 𝐴 not recursive. 

(2nd possibility) 

Observe that 𝐴 is saturated and not trivial: 

- if 𝑒1 is s.t. 𝜙𝑒1 = 𝟏 then 𝑒1 ∈ 𝐴 ≠ ∅ 

- if 𝑒2 is s.t. 𝜙𝑒0 = ∅ then 𝑒0 ∉ 𝐴 ≠ 𝑁 

by Rice’s theorem 𝐴 not recursive. 

Exercise 

Say 𝑓:𝑁 → 𝑁 is monotone if 𝑓 is total and ∀𝑥, 𝑦 ∈ ℕ 𝑖𝑓 𝑥 ≤ 𝑦 𝑡ℎ𝑒𝑛 𝑓(𝑥) ≤ 𝑓(𝑦) 

Question 

Is there a monotone non-computable function? 

Consider 

𝑓(𝑥) = {
𝜙𝑥(𝑥) + 1, 𝑖𝑓 𝜙𝑥(𝑥) ↓

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

we know that it is total and not computable. 

We can plot the function considering points where function exists and others where it doesn’t. So, anyway, 

it will stop when defined having only a finite number of points where the sum is finite again. 

 

 

 

 

Define 𝑔(𝑥) = ∑ 𝑓(𝑦)𝑦<𝑥  

- total 

 

- not computable ∀𝑥   𝑔(𝑥) ≠ 𝜙𝑥(𝑥) 

 

➔ 𝜙𝑥(𝑥) ↓         𝑔(𝑥) = ∑ 𝑓(𝑦) ≥ 𝑓(𝑥) = 𝜙𝑥(𝑥) + 1 → 𝑔(𝑥) > 𝜙𝑥(𝑥)𝑦≤𝑥  

 

➔ 𝜙𝑥(𝑥) ↑          𝑔(𝑥) ↑  ≠   𝜙𝑥(𝑥) 

 

→ 𝑔 𝑖𝑠 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑒, ∀𝑥, 𝑦     𝑥 ≤ 𝑦 

𝑔(𝑥) =∑𝑓(𝑧) ≤∑𝑓(𝑧) + ∑ 𝑓(𝑧)

𝑥<𝑧≤𝑦𝑧≤𝑥𝑧≤𝑥

=∑𝑓(𝑧) = 𝑔(𝑦)

𝑧≤𝑦
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- Alternative solution 

𝑔:ℕ → ℕ   

𝑔(𝑥) = {
𝑥 + 1, 𝑖𝑓 𝜙𝑥(𝑥) ↓ 𝑎𝑛𝑑 𝜙𝑥(𝑥) ≠ 𝑥 + 1

𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑖𝑓 𝜙𝑥(𝑥) = 𝑥 + 1 𝑜𝑟 𝜙𝑥(𝑥) ↑)
 

- 𝑔 total 

 

- 𝑔 not computable ∀𝑥 𝜙𝑥(𝑥) ≠ 𝑔(𝑥) 

 

o 𝑖𝑓 𝜙𝑥(𝑥) ↓       {
𝜙𝑥(𝑥) ≠ 𝑥 + 1 𝑡ℎ𝑒𝑛  𝑔(𝑥) = 𝑥 + 1 ≠ 𝜙𝑥(𝑥)

𝜙𝑥(𝑥) = 𝑥 + 1 𝑡ℎ𝑒𝑛  𝑔(𝑥) = 𝑥 ≠ 𝜙𝑥(𝑥)
 

 

o 𝑖𝑓 𝜙𝑥(𝑥) ↑  𝑡ℎ𝑒𝑛 𝑔(𝑥) ↓ ≠ 𝜙𝑥(𝑥) 

 

- 𝑔 is monotone ∀𝑥, 𝑦    𝑥 < 𝑦 

𝑔(𝑥) ≤ 𝑥 + 1 ≤ 𝑦 ≤ 𝑔(𝑦)  

Even simpler 

𝑔(𝑥) = {
𝑥 + 1, 𝑖𝑓 𝜙𝑥(𝑥) ↓

𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

- total and monotone 

 

- not computable 

 

𝜒𝐾(𝑥) = 𝑔(𝑥)−
.𝑥 = {

1, 𝑖𝑓 𝜙𝑥(𝑥) ↓
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

If 𝑔 were computable then 𝜒𝐾, composition of computable function would be computable → 𝑔 not 

computable.  

Exercise 

Is there a total computable function 𝑓: ℕ → ℕ 𝑠. 𝑡. 𝑔(𝑥) = ∑ 𝑓(𝑥)𝑦≤𝑥  is computable? 

Solution 

No: 𝑓(𝑥) = 𝑔(𝑥 + 1) −. 𝑔(𝑥) = ∑ 𝑓(𝑦)−.  ∑ 𝑓(𝑦)𝑦<𝑥𝑦<𝑥+1  

(𝑓(0) + 𝑓(1) +⋯𝑓(𝑥)) − (𝑓(0) + ⋯+ 𝑓(𝑥 − 1)) = 𝑓(𝑥)  this is what the sum is doing 

hence, if 𝑔 were computable, also 𝑓 would be computable, by composition. 

What about the case in which 𝑓 is not total? 

𝑓(𝑥) = {
↑, 𝑖𝑓 𝑥 = 0

𝜒𝐾(𝑥), 𝑖𝑓 𝑥 > 0
   𝑛𝑜𝑡 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 (𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒) 
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𝑔(𝑥) = ∑ 𝑓(𝑥)

𝑦<𝑥

= {
0, 𝑖𝑓 𝑥 = 0

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

= 𝜇𝑧. 𝑥    𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

Exercise 

Show that there is 𝑥 ∈ 𝑁 𝑠. 𝑡. 𝜙𝑥(𝑦) = 𝑥 −
. 𝑦 

Solution 

State precisely the Second Recursion Theorem and define 𝑔(𝑥, 𝑦) = 𝑥 −. 𝑦 computable 

By the smn-theorem, 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) for 𝑠:𝑁 → 𝑁 total computable and using the 2nd recursion 

theorem there is 𝑥0 𝑠. 𝑡. 𝜙𝑥0 = 𝜙𝑠(𝑥0) 

𝜙𝑥0(𝑦) = 𝜙𝑠(𝑥0)(𝑦) = 𝑔(𝑥0, 𝑦) = 𝑥0−
.𝑦 

20.4 SOLUTION OF THE EXERCISE ON RANDOM NUMBERS 
 

There is a video explaining that on Moodle of this year; for convenience, I’ll put this year, commented if 

possible.  

The informal way if having a number 𝑛 ∈ ℕ which is random if for every program which outputs 𝑛, 𝑃 is 

larger than 𝑛 show that 

- there are infinitely many random numbers 

- the property of being random is undecidable 

Formal view 

- program size |𝑃𝑒| = 𝑒 

 

- 𝑛 ∈ ℕ is random if for all programs 𝑒 ∈ ℕ 𝑠. 𝑡.  𝜙𝑒(0) = 𝑛 it holds 𝑒 > 𝑛 

1) there are infinitely many random numbers 

Recall that each computable function is computed by infinitely many programs. Hence, for each 𝑘 ∈ ℕ 

there is 𝑒1 < 𝑒2 < ⋯𝑒𝑘 𝑠. 𝑡. 𝜙𝑒𝑖 = ∅   𝑖 = 1,…𝑘 

|{𝜙𝑖(0) | 𝑖 ≤ 𝑒𝑘 ∧ 𝜙𝑖(0) ↓} | ≤ 𝑒𝑘 − 𝑘 

hence there are at least 𝑘 numbers 𝑛 ≤ 𝑒𝑘 which can’t be generated by programs 𝑒 < 𝑛 → these numbers 

are random. Since this holds for every 𝑘, there are infinitely many random numbers. 

2) 𝑅 = {𝑛 | 𝑛 𝑖𝑠 𝑟𝑎𝑛𝑑𝑜𝑚} is not recursive 

Assume 𝑅 to be recursive, i.e.  

𝜒𝑅(𝑛) = {
1, 𝑖𝑓 𝑛 ∈ 𝑅
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Define: 

𝑔(𝑛, 𝑥) = 𝑙𝑒𝑎𝑠𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 > 𝑛 = 𝜇𝑧 . 𝑧 ∈ 𝑅 𝑎𝑛𝑑 𝑧 > 𝑛 = 𝑛 + 𝜇𝑧. (𝑛 + 1 + 𝑧 ∈ 𝑅)  

computable. 
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By the smn-theorem, there is 𝑠: ℕ → ℕ total and computable 𝑠. 𝑡. 𝑔(𝑛, 𝑥) = 𝜙𝑠(𝑛)(𝑥) 

 

 

By the 2nd recursion theorem there is 𝑛0 ∈ 𝑁 𝑠. 𝑡. 𝜙𝑛0 = 𝜙𝑠(𝑛0) 

𝜙𝑛0(0) = 𝜙𝑠(𝑛0)(0) = 𝑔(𝑛0, 0) = (𝑙𝑒𝑎𝑠𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 > 𝑛0)  

hence 𝑛0 generates a random number > 𝑛0, contradiction! 

⇒ 𝑅 not recursive 

Note 𝑅 is r.e. 

𝑠𝑐𝑅(𝑛) = 𝟏(𝜇𝑡.⋁𝑆(𝑒, 0, 𝑛, 𝑡))  𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒

𝑛

𝑒=0

 

→ 𝑅 is not r.e.  
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21 TUTORING LESSONS 2023-2024 

This year tutoring lessons were recorded and can all be found here. 

21.1 TUTORING 1: PRIMITIVE RECURSION EXERCISES 
 

𝑖𝑠𝑞𝑟𝑡(𝑥) = ⌊√𝑥⌋ 

𝑥 = 25   |√25| = |5| = 5 

Note: This is based on this one exam (2nd appeal of 2022-2023 present on MEGA) 

 

1) 

 

This is based for primitive recursive functions (recursion, but kinda limited). 

𝑍(𝑥) = 0 

𝑆(𝑥) = 𝑥 + 1 

𝑥1, 𝑥2, 𝑥𝑛 → 𝑁 

This is the partial recursion (defined for zero and successor; every value depends on the previous one, 

because it’s defined by induction): 

𝑓(𝑥⃗, 0) = ⋯ 

𝑓(𝑥⃗, 𝑦 + 1) = ⋯ 

We want to write ⌊√𝑥⌋ with primitive recursive functions. The square root function mathematically can be 

defined as: 𝑦 = √𝑥 , 𝑦2 = 𝑥. We want to find the 𝑦 value eventually and do to that we use minimalisation 

(in this case it’s not unbounded, so there is no finite number of steps).  

Is there a way to bound values of 𝑦?  

Let’s say 𝑥 = 24, 𝑦 = 0, 𝑦2 = 0, 𝑦 = 1, 𝑦2 = 1… . 𝑦 = 4, 𝑦2 = 16 < 24, 𝑦 = 5, 𝑦2 = 25 > 24 

We know √𝑥 ≤ 𝑥 because we’re working with positive values. We search every value until we find 𝑥. We 

think for example, 𝑥 = 25, 𝑦 = 5.  

We observe that when 𝑥 changes, 𝑦 does too. 

𝑥 = 23, 𝑦 = 4 

https://drive.google.com/drive/folders/1lnkdXCCFG7fcyisEGwraoEGFpDGZaLhs
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𝑥 = 24, 𝑦 = 4 

𝑥 = 25, 𝑦 = 5 

𝑥 = 26, 𝑦 = 5 

To bound the search for 𝑦, consider the relationship between 𝑦 and 𝑥. As 𝑥 changes, 𝑦 changes as well. 

When 𝑥 increases, 𝑦 also increases, and vice versa. We want to see what happens after the current 𝑦. For 

example, (𝑦 + 1)2 = 25 (the same for 4 for 25 and 5 for 36). So, because it’s recursive, the square root it’s 

between 𝑦2 and (𝑦 + 1)2.  

Essentially, we need to cover a case 𝑦2 ≤ 𝑥 < (𝑦 + 1)2. In this case, you can see that (𝑦 + 1)2 changes 

when 𝑦 changes. So, the square root is between 𝑦2 and (𝑦 + 1)2. This means we need to find a 𝑦 where 𝑦2 

is less than or equal to 𝑥, but (𝑦 + 1)2 is greater than 𝑥. 

So, we want to prove: 

(𝑦 + 1)2 > 𝑥 

(𝑦 + 1) = 𝑥 → {0  (𝑦 + 1)2 ≤ 𝑥, 𝑥0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

To formally define the 𝑖𝑠𝑞𝑟𝑡 function, we can use minimalization. The minimalization process finds the 

smallest 𝑦 such that (𝑦 + 1)2 is greater than 𝑥. This can be expressed as: 

𝑖𝑠𝑞𝑟𝑡(𝑥) = 𝜇𝑦 < 𝑥 + 1. ((𝑦 + 1)2 > 𝑥) 

Another step is introducing the negated sign function, so 𝑠𝑔 which allows us to turn this condition into a 

binary value (1 for true and 0 for false).  

So, by using the negated sign function within the minimalization operator, you are effectively searching for 

the smallest 𝑦 for which the condition (𝑦 + 1)2 > 𝑥 becomes true, and this condition ensures that you find 

the largest 𝑦 such that 𝑦2 is less than or equal to 𝑥, which is the definition of the 𝑖𝑠𝑞𝑟𝑡 function. To 

combine everything properly: 

𝑖𝑠𝑞𝑟𝑡(𝑥) = 𝜇𝑦 < 𝑥 + 1. 𝑠𝑔((𝑦 + 1)2 > 𝑥) 

One can use division and we can assume they’re defined to use “You can define primitive recursiveness…”, 

for example: 

(𝑦 + 1)2 > 𝑥 (so, not the square root of x) 

𝑥

(𝑦+1)2
< 1 (so, the result of square root exists and is less than 1) 

𝑑𝑖𝑣(𝑥, (𝑦 + 1)2) (we use this to check if result is less than 1) 

We don’t need to use directly primitive recursion, but bounded minimalisation implies there is always a 

finite number which implies “everything is defined ≥ than the bound”. 
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So, we write:  

𝑓(𝑥, 𝑦) → 𝑓(𝑥, 0) = 𝑥  

𝑓(𝑥, 𝑦 + 1) = { 𝑓(𝑥, 𝑦)   𝑖𝑓 𝑓(𝑥, 𝑦) ≠ 𝑥,     𝑦   𝑖𝑓(𝑦 + 1)2 > 𝑥,    𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

(so, base case simply means 𝑥, the second case is “we didn’t find the square root yet”, the third one is just 

𝑥 with no root found).  

To define with bounded minimalisation, we write: 

𝑖𝑠𝑞𝑟𝑡(𝑥) = 𝑓(𝑥, 𝑥) 

(You're essentially saying, "Let 𝑦 be 𝑥 in the function f." This is equivalent to saying you're looking for the 

value of f when y is x) 

To assure to handle all cases for composition and make sure everything is computable, we use: 

𝑓(𝑥, 𝑦) = 𝑠𝑔(𝑥 − 𝑓(𝑥, 𝑦)) + 𝑠𝑔(𝑥 − 𝑓(𝑥, 𝑦)) ∗ (𝑦 ∗ 𝑠𝑔((𝑦 + 1)2 − 𝑥) + 𝑥 ∗ 𝑠𝑔((𝑦 + 1)2 − 𝑥)) 

(so, the sign function is just there to mean “binary variable” on the difference if it holds or not, while the 

negated sign does the same with opposite values. The middle product ensures that the function returns the 

value of 𝑦, while the last part does the opposite, so just checks if we have found the right root yet). 

2) 

 

𝑙𝑝   𝑏𝑖𝑔𝑔𝑒𝑠𝑡 𝑝𝑟𝑖𝑚𝑒 𝑑𝑖𝑣𝑖𝑠𝑜𝑟, 𝑃𝑥   𝑥 − 𝑡ℎ 𝑝𝑟𝑖𝑚𝑒 

The problem is that we’re using minimalisation. We need to find, given 𝑃𝑥 <  𝑥, a number 𝑦 𝑠. 𝑡. 𝑦 < 𝑃𝑦 <

𝑥. So, we note that minimizing to maintain the property of primes, such that 𝑥 is always bigger than 𝑥, so: 

𝜇𝑖 < 𝑥. (… ) 

With 

𝑦 = 𝑥 − 𝑖 

𝑃𝑦    𝑑𝑖𝑣𝑖𝑑𝑒 𝑥 

This approach explicitly checks the prime divisors of 𝑥 starting from 𝑝𝑥, then 𝑝𝑥−1, and so on, stopping at 

the first prime divisor found. 

We use the remainder function to obtain the prime number to check if 𝑥 is divisible by the prime number 

𝑃𝑦. When the remainder is zero, it means 𝑃𝑦 divides 𝑥.  

𝑟𝑒𝑚(𝑥, 𝑃𝑦) = 0 

This is the case for minimalisation needed and it happens. Thanks to this, as soon as we find the number, it 

simply stops. So, we’re looking for: 

𝑥 = 𝜇𝑖 < 𝑥. 𝑟𝑒𝑚(𝑥, 𝑃𝑥−1) 

(note 𝑃𝑥−1 = 𝑃(𝑥 − 1) so this is a function call). Everything is defined for 𝑃 by recursion (this is crucial for 

the approach because you need a way to generate prime numbers and ensure that they are available for 

the minimalization process): 

𝑃(𝑥 − 𝜇𝑖 < 𝑥. 𝑟𝑒𝑚(𝑥, 𝑃𝑥−1)) 
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Again, we use the sign to flip and obtain 1/0 for the edge cases, so: 

𝑙𝑝(𝑥) = 𝑃(𝑥 − 𝜇𝑖 < 𝑥. 𝑟𝑒𝑚(𝑥, 𝑃𝑥−1)) − 𝑠𝑔(𝑥 − 1) 

Actually, the program 𝑃 is defined for the recursive case, so 𝑥 − 𝑖 is the subscript; a proper form is: 

𝑙𝑝(𝑥) = 𝑃𝑥−𝑖(𝑥)(𝑥 − 𝜇𝑖 < 𝑥. 𝑟𝑒𝑚(𝑥, 𝑃𝑥−1)) − 𝑠𝑔(𝑥 − 1) 

The official solution counts the prime divisors, restricting the search for all the prime numbers (defines a 

function for counting these). Then, simply consider the cases where the count is zero and when the length 

is not, so using a negated sign function. This is as follows: 

 

 

 

 

 

 

Alternatively, a similar idea to the one we used is checking explicitly by recursion the prime divisors of 𝑥: 

 

This way, we define the smaller 𝑖(𝑥) as an existing value (hence, minimalisation) of the possibility (binary 

combination) of finding a prime number respecting this property by recursion dividing each time (hence, 

the division as said, but also the negated sign). 

 

 

Give the definition of 2𝑛:𝑁 → 𝑁, proving that this is primitive recursive. This exercise is based on the one 

above. So, define (thanks to zero and successor function): 

𝑑𝑜𝑢𝑏𝑙𝑒(0) = 0 

𝑑𝑜𝑢𝑏𝑙𝑒(𝑛 + 1) = 𝑠 (𝑠(𝑑𝑜𝑢𝑏𝑙𝑒(𝑛))) (doubling the value of 2𝑛, correctly stating this is equivalent of 

multiplying by 2) 

20 = 𝑠(𝑧, 0) 

2𝑛+1 = 𝑑𝑜𝑢𝑏𝑙𝑒(2𝑛) 

We need to decompose the function in natural terms. Specifically, 20 = 1, 2𝑛+1 = 2 ∗ 2𝑛 
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The basic building blocks for primitive recursive functions include: 

1. Zero function (𝑍(𝑥)): 𝑍(𝑥)  =  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. 

2. Successor function (𝑆(𝑥)): 𝑆(𝑥)  =  𝑥 +  1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. 

3. Projection functions (𝑃𝑟𝑜𝑗(𝑥, 𝑖)): 𝑃𝑟𝑜𝑗(𝑥, 𝑖)  =  𝑥[𝑖] 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 and for each natural number 𝑖 

The right solution is simply multiplying continuously by 2 recursively.  

 

 

 

 

 

 

We define the basic functions: 

- 
0

2
= 0 

- 
𝑛+1

2
= {

0+1

2
= 0,   

𝑛+1+1

2
=
𝑛

2
+ 1} 

 

Again: given the basic operations, we know we’re dividing, so it can be a good idea to use the remainder 

function for the division by 2 and then probably the negated sign one to check if the division correctly holds 

and gives a result. 

 

 

 

𝐴 = {2𝑛 − 1 |𝑛 ∈ 𝑁} 

𝑋𝐴(𝑥) = {1 𝑖𝑓 𝑥 ∈ 𝐴, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 
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We first define a primitive recursive function for 𝐴, something like: 

𝑓(0) = 1 

𝑓(2𝑦) = 1 𝑓𝑜𝑟 𝑦 > 0 

More generally, given this is defined over 𝑛 values, we observe 𝑎(𝑛) ∈ 𝑁, so the function is defined as 

follows: 

𝑎(0) = 0, 𝑎(𝑛 + 1) = 2 ∗ 𝑎(𝑛) + 1 

given for the last part this is formalizing 2𝑛 = 2 ∗ 𝑎(𝑛) and adding one to form the recursive case. 

One can possibly define a function which simply checks if we find exactly the 𝑛𝑡ℎ value needed to prove this 

property (sign/negated sign, here we use this one to immediately discard if we don’t find the right value) 

and simply check if the recursive value is different from the one before, this way proving the recursion to 

be consistent. 
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21.2 TUTORING 2: EXERCISES ON DIAGONALIZATION AND PARTIAL RECURSIVE FUNCTIONS 
 

We have the set of partial recursive functions 𝑅 which has composition/primitive recursion and 

zero/successor/transfer function.  

Also the set 𝑅0 has all of this but also in unbounded in 𝑛. So, 𝑅0 ⊆⊇ ? 𝑅 ∩ 𝑇𝑜𝑡 

It would be nice to have minimalisation in two ways, so: 

𝐶 = 𝑅, 𝑅 → 𝐶 → 𝑅. We start with something total, and we end with something total, which is the 

minimalisation.  

𝐶𝑃
1 (𝑥⃗, 𝜇𝑡, 𝑗𝑝

𝑛(𝑥⃗, 𝑡)) ∈ 𝑅0 (we need to recall this one, which allows us to define a vector of values which can 

be minimized and be bounded definitely) 

The general idea is to use step by step with 𝑓−1(𝑦) = 𝜇𝑥. 𝑓(𝑥) = 𝑦. 

So the idea is creating a function in 𝐶 and showing via inverse this is also in 𝐶. 

 

The idea for diagonalization is creating something that is total but shown as not computable. We want to: 

𝑓(𝑥) = 𝑓(𝑥 + 1) → find a function which has the property of an infinite amount not computable, but total 

What we’re saying is: there exists a number 𝜙𝑛 which is different from the other inputs, and it’s taken to 

show not computability.  

Take something like: 0 = 0 ≠ 𝜙𝑛(2) 0 0 …. 

𝑓(𝑥) =

{
 

 
0, 𝑖𝑓 𝑟𝑒𝑚(𝑥, 3) ≠ 2

0, 𝑖𝑓 𝜙𝑥−3
2
↑ 𝑎𝑛𝑑 𝑟𝑒𝑚(𝑥, 3) = 0

𝜙𝑥−3
2
+ 2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

𝜙𝑥−3
2

(𝑥) = ↑ 0  𝑎𝑛𝑑 𝑦, 𝑓𝑜𝑟 𝑦 + 1 

𝑓(3𝑛) = 𝑓(3𝑛 + 1) = 0 

We’re simply saying: “we want to make the input different over a specific value”. 

• The function is designed so that when 𝑥 is a multiple of 3 (3𝑛), 𝑓(𝑥) is set to 0, making it distinct. 

• This distinct value (0) for input 𝑥 = 3𝑛 is used to demonstrate non-computability. 

The general concept is to create a function with certain inputs (in this case, multiples of 3) that are 

distinctly different from the rest. These distinct inputs are chosen in such a way that their behavior 

showcases non-computability.  

It's a clever use of diagonalization to introduce distinctness into the function, making it appear non-

computable while ensuring its total definition. 
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Exercise 

𝑓 total non computable, 𝑖𝑚𝑔(𝑓) = {2𝑛 | 𝑛 ∈ 𝑁} ⇔ (1) non computable, (2) total (easy), (3) 𝑓(𝑥) needs to 

be a power of 2. 

𝑓(𝑥) = {

2 (𝑎𝑛𝑦 𝑣𝑎𝑙𝑢𝑒 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 2 𝑎𝑛𝑦𝑤𝑎𝑦), , 𝑖𝑓 𝜙𝑥(𝑥) ↑

2, 𝑖𝑓 𝜙𝑥(𝑥) ↓≠ 2

4,   𝑖𝑓𝜙𝑥(𝑥) ↓= 2

 

→ 𝑖𝑚𝑔(𝑓) ⊆ {2𝑛|𝑛 ∈ 𝑁} 

→ 𝑖𝑚𝑔(𝑓) = {2𝑛|𝑛 ∈ 𝑁} 

2𝑛 ≠ 𝜙𝑛(𝑥), 𝜙𝑥(𝑥) = 𝑛 

2𝑛 = 𝑛 

The values in the image grow faster and are different from each other: 
1

0
,
2

1
,
4

2
, 𝑒𝑡𝑐. This distinctness and the 

non-computable nature of 𝑓 make it challenging to list or generate the entire image of 𝑓. 

The exercise defines 𝑓(𝑥) based on the behavior of 𝜙𝑥(𝑥), which is the computation of a function indexed 

by x on input x. If 𝜙𝑥(𝑥) does not halt, 𝑓(𝑥) is set to 2. If 𝜙𝑥(𝑥) halts but doesn't equal 2, f(x) is set to 2^n, 

where n is the value of 𝜙𝑥(𝑥). If ϕ_x(x) equals 2, 𝑓(𝑥) is set to 4. 

Exercise 

𝑓 not computable, total, 𝑔(𝑥) =  ∏ 𝑓(𝑥)𝑦<𝑥  computable.  

(E.g. 𝑓(0), 𝑓(1), 𝑓(2)…𝑛𝑜𝑡 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒, 𝑓(0) ∗ 𝑓(1), 𝑓(0) ∗ 𝑓(1) ∗ 𝑓(2) 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒) 

Say for example: 
𝑔(𝑥)

𝑔(𝑥−1)
= 𝑓(𝑥) 

𝑓(0) = 0 → 𝑓(𝑥) = {

0, 𝑖𝑓𝑥 < 0

0, 𝑖𝑓 𝜙𝑥−1(𝑥) ↑

𝜙𝑥−1(𝑥) + 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

The key element related to diagonalization is the use of the expression 𝜙𝑥−1(𝑥) in the definition of 𝑓(𝑥). 

This expression represents the computation or evaluation of a function indexed by 𝑥 − 1 on input 𝑥. 

Specifically, it represents the behavior of some program 𝜙 indexed by 𝑥 − 1 when given the input 𝑥. 

The use of diagonalization is a critical part of the definition. It ensures that 𝑓(𝑥) is different from any 

computable function. This is achieved by defining 𝑓(𝑥) in a way that depends on whether the program 

𝜙𝑥−1(𝑥) halts or not. The fact that it includes a condition for when the program halts (adding 1 to the 

result) and when it doesn't (remaining 0) is what makes 𝑓(𝑥) non-computable. 
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21.3 TUTORING 3: SMN-THEOREM EXERCISES 
 

The smn-theorem allows us to partially apply arguments to function. 

The formal definition is: 

∀ 𝑚, 𝑛 ≥ 1, ∃𝑠 ∶ 𝑁𝑚+1 → 𝑁 𝑠. 𝑡. ∀𝑒 ∈ 𝑁, 𝑥 ∈ 𝑁𝑚, 𝑦 ∈ 𝑁𝑛 

You get a function 𝑠 total and computable 

|𝑊𝑠(𝑥)| = 2𝑥 

|𝐸𝑠(𝑥)| = 𝑥 

Usually, we can think a function with two arguments, something like 

𝑓(𝑥, 𝑦) = {
𝑞𝑡(2, 𝑦), 𝑦 < 2𝑥

↑   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Remember to be able to handle edge cases (e.g. when 𝑦 holds a value, being careful it is < 2𝑥). Let’s try to 

limit ourselves to the first 𝑥 values. Let’s try to define “something for all x”, which in this case might be the 

quotient function. This should work as follows: 

2𝑥

2
= 𝑥 for the 𝑦 part inside 𝑓(𝑥, 𝑦) and the function becomes 

2𝑥−1

2
= 𝑥 − 1 

The smn-theorem will give us, by construction: 

𝑆(𝑥)(𝑦) = 𝑓(𝑥, 𝑦) 

By construction we have: 

|𝑊𝑠(𝑥)| = |{𝑦 |𝑓(𝑥, 𝑦) ↓}|= |{𝑦 | 𝑦 < 2𝑥}| = 2𝑥 

|𝐸𝑠(𝑥)| = |{𝑞𝑡(2, 𝑦) |𝑦 < 2𝑥}|= |{𝑧 | 𝑧 < 𝑥}| = 𝑥 

Exercise 𝑆 function total and computable, with 

𝑊𝑠(𝑥,𝑦) = {𝑧 | 𝑥 ∗ 𝑧 = 𝑦} 

There is no condition the co-domain.  

We can define a function on three arguments in which we can bound all values here. 

𝑓(𝑥, 𝑦, 𝑧) = {
0, 𝑖𝑓 𝑥 ∗ 𝑧 = 𝑦

↑ ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

In this case, one can also try to take the definition by cases with partial recursion. It also uses unbounded 

minimalisation. We’re not defining a specific 𝑤 value, but just to get to our condition.  

𝜇𝑤. (𝑥 ∗ 𝑧 −. 𝑦) + (𝑦 −. 𝑥 ∗ 𝑧) 

Let’s give another example to define unbounded minimalisation: 

𝑔(𝑥) = {
2𝑥, 𝑖𝑓 𝑥 𝑚𝑜𝑑 3 = 1

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
= 2𝑥 + 𝜇𝑤. 𝑟𝑚(3, 𝑥) 
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Now for a slightly different function: 

𝑔(𝑥) = {

𝑥, 𝑖𝑓 𝑥 𝑚𝑜𝑑 2 = 0
2𝑥, 𝑖𝑓 𝑥 𝑚𝑜𝑑 3 = 1
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= 𝑥 ∗ 𝑠𝑔(𝑟𝑚(2, 𝑥)) + 2𝑥(𝑟𝑚(2, 𝑥) ∗ 𝑒𝑞(… ) + 𝜇𝑤 (𝑟𝑚(2, 𝑥) ∗ 𝑠𝑔(𝑒𝑞… ) 

 

 

 

Exercise 

𝑊𝑠(𝑥) = 𝑃 (𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟𝑠; 𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑤𝑜𝑟𝑑𝑠 {2𝑛 | 𝑛 ∈ 𝑁} 

|𝐸𝑠(𝑥)| = 2𝑥 

𝑓(𝑥) = {
𝑟𝑚(2𝑥,

𝑦

2
), 𝑖𝑓 𝑟𝑚(2, 𝑦) = 0

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

We want to consider 𝑦 can be an even number and we want to consider all cases in which is defined for 𝑦 

and < 2𝑥. What we want to achieve: 

𝑦 𝑒𝑣𝑒𝑛 ⇒  𝑦 = 2𝑛 ∀𝑛,
𝑦

2
=
2𝑛

2
= 𝑛 ∀𝑛 

We use the remainder to actually limit (thinking of a function plot) “all the possibilities to have it under 2𝑥).  

𝑊𝑆(𝑥) = {𝑦 |𝑟𝑚(2, 𝑦) = 0 𝑎𝑛𝑑 𝑥 ≠ 0} = {𝑦 | 𝑦 𝑒𝑣𝑒𝑛} = 𝑃 

|𝐸𝑆(𝑥)| = {|𝑚, 𝑛 (
𝑦

2
, 2𝑥 − 1)| 𝑦} = |{𝑚, 𝑛(𝑚, 2𝑥 − 1)|𝑛} = |{𝑚| 𝑚 ≤ 2𝑥 − 1}| = 2𝑥 

We use 𝑚, 𝑛 just because we want to reach values over the codomain.  

21.4 TUTORING 4: R.E. SETS  
 

We want to show the following is r.e. 

𝐴 = {𝑥 ∈ 𝑁 | |𝑊𝑥| ≥ 2} 

We define the set 𝐴, which is the set of functions in which the domain is ≥ 2: 

𝐴 = {𝑓 | |𝑑𝑜𝑚(𝑓)| ≥ 2} 

We’re saying that is 𝐴 is saturated, then it is r.e., which means 𝐴 = {𝑥 | 𝜙𝑥 ∈ 𝐴}. Given it’s a finite property, 

the set is r.e., so 𝐴 is not r.e.  

We prove the program halts in 𝑡 steps in two inputs (𝑥, 𝑦), so we give a program 𝐻 halting in those steps 

and the computation over an hypothetical 𝑧, which we minimize 𝑆(𝑥, 𝑦, 𝑧, 𝑡). We’re minimizing all the 

values at the same time, searching for the minimum after 𝑡 steps on the 𝑤 tuple.  

𝑠𝑐𝐴(𝑥) = 𝜇𝑤. 𝑠𝑔(𝐻(𝑥, (𝑤)1, (𝑤)2) ∗ 𝐻(𝑥, (𝑤)3, (𝑤)4)) 

We minimize for 0, that’s why we use the negated sign function, so we get: 

𝑥 𝑖𝑓 𝑚𝑜𝑑 2 = 0 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

2𝑥 𝑖𝑓𝑥 𝑚𝑜𝑑 2 ≠

0 𝑎𝑛𝑑 𝑥 𝑚𝑜𝑑 3 = 1  
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= 𝜇𝑤. 𝑠𝑔(𝐻(𝑥, (𝑤)1, (𝑤)2) ∗ 𝐻(𝑥, (𝑤)3, (𝑤)4)) 

We want to show the following is r.e. 

𝐴 = {𝑥 ∈ 𝑁 | 𝑊𝑥 ≤ 𝐸𝑥} = {𝑥 | 𝜙𝑥 ∈ 𝐴} 

A = {f | 𝑑𝑜𝑚(𝑓) ⊆ 𝑐𝑜𝑑(𝑓)} 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 ⇒ 𝑛𝑜𝑡 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 

In words: decide if a set is recursive or not depends on the nature of domain/codomain and possible 

reductions over the characteristic function of the halting problem 𝐾, which is not recursive. 

𝐾 ≤ 𝐴   𝑥 ∈ 𝐾 ⇔ 𝑓(𝑥) ∈ 𝐴 ⇒ 𝐴 not r.e. 

𝐴 ≤ 𝐾 → A is r.e. 

𝑥 ∈ 𝐾 (𝜙𝑥(𝑥) ↑) ⇔ 𝑔(𝑥) ∈ 𝐴   𝑊𝑔(𝑥) ≤ 𝐸𝑔(𝑥)  

We are looking for an index, so this is the smn-theorem, which is ℎ(𝑥, 𝑦) → 𝜙𝑔(𝑥)(𝑦) 

ℎ(𝑥, 𝑦) = {
𝑦, ¬𝐻(𝑥, 𝑥, 𝑦)

𝑦 + 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The point is that it differs “on at least one index”: 

𝜙𝑥(𝑥) [0 1 2     𝑛] 

𝑊𝑔(𝑥) = 𝑁 

𝐸𝑔(𝑥) = 𝑁 ∖ {𝑚} 

and eventually we get an index 𝑛 which was computed by the original program.  

𝜙𝑥(𝑥) ↑  ⇒  𝑊𝑔(𝑥) ⊆ 𝐸𝑔(𝑥) 

- 𝜙𝑥(𝑥) ↑ ⇒ 𝐻(𝑥, 𝑥, 𝑦) always finite 

⇒ ℎ(𝑥, 𝑦) = 𝜙𝑔(𝑥)(𝑦) = 𝑦  

𝑊𝑔(𝑥) = 𝑁 ⊆ 𝑁 = 𝐸𝑔(𝑥)  

- 𝜙𝑥(𝑥) ↓ ⇒ 𝑊𝑔(𝑥)⊈ 𝐸𝑔(𝑥) 

∃𝑚 ∀𝑚 ≥ 𝑛,𝐻(𝑥, 𝑥,𝑚)  

𝑊ℎ(𝑥) = 𝑁   

𝐸𝑔(𝑥) = {0 ≤ 𝑗 ≤ 𝑛 + 1} ∪ {𝑧 + 1 | 𝑧 ≥ 𝑛}   

𝑛 ∈ 𝑊𝑔(𝑥), 𝑛 ∉ 𝐸𝑔(𝑥)   

We want to know if the following is recursive or not (spoiler: it’s not) 

𝐴 = {𝑥 ∈ 𝑁 | 𝑊𝑥 ∩ 𝐸𝑥 = ∅} 

In a less fancy way, we can write: 

𝐴 = {𝑓 | 𝑑𝑜𝑚(𝑓) ∩ 𝑐𝑜𝑑(𝑓) = ∅}  𝐴 = {𝑥 ∈ 𝑁 | 𝜙𝑥 ∈ 𝐴} 

If we can prove i.e. 𝐴 is r.e., 𝐴 won’t be r.e (and viceversa holds).  

𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑤.𝐻(𝑥, 𝑦, 𝑡) ∧ 𝑆(𝑥, 𝑧, 𝑦, 𝑡)) 

also written, using the encoding in tuples, 
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𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑤.𝐻(𝑥, (𝑤)1, (𝑤)2) ∧ 𝑆(𝑥, (𝑤)3, (𝑤)4, 𝑡)) 

if ∃𝑦 𝑠. 𝑡. then 𝑦 ∈ 𝑊𝑥  and 𝑠. 𝑡. 𝑦 ∈ 𝐸𝑥  

⇒ 𝑦 ∈ 𝑊𝑥 ∩ 𝐸𝑥 ⇒ 𝑊𝑥 ∩ 𝐸𝑥 ≠ 0 

⇒ 𝐴 𝑖𝑠 𝑟. 𝑒.  and so 𝐴 is not recursive and is not r.e.  

21.5 TUTORING 5: R.E. SETS AND REDUCTION  
 

We want to know if the set is recursive/r.e. (this exercise is from the exam of last year): 

𝐵 non empty set, finite, 𝐴 = {𝑥 | 𝐸𝑥 ∩ 𝐵 ≠ 0} 

The set is not recursive, because the codomain intersected with 𝑥 is not defined. 

𝐴 = {𝑓 | 𝑐𝑜𝑑(𝑓) ∩ 𝐵 ≠ 0} 

𝐴 = {𝑥 | 𝜙𝑥 ∈ 𝐴} 

Using Rice’s theorem, the set is not recursive. 

We can also use an index 𝑏 ∈ 𝐵 having 𝑔(𝑥) = 𝑏 = 𝜙𝑏(𝑥), 𝑒 ∈  𝐴, 𝐴 ≠ 0 

We give the empty function, which always diverges ℎ(𝑥) ↑. 𝜙𝑒 = ℎ, 𝑒1 ∉ 𝐴, 𝐴 ≠ 𝑁. 

Now: the set 𝐴 is not recursive. We want to understand if it is r.e, for example checking if 𝑥 is in the set.  

Proving it is r.e., we show the semi-characteristic function, searching for a specific value: 

𝑠𝑐𝐴(𝑥) = 𝜇𝑧(…) 

There’s gotta be an element in the intersection: 𝑦 ∈ 𝐸𝑥  𝑎𝑛𝑑 𝑦 ∈ 𝐵. We use the function if another one 

halts in a number of steps 𝐻 and 𝑆, computed on the same value (which has as a first argument the 

function computed, specifically the index, on which input 

𝜙𝑥(𝑤) = 𝑦 

𝑆(𝑥, 𝑤, 𝑦, 𝑡) 

Use the problem conditions: given the set is finite, we use the conditions in our search to find eventually 

some elements (for example (𝑦 = 𝑏1) ∨ (𝑦 = 𝑏2) ∨ … (𝑦 = 𝑏𝑛). We use 𝑤 as a tuple of three elements 

(ℎ = (𝑧, 𝑦, 𝑡) 

𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑤. 𝑆(𝑥, (𝑤)1𝑦, (𝑤)3) ∧ (𝑦 ∈ 𝐵)) 

This will terminate “if there is such 𝑦”. We put the 1 because the semicharacteristic function has to return 

1. Given there is semicharacteristic function, 𝐴 is r.e.  

We need to think still about 𝐴. This is not recursive. Also it is not r.e., then 𝐴 would be recursive, but it is 

not. Starting from finite and total, we have everything done.  
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Other exercise: 

𝑓 total computable, 𝐴 = {𝑥 | 𝑥 ∈ 𝑓(𝑊𝑥) ∪ 𝐸𝑥 

(where 𝑓(𝑊𝑥) can mean that, having a set 𝐵, 𝑓(𝐵) = {𝑓(𝑦) | 𝑦 ∈ 𝐵}) 

We cannot apply Rice theorem, given there are not only domain and codomain, but also 𝑥.  

Let’s start from the definition: 𝑥 ∈ 𝑓(𝑊𝑥) ∨ 𝑥 ∈ 𝐸𝑥 and so it is computable as a search.  

We rewrite the condition simplifying bit by bit: 

𝑥 ∈ {𝑓(𝑦) | 𝑦 ∈ 𝑊𝑥} 

𝑥 = 𝑓(𝑦) ∧ 𝑦 ∈ 𝑊𝑥 

So, the function would be computable step by step. 

Consider something that gives 𝑥 in output, so 𝑥 ∈ 𝐸𝑥, with 𝜙𝑥(𝑧) = 𝑥 

We want the function 𝑥 to stop with input 𝑧 with 𝑡 steps, so 𝑆(𝑥, 𝑧, 𝑥, 𝑡).  

The function will stop eventually, so 𝑦 ∈ 𝑊𝑥, given 𝑥 is total, so 𝜙𝑥(𝑦) ↓, so 𝐻(𝑥, 𝑦, 𝑡). Again, 𝑤 represents 

a tuple. We check the 𝑦 (so, the third element in tuple, given 𝑤 = (𝑧, 𝑡, 𝑦), halting effectively in 𝑡 steps over 

the search of 𝑦. 

𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑤. 𝑆(𝑥, (𝑤)1, 𝑥, (𝑤)2) ∨ ((𝑥 = 𝑓((𝑤)3)) ∧ 𝐻(𝑥, (𝑤)3, (𝑤)2)) 

The set is r.e.; we don’t know if it is recursive or not. We ask then about the complement of 𝐴, so 𝐴. If is it 

not r.e., we use a reduction or use Rice-Shapiro. 

We assume the function is computable 𝑥 = 𝑓(𝑦), and we use an index 𝑒 such that 𝑓 = 𝜙𝑒 , in this way 

𝜙𝑒(𝑦) = 𝑥.  

We know 𝐴 not r.e., so 𝐶 not r.e. know 𝐶 ≤ 𝐴. This way 𝑥 ∈ 𝐶 ⇔ 𝑠(𝑥) ∈ 𝐴.  

There is a function which returns the index of another function, which is in this case 𝜙𝑠(𝑥)(𝑦), which uses 

the smn-theorem. So, there is a function of two arguments which exists, call it 𝑠, ∃𝑠 total computable 

𝑠. 𝑡. 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦). To represent it, we use the negation of 𝐾, so negation of the halting set, which is 

𝐾. If 𝑥 ∈ 𝐾 it means that 𝜙𝑥(𝑥) ↑ ⇒ 𝑠(𝑥) ∈ 𝐴 ⇔ 𝑠(𝑥) ∉ 𝐸𝑠(𝑥) ∧ 𝑠(𝑥) ∉ 𝑓(𝑊𝑠(𝑥)). 

The idea is 𝐸𝑠(𝑥) = 𝑊𝑠(𝑥) = ∅. So 𝑥 ∉ 𝐾 (so 𝑥 ∈ 𝐾), we have 𝜙𝑥(𝑥) ↓ ⇒ 𝑠(𝑥) ∈ 𝐴 

This says 𝑠(𝑥) ∈ 𝑓(𝑊𝑠(𝑥)) ∪ 𝐸𝑠(𝑥). The idea is 𝐸𝑠(𝑥) = 𝑁, so it does not compute when undefined, 

otherwise there is a function which is defined for all natural numbers (so, identity function).  

𝑔(𝑥, 𝑦) = {
↑, 𝜙𝑥(𝑥) ↑

𝑦, 𝜙𝑥(𝑥) ↓
= {
𝑦, 𝑖𝑓 𝜙𝑥(𝑥) ↓ = 𝑠𝑐𝑘(𝑥)

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

The other condition 𝑠(𝑥) ∈ 𝐴 ⇒ 𝜙𝑥(𝑥) ↑ is not so easy to treat and does not make us conclude anything 

special. Given the function is defined and it is 1 as a value, we will get 𝑦 ∗ 𝑠𝑐𝐾(𝑥). 

𝜙𝑠(𝑥) can converge and 𝜙𝑥(𝑥) ↓ 𝑥 ∈ 𝐾 = 𝑦 otherwise diverges and 𝜙𝑥(𝑥) ↑, 𝑥 ∈ 𝐾 =↑, proving this is the 

actual reduction function.  
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If the function is in the complement set, it is not in the other and we want to understand if it is in the union 

or not. So, 𝑥 ∈ 𝐴, 𝑥 ∉ 𝐴,¬(𝑥 ∈ 𝑓(𝑊𝑥) ∪ 𝐸𝑥), 𝑥 ∉ 𝑓(𝑊𝑥) ∧ 𝑥 ∉ 𝐸𝑥 

The search “will never end”: 𝜇𝑦. 𝜙𝑥(𝑦) = 𝑥, ∀𝑦, 𝜙𝑥(𝑦) ↑ 𝑜𝑟 𝜙𝑥(𝑦) ≠ 𝑥 

Other exercise: 

A = {𝑥 | 𝜙𝑥  𝑡𝑜𝑡𝑎𝑙}.  Is this recursive/r.e. and also the complement.  

We get the set of computable functions 𝐴 = {𝑓 | 𝑓 𝑡𝑜𝑡𝑎𝑙} and we have A = {x | 𝜙𝑥 ∈ 𝐴}. Because of Rice, 

this is not recursive. To show it is total, we would need to do it on every possible input.  

Again, we use reduction. 

𝐾  ≤𝑚 𝐴  

𝑥 ∈ 𝐾 ⇔ 𝑠(𝑥) ∈ 𝐴 

𝜙𝑠(𝑥) = 𝑔(𝑥, 𝑦) = {
0, ¬𝐻(𝑥, 𝑥, 𝑦)

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
= 𝜇𝑤.𝐻(𝑥, 𝑥, 𝑦) 

by smn-theorem 

𝑥 ∈ 𝐾,𝜙𝑥(𝑥) ↑ ⇒ 𝑠(𝑥) ∈ 𝐴, 𝜙𝑠(𝑥) 𝑡𝑜𝑡𝑎𝑙 

𝑥 ∉ 𝐾 (𝑥 ∈ 𝐾) ⇒ 𝑠(𝑥) ∉ 𝐴, 𝜙𝑠(𝑥) 𝑛𝑜𝑡 𝑡𝑜𝑡𝑎𝑙 𝑎𝑛𝑑 ↑ 𝑎𝑓𝑡𝑒𝑟 𝑠𝑜𝑚𝑒 𝑝𝑜𝑖𝑛𝑡 

The deduction from the first of the two hypotheses is that the function does not halt and when it does, 

there is an element only after some point 𝑡0, so ¬𝐻(𝑥, 𝑥, 𝑦) and 𝐻(𝑥, 𝑥, 𝑡0) and so 𝑔(𝑥, 𝑦) ↑.  

(This is only the first direction: 𝐴 is not r.e.) 

For the complement, we want to understand if the set does or does not halt form some input and the idea 

is to leverage then 𝐴 not r.e, because the search requires ∀ steps ¬𝐻(…).  

Again, we use as a reduction 𝐾 ≤𝑚 𝐴, so: 

- 𝑥 ∈ 𝐾,𝜙𝑥(𝑥) ↑ 𝑠(𝑥) ∈ 𝐴, 𝜙𝑠(𝑥) ↑ always undefined 

- 𝑥 ∈ 𝐾,𝜙𝑥(𝑥) ↓, 𝑠(𝑥) ∈ 𝐴, 𝜙𝑠(𝑥) ↓ total 

And so 𝑔(𝑥, 𝑦) = 𝑠𝑐𝐾(𝑥).  

Consider also, then if 𝐴 is r.e., also 𝐴 is r.e., then both are recursive. In all other combinations, they will not 

be recursive.  
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21.6 TUTORING 6: R.E./RICE-SHAPIRO EXERCISES 
 

We start from this exercise asked by the audience: 

If we use bounded minimalization, there will always be an answer (correct bound) for the set: 

𝜇𝑤 < 𝑥2. 𝑧 > 1 ∧ 𝑥 = 𝑦𝑧 

Considering: 𝑦 < 𝑥, 𝑧 < 𝑥 and we see 𝑧 = 𝑟𝑒𝑚(𝑥,𝑤) and 𝑦 =
𝑤

𝑥
 

Substituting 𝑥 = 𝑦𝑧+2 to have only mathematical operations, we have: 

= 𝜇𝑤 < 𝑥2 

𝑥 = (
𝑤

𝑥
)
𝑟𝑒𝑚(𝑥,𝑤)+2

 

|𝑥 − (
𝑤

𝑥
)
𝑟𝑒𝑚(𝑥,𝑤)+2

| 

The important part is that we are trying to find an encoding such that there is only one value which can be 

found.  

Given we are looking for it, we define: 

𝑠𝑔 (𝑥2 − (
𝑤

𝑥
)
𝑟𝑒𝑚(𝑥,𝑤)+2

) 

This approach above it is linear logic, this following one is mathematic: 

𝑓(𝑥, 𝑧) = 𝑥 − 𝜇𝑧 ≤ 𝑥.¬(𝑥 = 𝑦2) 

𝑔(𝑥) = 𝑥 − 𝜇𝑧 ≤ 𝑥. 𝑠𝑔(𝑓(𝑥, 𝑧 + 2)) 

We define, given 𝑓 is computable, we say 𝐴𝑓 is r.e. 

We write the semicharacteristic function as follows: 

𝑠𝑐𝐴(𝑦) = {
1, 𝑖𝑓 ∃𝑥. 𝜙(𝑥, 𝑓(𝑥)) − 𝑦

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

= 𝟏(𝜇𝑥. 𝜋(𝑥, 𝑓(𝑥) = 𝑦) 

Trying the proof on the other side: 

𝐴𝑓 is r.e. ⇒ 𝑓 computable 

𝑓(𝑥) = 𝑦 ⇔ 𝜋(𝑥, 𝑦) ∈ 𝐴𝑓 

→ search 𝑦 -→ compute 𝑠𝑐𝐴(𝜋(𝑥, 𝑦)) → if it halts, return 𝑦 
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The search can actually be phrased like (index of function, input of the function, how many steps and take 

the first component 

𝑓(𝑥) = 𝜇𝑤.𝐻(𝑒, 𝜋(𝑥, (𝑤)1), (𝑤)2)1 

 

𝑠𝑐𝐴 computable and there exists 𝑒 s.t. 𝜙𝑒 = 𝑠𝑐𝐴 

 

 

 

The set is saturated, hence this is not recursive. Specifically: 

𝐴 = {𝑓 | 𝑑𝑜𝑚(𝑓) ∪ 𝑐𝑜𝑑(𝑓) = 𝑁} with A = {𝑥 ∈ 𝑁 | 𝜙𝑥 ∈ 𝐴} 

𝐴 saturated ⇒ not recursive 

Idea: This is not r.e. and we need to look at the complement 

𝐴 = {𝑥 ∈ 𝑁 | 𝑊𝑥 ∪ 𝐸𝑥 ≠ 𝑁 } 

→ ∃𝑦 ∉ 𝑊𝑥 ∪ 𝐸𝑥 ⇒ 𝑦 ∉ 𝑊𝑥 ∧ 𝑦 ∉ 𝐸𝑥 

𝐴 is r.e. ⇒ ∀𝑓 (𝑓 ∈ 𝐴 ⇔ ∃𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∈ 𝐴) 

1) ∃𝑓 ∉ 𝐴 ∧ 𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∈ 𝐴 

2) ∃𝑓 ∈ 𝐴, ∀𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∉ 𝐴 

Case 1 does not work: 𝑓 ∉ 𝐴, 𝜃 ⊆ 𝑓 → ∃𝑦 ∈ 𝑑𝑜𝑚(𝑓) ∧ 𝑦 ∉ 𝑐𝑜𝑑(𝑓) 

Let’s try with the second case: 

𝑓 ∈ 𝐴, 𝜃 ⊆ 𝑓, 𝑑𝑜𝑚(𝑓) ∪ 𝑐𝑜𝑑(𝑓) = 𝑁,𝑤ℎ𝑒𝑟𝑒 𝑑𝑜𝑚(𝑓) 𝑖𝑠 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒, 𝑤ℎ𝑖𝑙𝑒 𝑑𝑜𝑚(𝜃) 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒  

Let 𝑓 = 𝑖𝑑, 𝑑𝑜𝑚(𝑓) = 𝑁 ⇒ 𝑑𝑜𝑚(𝑓) ∪ 𝑐𝑜𝑑(𝑓) = 𝑁 ⇒ 𝑓 ∈ 𝐴 

Consider 𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒 ⇒ 𝑑𝑜𝑚(𝜃) 𝑓𝑖𝑛𝑖𝑡𝑒, 𝑐𝑜𝑑(𝜃) 𝑓𝑖𝑛𝑖𝑡𝑒 ⇒ 𝑑𝑜𝑚(𝜃) ∪ 𝑐𝑜𝑑(𝜃) 𝑓𝑖𝑛𝑖𝑡𝑒 ≠ 𝑁 ⇒ 𝜃 ∉ 𝐴 

Let’s prove it for all conditions for the second part. 

𝑓 ∉ 𝐴  (𝑓 ∈ 𝐴)  𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∈ 𝐴 

𝑓 = 𝑖𝑑 ∈ 𝐴 

We use the empty function, 𝜃 = ∅ (a function which “as much undefined as possible”), 𝜃 ∈ 𝐴 and so by 

Rice-Shapiro, this is not r.e.  
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We argue this is not r.e. and we will use Rice-Shapiro. 𝐴 r.e., 𝜃 = ∅ 

21.7 TUTORING 7: R.E. AND REDUCTIONS 
Consider: 

𝑓(𝑥) = {
𝜙𝑥(𝑥) + 1, 𝜙𝑦(𝑦) ↓ ∀𝑦 ≤ 𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

To be complete, this can be written as 𝜇𝑤. (𝑠𝑔(𝑥, 𝑥, (𝑤)1, (𝑤)2) ∗ 𝑠𝑔(1 − 𝑥)) (not necessary) 

So, the reasoning would be: 

𝑥 = 0   𝜙0(0) ↓ 

𝑥 = 1   𝜙0(0) ↓  ∧   𝜙1(1) 

𝑥 = 2   𝜙0(0) ↓  ∧   𝜙1(1) ∧   𝜙2(2) 

Let 𝑖 𝑠. 𝑡. 𝜙𝑗(𝑖) ↓ ∀𝑗 < 𝑖 𝑎𝑛𝑑 𝜙𝑖(𝑖) ↑ and you can write: 

𝑓(𝑥) = {
𝜙𝑥(𝑥) + 1, 𝑖𝑓 𝑥 < 𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Consider the reduction 𝐾 ≤𝑚 𝐵 

𝑥 ∈ 𝐾 ⇔ 𝑓(𝑥) ∈ 𝐵 

This can be used say with 𝐵 = {𝑥 | 𝜙𝑥  𝑖𝑛𝑐} which means 𝑦 < 𝑧 𝑖𝑛 𝑑𝑜𝑚(𝜙𝑥) 𝑎𝑛𝑑 𝜙𝑥(𝑦) < 𝜙𝑥(𝑧) 

𝑓(𝑥) = {
𝑦, 𝑖𝑓 ¬𝐻(𝑥, 𝑥, 𝑦)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Is there a total computable function 𝑓 such that 𝐷 = {𝑥 ∈ ℕ | 𝑓(𝑥) ≠ 𝜙𝑥(𝑥)} is finite? 

We can see it as: 

𝑓(𝑥) =

{
 
 

 
 
𝑎1, 𝑖𝑓 𝑥 = 𝑥1
2, 𝑖𝑓 𝑥 = 𝑥2

…
𝑎𝑛, 𝑖𝑓 𝑥 = 𝑥𝑛
𝜙𝑥(𝑥),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

With 𝑎𝑖 ≠ 𝜙𝑥(𝑥) because it’s built to be different from every value.  

We have two functions 𝑓, 𝑔 total and computable and find 

𝑓(𝑥) ≠ 𝜙𝑥(𝑥) ∀𝑥 ∈ 𝐾  

𝑔(𝑥) ≠ 𝜙𝑥(𝑥) ∀𝑥 ∉ 𝐾  

Consider 𝑓 = 𝜙𝑒  and 𝑓(𝑒) ≠ 𝜙𝑒(𝑒) and so 𝑓 cannot be computable. When 𝑓(𝑒) ↑ it means 𝑓 ∈ 𝐾 and so 

𝑓(𝑒) diverges, because 𝑓 is total.  

For 𝑔(𝑒) ↓ ≠ 𝜙𝑒(𝑒) ↑ 𝑒 ∉ 𝐾   𝑔(𝑥) ↓ ∀𝑥 ∈ 𝐾 ⇒ 𝑔 any total function 
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𝑓 almost total 𝑓(𝑥) ↑  

𝑓(𝑥) ↑ only if 𝑥 ∈ 𝐷 finite 

𝐴 = {𝑥 | 𝜙𝑥  𝑎𝑙𝑚𝑜𝑠𝑡 𝑡𝑜𝑡𝑎𝑙}  

𝐴 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑠𝑜 𝑦𝑜𝑢 ℎ𝑎𝑣𝑒 𝐴 = {𝑥 | 𝜙𝑥  𝑎𝑙𝑚𝑜𝑠𝑡 𝑡𝑜𝑡𝑎𝑙} = {𝑥 | 𝜙𝑥 ∈ 𝒜}  

By Rice-Shapiro: 

- 𝐴 is not r.e. because 𝑖𝑑 ∈ 𝐴 but 𝜃 = ∅ ∉ 𝐴.  

𝐴 = {𝑥 | 𝜙𝑥  𝑛𝑜𝑡 𝑎𝑙𝑚𝑜𝑠𝑡 𝑡𝑜𝑡𝑎𝑙} = {𝑥 | 𝜙𝑥(𝑦) ↑ 𝑓𝑜𝑟 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑦}  

- 𝐴 is not r.e.  

𝑖𝑑 ∈ 𝐴, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒 ⊆ 𝑖𝑑 → 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑦, 𝜃(𝑦) ↑ ⇒ 𝜃 ∈ 𝐴  

21.8 TUTORING 8: ALL KINDS OF EXERCISES 
 

Let’s try to define the following function by primitive recursion: 

𝐴𝑛𝑑(𝑥, 𝑦)  

𝐴𝑛𝑑(0,0) = 0, 𝐴𝑛𝑑(0,1) = 0, 𝐴𝑛𝑑(1,0) = 0, 𝐴𝑛𝑑(1,1) = 1  

We can define: 

{
𝐴𝑛𝑑(𝑥, 0) = 0

𝐴𝑛𝑑(𝑥, 𝑦 + 1) = 𝑥
 

Underlying, there would be two functions, as follows: 

{
𝑓(0) = 0

𝑓(𝑥 + 1) = 0
  and  {

𝑔(0) = 0

𝑔(𝑥 + 1) = 1
 

We can take for example the least power of two, then representing it as a set: 

𝑙𝑠𝑃𝑜𝑤2(𝑥) = 𝜒𝐴 = 𝜇𝑦 

𝐴 = {2𝑦 | 𝑦 ∈ ℕ} 

It depends on the value you are trying to bound upon, consider: 

𝑥 = 2𝑦 < 2𝑥 

1   20 < 21   2    21 < 22     4  22 < 23 

Consider |2𝑦 − 𝑥| is 0 if 2𝑦 = 𝑥, 1 ≠ 0 if 2𝑦 ≠ 𝑥. 

We can also have 𝜇𝑦 < 𝑥 |2𝑦 − 𝑥| which can be seen as 𝑦 𝑖𝑓 2𝑦 = 𝑥 → 1, 𝑥 𝑖𝑓 𝑛𝑜 𝑦 → 0 

So, to consider all cases, we also subtract the value we are looking for, which is 𝑥 and it becomes, using the 

sign function. 

𝜒𝐴 = 𝑠𝑔|(𝜇𝑦 < 𝑥) ∗ |2
𝑦 − 𝑥|) − 𝑥 or also 𝑠𝑔(𝑥 −. 𝜇𝑦 < 𝑥 ∗ |2𝑦 − 𝑥|) 
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Is the function: 

𝑓(𝑥) = {
𝜙𝑥(𝑥 + 1) + 1, 𝑖𝑓 𝜙𝑥(𝑥 + 1) ↓

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

computable? 

Nope, because it’s a basic diagonalization argument; consider for instance function ℎ(𝑥) = 𝑓 and by usual 

diagonalization ℎ(𝑥 + 1) = 𝑓(𝑥) ≠ 𝜙𝑥(𝑥 + 1) and also 𝑓(𝑥 + 1) ≠ 𝜙𝑥+1(𝑥) 

 

Define a total non-computable function 𝑓 s.t. 𝑓(𝑥) ≠ 𝜙𝑥(𝑥) on a single 𝑥. 

𝑓(𝑥) = {
𝜙𝑥(𝑥), 𝑖𝑓𝑥 ≠ 𝑥0

𝑦0, 𝑥 = 𝑥0
 

Considering 𝑦0 = 𝜙𝑥(𝑦0). Also define: 

𝑓(𝑥) = {

𝜙𝑥(𝑥), 𝑖𝑓 𝜙𝑥(𝑥) ↓ ∧ 𝑥 ≠ 𝑥0
𝑦0,                𝑖𝑓 𝜙𝑥(𝑥) ↓ ∧ 𝑥 = 𝑥0

𝑔(𝑥), 𝑖𝑓 𝜙𝑥(𝑥) ↑

 

(so, a diagonalization argument)  
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22 MANY SOLVED EXERCISES WITH FULL COMMENTARY 

Premise 

The exercises solved here are carefully revised, often with professor solution, other times from old tutors, 

other times solved by me and revised as precisely as possible, both in notation and writing. Here, many 

more exercises were added looking at past exams, so this can serve as a complement to the good 

“exercises.pdf” given by the professor.  

Here, many exercises were either solved thanks to old tutorings or translated from Italian solutions (mostly 

complete). Some exercises solved by the old tutor until 21/22 are present (just enter with @unipd mail) 

here (with full tutoring lessons and solved exercises). Tutorings of 23/24 are instead present here. 

 All sections and subsections are named following the same names in the Moodle PDF subsections. Given 

the overall quality of this file and a single person behind of it, I think you would not complain anyway. 

22.1 URM MACHINES 
Note: this one is for partial exams. Useful to understand how to use induction, not for much else.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://drive.google.com/drive/folders/1xQT4McVttAPNP_PXoeQivZOaeu9yz6WF?usp=sharing
https://drive.google.com/drive/folders/1lnkdXCCFG7fcyisEGwraoEGFpDGZaLhs
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Reading the text carefully, it seems the only difference present is a jump only when a certain condition 

happens: this is intended, as jump and successor are replaced with a new instruction which increments a 

register only if something happens. This can also be encoded as a jump to a subroutine which actually 

combines the full jump/successor instruction all in one. 

Let’s check this one by one: 

- 𝐶 ⊆ 𝐶′: trivial, as every single instruction of 𝐶 can be easily encoded in the other, simply not using 

𝐽𝐼(𝑚, 𝑛, 𝑡). This can be alternatively encoded as a jump to a subroutine which combines, as said, 

both jump and successor 

𝑖1: 𝑆(𝑚) 

𝑖1 + 1: 𝐽(𝑚, 𝑛, 𝑡) 

- 𝐶′ ⊆ 𝐶: as they both contain the same instruction length, given they’re both close under 

composition and primitive recursion, the jump will make us intuitively “stay under the 𝐶 class”, 

simply by replacing the next instruction with another jump. Because the successor function is 

defined, this can be easily encoded with the new jump instruction, so instead of having 𝐼𝑗: 𝑆(𝑛), 

you can have 𝐼𝑗: 𝐽𝐼(𝑛, 𝑛, 𝑗 + 1). 
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Any 𝑈𝑅𝑀∗ machine can be simulated by a standard URM machine. To do this, we simply replace each 

𝐽𝑆(𝑚, 𝑛, 𝑡) instruction with the following sequence of instructions: 

𝐽(𝑚, 𝑛, 𝑙) 

𝑆(𝑚) 

𝐽(𝑙, 𝑡, 𝑡) 

Or even simply: 

𝐽(𝑚, 𝑛, 𝑡) 

𝑆(𝑚) 

This sequence of instructions will compare the contents of registers 𝑚 and 𝑛, and if they coincide, it will 

jump to instruction 𝑡. Otherwise, it will increment the 𝑚𝑡ℎ register and continue with the next instruction. 

Therefore, any function that can be computed by a 𝑈𝑅𝑀∗ machine can also be computed by a standard 

URM machine. 

The inclusion is not strict, because while you can somehow make the jump, you cannot make the successor, 

because you will have to both modify the content of register and then moving to next instruction; we can 

make the first one, but not the second one. So, 𝑈𝑅𝑀∗ cannot properly encode 𝑈𝑅𝑀. 
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Let’s make this exercise discussing the usual two-way implication.  

- Let’s start considering 𝐶′ ⊆ 𝐶, which tries to encode the new URM machine, call it 𝑈𝑅𝑀𝐴𝐶  inside 

the normal URM. The addition can be easily replaced by a jump to the next instruction in which we 

are trying to reach the successor of 𝑚 and for the first value possible after the sum. 

We consider replacing 𝐴(𝑚, 𝑛) with  jump to the following subroutine, where 𝑥 is the following index yet to 

be reached by computation: 

𝑆𝑈𝐵:   𝐽(𝑛, 𝑥, 𝑖 + 1) 

𝑆(𝑚) 

𝑆(𝑞) 

𝐽(1,1, 𝑆𝑈𝐵) 

- For the sign instruction, this can be encoded to a jump to the following subroutine 

𝑆𝑈𝐵:      𝐽(𝑛, 𝑥, 𝑗 + 1) 

𝑍(𝑛) 

𝑆(𝑛) 

𝐽(1, 1, 𝑗 + 1) 

Formally, we are trying to prove that the program 𝑃′computes the same function of 𝐶′ s.t. 𝑓𝑝
′(𝑘) = 𝑓𝑝

′(𝑘) 

and it holds for induction. 

- The base case ℎ = 0 is trivial, given ℎ = ℎ + 1 and it is trivial to conclude 

- The inductive case is such that the length of the program is able to contain inductively all of the 

instructions, such as: 

𝑆𝑇𝐴𝑅𝑇:  𝐼1 

𝐽(1,1, 𝑆𝑈𝐵) 

𝑙(𝑃):  𝐼𝑙(𝑃) 

𝐸𝑁𝐷 
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This holds for each subroutine is encoded inside of it and the program 𝑃′′ is s.t. 𝑓𝑝
′′(𝑘) = 𝑓𝑝

𝑘 and contains 

the analogous instructions as the first one.  

Now, for the remaining implication, 𝐶 ⊈ 𝐶′, because there’s potentially the risk, thanks to the sign 

instruction, that all instructions could become 0, and so every single register.  

Basically the same of this one from 2018-11-12: 
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For the converse implication 𝐶 ⊆ 𝐶∗ observe, analogously, 𝑍(𝑛) and 𝑆(𝑛) can be encoded inside the 

modified machine. More precisely, given a program 𝑃 and 𝑞1, 𝑞2 index of registers not used by the program 

(so initially at 0) consider: 

 

 

(the text says “to make 𝑞1 contain 1) where 𝑃′ is obtained by 𝑃 substituting 𝑍8𝑀) with 𝑇(𝑞2,𝑚) and each 

𝑆(𝑚) with 𝐴(𝑚, 𝑞1) 
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Another exercise of the same kind (2015-09-03) 

Define unbounded minimalization and define 𝒞 is closed with respect to this operation 
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Exercise (2019-11-18-solved) 

Consider a variant of the URM machine, in which the zero instruction is replaced by the 𝑃(𝑛) instruction 

whose effect is to replace the contents of the register 𝑛 with its predecessor, so 𝑟𝑛 ← 𝑟𝑛−
.1. 

Show what relationship there is between 𝐶′ the set of computable functions of the new machine and the 

set 𝐶 of computable function with the URM machine. Are one contained inside the other? Is the inclusion 

strict? Motivate your answers. 

Solution 

We have that 𝐶′ = 𝐶 given the instructions of a machine can be encoded inside the other and to prove 

𝐶′ ⊆ 𝐶 we show there is a URM program 𝑃′ and an index 𝑘 ∈ 𝑁 for which there is a URM program 𝑃 which 

computes the same function, s.t. 𝑓𝑃
(𝑘) = 𝑓𝑃

′(𝑘) as follows. 

Observe 𝑃(𝑛) is each instruction, with 𝑗 its ordering number and 𝑚 = max{𝜌(𝑃′), 𝑘} + 1 the first register 

not used by 𝑃′ which can be encoded by a jump to subroutine: 

 

 

 

 

More formally, we show that for each 𝑃′ of URM’ machine, we obtain a program 𝑃 s.t. 𝑓𝑃
(𝑘)
= 𝑓𝑃

′(𝑘)
 which 

does not use 𝑃(𝑛) instructions. Proof goes on by induction: 

- ℎ = 0 which is trivial, because 𝑃′ is already good 

 

- ℎ → ℎ + 1, in which case 𝑃′ has for sure at least a 𝑃(𝑛) instruction and consider as before 𝑗 the 

index of said instruction. 𝑃′ will have shape: 

 

 

 

 

We build a program 𝑃′′ using an index 𝑚 = max{𝜌(𝑃′), 𝑘} + 1: 

 

 

 

 

 

 

 

𝑃′′ by hypotheses contains ℎ instructions of type 𝑃(𝑛) and is s.t. 𝑓𝑃
′′(𝑘) = 𝑓𝑃

′′(𝑘) which is the desired 

program. 
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For the opposite inclusion, we proceed similarly, noting that the instruction 𝑍(𝑛) could be encoded in the 

URM' machine as follows, where 𝑚 is, as above, the index of a register beyond the area used by the 

program (and thus to 0). 

 

 

 

Similar to this one we have (2020-11-23) 

Consider a 𝑈𝑅𝑀𝑝 variant of the URM machine in which the zero instruction 𝑍(𝑛) is replaced by the 

predecessor instruction 𝑃(𝑛) that decrements the contents of register 𝑛, like 𝑟𝑛 ← 𝑟𝑛−
.1. Stating 𝐶𝑝 the 

set of functions computable by the 𝑈𝑅𝑀𝑝 machine, establish the relationship between 𝐶𝑝 and 𝐶 

Are they one contained in the other? Is the inclusion tight? Motivate the answers. 

Solution 

Given 𝑃(𝑛) can be encoded inside the URM machine, clearly 𝐶𝑝 ⊆ 𝐶. More precisely, 𝐼𝑗: 𝑃(𝑛) can be 

replaced by a jump to the following subroutine, using 𝑞 as the index of first register not used by the 

program (initially at 0): 

 

 

 

 

 

The routine checks if 𝑛 contains 0. When it does, there is nothing to do. Otherwise, with 𝑅𝑞 starting from 0 

and 𝑅𝑞+1 from 1, it continues to increment the two registers. When 𝑅𝑞+1 is equal to 𝑅𝑛, we have 𝑅𝑞 

contains the predecessor. 

More formally, 𝐶𝑝 ⊆ 𝐶 so for a number of arguments 𝑘, we have a program 𝑃′ which computes the same 

function, so 𝑓𝑃
′(𝑘) = 𝑓𝑃

(𝑘)
.  

The proof goes on by induction . When ℎ = 0 is trivial, and when ℎ = ℎ + 1 for sure the program will have 

at least a 𝑃 instruction and for an index 𝑗 instruction: 

 

 

 

We build a program 𝑃′′ using a register not used by 𝑝, so 𝑞 = max{𝜌(𝑃), 𝑘} + 1. 
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The program 𝑃′′ is a 𝑈𝑅𝑀𝑝 program s.t. 𝑓𝑃
′′(𝑘)

= 𝑓𝑃
(𝑘)

 and contains ℎ instructions of 𝑃. So, 𝑃? is the desired 

program. 

The opposite inclusion and thus equality also applies. In fact, the instruction 𝑍(𝑛) can simply be replaced by 

an instruction 𝑇(𝑞, 𝑛), where 𝑞 is any register not used by the program and thus 0. More precisely, given a 

URM program 𝑃 and a fixed number of arguments 𝑘 ∈ ℕ, called 𝑞 = max{𝜌(𝑃), 𝑘} + 1 the index of the 

first unused register and thus initially 0, replacing in 𝑃 each instruction 𝑍(𝑛) by instruction 𝑇(𝑞, 𝑛), is a 

𝑈𝑅𝑀𝑝 program that computes exactly the same function. 
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22.2 PRIMITIVE RECURSIVE FUNCTIONS  
Note: I suggest doing only practice here; useful link to see some primitive recursive functions here.  Then 

proceed by primitive recursion (base case – recursive step) or by bounded minimalization (so, consider both 

cases in which the variable exists and also it doesn’t) 

 

 

 

 

 

 

 

 

 

We can define the primitive recursion “manually”, by crafting for 𝑝𝑜𝑤2:ℕ → ℕ the following: 

{
𝑝𝑜𝑤2(0) = 1

𝑝𝑜𝑤2(𝑦 + 1) = 2 ∗ 2𝑦 = 2 ∗ 𝑝𝑜𝑤2(𝑦) = 𝑑𝑜𝑢𝑏𝑙𝑒(𝑝𝑜𝑤2(𝑦))
 

where 𝑑𝑜𝑢𝑏𝑙𝑒(𝑥) is a function defined by 𝒫ℛ itself, such that 𝑑𝑜𝑢𝑏𝑙𝑒: ℕ → ℕ: 

{
𝑑𝑜𝑢𝑏𝑙𝑒(0) = 0

𝑑𝑜𝑢𝑏𝑙𝑒(𝑦 + 1) = 2 + 𝑑𝑜𝑢𝑏𝑙𝑒(𝑦) = 2 + (𝑑𝑜𝑢𝑏𝑙𝑒(𝑦) + 1) = (1 + 𝑑𝑜𝑢𝑏𝑙𝑒(𝑦)) + 1
 

 

  

 

 

 

 

 

 

 

  

https://proofwiki.org/wiki/Category:Primitive_Recursive_Functions
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To prove the characteristic function 𝜒𝐴 is primitive recursive, we define it ∈ 𝑃𝑅, considering 𝑎 as an 

element inside recursion s.t. 𝑎(𝑛): 𝑛 ∈ ℕ: 

{
𝑎(0) = 0

𝑎(𝑛 + 1) = 2𝑛+1 + 1 = 2 ∗ 𝑎(𝑛) + 1
 

This is the general case for 𝑎(𝑛), so we want to handle all cases in which 𝑥 = 𝑎(𝑛) (and for which the 

power of 𝑛 − 1 is defined).  

This can be defined by primitive recursion as a new function called 𝑣𝑎𝑙:ℕ2 → ℕ 𝑠. 𝑡.: 

{
𝑣𝑎𝑙(𝑥, 0) = 𝑠𝑔(𝑥)

𝑣𝑎𝑙(𝑥, 𝑛 + 1) = 𝑣𝑎𝑙(𝑥, 𝑛) + 𝑠𝑔(𝑥, 𝑥 − 1)
 

(where the negated sign makes you obtain 0, while the other considers the recursive definition of the 

function and basically defines the actual value 𝑥 with the previous one (𝑥 − 1), making it defined for all 

cases). 

Definitely more correctly (I tried here a different solution, given the one by the teacher comes out of 

nowhere for this second part at least): 
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To define the function recursively: 

{
𝑝1(0) = 1

𝑝1(𝑦 + 2) = (𝑦 + 2 − 1) = (𝑦 + 1 + (1 − 1)) = |𝑦| = 𝑦
 

Therefore 𝑝1 can be defined as: 

{
𝑝2(0) = 2

𝑝2(𝑦 + 1) = (𝑦 + 1 − 2) = |𝑦 − 1| = 𝑝1(𝑦)
 

Given all basic operations are defined, this is in 𝑃𝑅. 
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Solution 

 

 

 

 

 

 

 

 

 

To show it’s primitive recursive 

{
𝑓(0) = 1

𝑓(𝑦 + 1) = 𝑠𝑔(𝑦) 
 

Which can also be defined as: 

{
𝑠𝑔(0) = 1

𝑠𝑔(𝑦 + 1) = 0 
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Example of use of bounded minimalisation to write functions primitive-recursive: 

 

Exercise (2019-02-08) 

Give the definition of 𝒫ℛ set of primitive recursive function and, using only the definition, show that for 

every 𝑘 ≥ 2 is primitive recursive the function 𝑠𝑢𝑚𝑘: ℕ
𝑘 → ℕ defined by 𝑠𝑢𝑚𝑘(𝑥1…𝑥𝑘) = ∑ 𝑥𝑖

𝑘
𝑖=1  

Solution 
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We then define the function by cases as follows: 

{
𝑠𝑢𝑚(𝑥, 0) = 𝑥1 + 𝑥2 = 0 + 0 = 0

𝑠𝑢𝑚(𝑥, 𝑘 + 1) = 𝑠𝑢𝑚(𝑥) + 𝑥𝑘+2
 

Exercise (2015-04-20) 

Give the definition of 𝒫ℛ class of primitive recursive functions and show that the function 𝑐𝑝𝑟:ℕ2 → ℕ is 

primitive recursive defined as: 

𝑐𝑝𝑟(𝑥, 𝑦) = |{𝑝 | 𝑥 ≤ 𝑝 < 𝑦 ∧ 𝑝 𝑝𝑟𝑖𝑚𝑒}| 

so, 𝑐𝑝𝑟(𝑥, 𝑦) is the number of primes in the interval [𝑥, 𝑦) (it can be assumed that sum and 

difference b́etween natural numbers as well as the characteristic function of the set of prime numbers 𝜒𝑃𝑟  

are recursive primitives, without proving it.) [Hint: It may be convenient to initially consider the function  

𝑐𝑝𝑟′(𝑥, 𝑘) = {𝑝 | 𝑥 ≤ 𝑝 < 𝑥 + 𝑘 ∧ 𝑝 𝑝𝑟𝑖𝑚𝑒}|] 

Solution 

 

 

 

 

 

 

 

 

 

We define the function for primitive recursion as: 

  

 

observing 𝑐𝑝𝑟(𝑥, 𝑦) = 𝑐𝑝𝑟′(𝑥, 𝑦−.𝑥), composition of primitive recursive functions, so it is primitive 

recursive. 

Exercise (2022-06-17-solved) 
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Solution 

 

 

 

 

 

 

 

 

 

We can then define the function 𝑓 as follows by primitive recursion. The base case is covered, 0 is an even 

number, no doubt. For the recursive case, consider it can either be 1 or 0, according to the specific 

underlying number. In this case, one could simply use the negated sign function: 

{
𝑓(0) = 1

𝑓(𝑦 + 1) = 𝑠𝑔(𝑦)
 

The negated sign can be defined itself by primitive recursion as follows: 

{
𝑠𝑔(0) = 1

𝑠𝑔(𝑦 + 1) = 0
 

Exercise (2023-02-01) 

  

 

 

 

Solution 
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22.3 SMN-THEOREM 
Note: this section requires knowing the definition then the exercises consider that you get exactly what 

domain and codomain are. Basically, domain is the “if” on which the input is conditioned, and the 

codomain is the output you get. E.g. 𝑓(𝑥) = 𝑦 𝑖𝑓 𝑦 < 2𝑥, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 2𝑥 is the domain and 𝑦 the 

codomain. Then, apply the theorem to prove exactly you fixed 𝑥 in order to get to that. 

 

 

The basic idea of the smn-theorem is creating a computable function 𝑠𝑚,𝑛 such that for any computable 

function 𝜙𝑒 of arity 𝑚, there is a computable function 𝜙𝑠𝑚,𝑛(𝑒) that behaves similarly to 𝜙𝑒 for the first 𝑚 

arguments. 

Recalling the whole proof given here: 

Given 𝑚, 𝑛 ≥ 1 there is a total computable function 𝑠𝑚,𝑛: ℕ
𝑚+1 → ℕ such that ∀𝑥⃗ ∈ ℕ𝑚, ∀𝑦⃗ ∈ ℕ𝑛, ∀𝑒 ∈ ℕ 

𝜙𝑒
(𝑚+𝑛)(𝑥⃗, 𝑦⃗) = 𝜙

𝑠𝑚,𝑛(𝑒,𝑥)
(𝑛)

(𝑦)⃗⃗⃗⃗⃗ 

Proof 

Intuitively, given 𝑒 ∈ ℕ, 𝑥⃗ ∈ ℕ 

- We get the program 𝑃𝑒 = 𝛾
−1(𝑒) in standard form that computes 𝜙𝑒

(𝑚+𝑛), so starting from the first 

drawing (this below), in which we compute the 𝜙𝑒
(𝑚+𝑛) over all inputs (𝑥⃗, 𝑦⃗) (so 𝜙𝑒

(𝑚+𝑛)(𝑥⃗, 𝑦⃗)) 

 

 

 

 

 

 

 

You want, for each 𝑥⃗ ∈ 𝑁𝑚 fixed, a program 𝑃′ ⇐ depending on 𝑒, 𝑥⃗ (mapping back its inputs effectively 

and composing function parametrizing its values, this you can see below). 
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𝑃′ has to 

- Move 𝑦⃗ to 𝑚 + 1,…𝑚 + 𝑛 (so, move forward computation of 𝑚 registers) 

- Write 𝑥⃗ in 1…𝑚 (loading the value in the free 𝑚 registers) 

- Execute 𝑃𝑒 (so, execute the computation) 

The program 𝑃′ can be; 

𝑇(𝑚,𝑚 + 𝑛)      // 𝑚𝑜𝑣𝑒 𝑦𝑛 𝑡𝑜 𝑅𝑚+𝑛 

….   …. 

𝑇(1,𝑚 + 1)      // 𝑚𝑜𝑣𝑒 𝑦1 𝑡𝑜 𝑅𝑚+1 

 

𝑍(1)     // 𝑤𝑟𝑖𝑡𝑒 𝑥1 𝑡𝑜 𝑅1 

𝑆(1) 

… 

𝑆(1) 

 

𝑍(𝑚)     // 𝑤𝑟𝑖𝑡𝑒 𝑥𝑚 𝑡𝑜 𝑅𝑚 

𝑆(𝑚) 

… 

𝑆(𝑚) 

Concatenation will update all the jump instructions, hence moving and writing values for all function 

parametrized inside, mapping back effectively with 𝑃𝑒 = 𝛾
−1(𝑒). 

Once the program 𝑃 has been built, we have 𝑆(𝑒, 𝑥⃗) = 𝛾(𝑃′). Given each function is effective, existence, 

totality and computability of 𝑠 are informally proven. 

In the context of the smn-theorem, 𝜙𝑒
𝑘 is the 𝑒𝑡ℎ partial computable function of 𝑘 variables. The theorem 

establishes that there exists a total computable function, denoted as 𝑠(𝑚,𝑛), which can effectively 

"translate" or encode the computation of 𝜙𝑒
(𝑚+𝑛)(𝑥, 𝑦) into the computation of 𝜙𝑠

𝑛
(𝑚,𝑛)

(𝑒, 𝑥)𝑛(𝑦). 

This one is also present inside 2019-09-17 exam. 

Given 𝑚, 𝑛 ≥ 1 there is a total computable function 𝑠𝑚,𝑛: ℕ
𝑚+1 → ℕ such that ∀𝑥⃗ ∈ ℕ𝑚, ∀𝑦⃗ ∈ ℕ𝑛, ∀𝑒 ∈ ℕ 

𝜙𝑒
(𝑚+𝑛)(𝑥⃗, 𝑦⃗) = 𝜙

𝑠𝑚,𝑛(𝑒,𝑥)
(𝑛)

(𝑦)⃗⃗⃗⃗⃗ 

Given the domain should be 2𝑥, we find a function in which we can parametrize a value < 2𝑥; given the 

range is 𝑥, it’s simply a function which allows us to be defined computably over 𝑥. Let’s give 

𝑔(𝑥, 𝑦) = {
𝑞𝑡(𝑥, 𝑦), 𝑦 < 2𝑥
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝑔(𝑥, 𝑦) is computable and 𝑠𝑔(𝑦) ∗ 𝑞𝑡(𝑥, 𝑦) + 𝜇𝑧. (𝑦 + 1−. 2𝑥) is computable itself, hence giving as range 

𝑥. 

By the smn-theorem, there is a computable function 𝑔: ℕ → ℕ 𝑠. 𝑡. 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) ∀𝑥, 𝑦 ∈ ℕ. 

Therefore, for each function: 

- 𝑊𝑥 = {𝑦 | (𝑔(𝑥, 𝑦) ↓} = {𝑦 | 𝑦 < 2𝑥} 

- 𝐸𝑘(𝑛) = {𝑔(𝑥, 𝑦)| 𝑥 ∈ 𝑊𝑠(𝑥)} = {𝑞𝑡(2, 𝑦) | 𝑦 < 2𝑥} = {𝑦 + 1−
.2𝑥 | 𝑦 + 1 < 2𝑥} = [0, 2𝑥) 

as desired.  

 

Given 𝑚, 𝑛 ≥ 1 there is a total computable function 𝑠𝑚,𝑛: ℕ
𝑚+1 → ℕ such that ∀𝑥⃗ ∈ ℕ𝑚, ∀𝑦⃗ ∈ ℕ𝑛, ∀𝑒 ∈ ℕ 

𝜙𝑒
(𝑚+𝑛)(𝑥⃗, 𝑦⃗) = 𝜙

𝑠𝑚,𝑛(𝑒,𝑥)
(𝑛)

(𝑦)⃗⃗⃗⃗⃗ 

We start by defining a computable function of two arguments 𝑓(𝑛, 𝑥) which meets the conditions when 

viewed as a function of 𝑥, with 𝑛 taken as a parameter, e.g. 

𝑓(𝑛, 𝑥) = {

𝑥

𝑧
, 𝑖𝑓𝑦 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 𝑥

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
= 𝑞𝑡(𝑥, 𝑧) + 𝜇𝑧. 𝑟𝑚(𝑥, 𝑧) 

By the smn-theorem, there is a computable total function 𝑘: ℕ → ℕ such that 𝜙𝐾(𝑛)(𝑥) = 𝑓(𝑛, 𝑥) ∀𝑛, 𝑥 ∈

ℕ. Therefore: 

- 𝑊𝑠(𝑘,𝑦) = {𝑥|𝑓(𝑛, 𝑥) ↓} = {𝑦:
𝑥

𝑧
} = {𝑧: 𝑥 ∗ 𝑧 = 𝑦} 

as desired. 

We start by a computable function 𝑓(𝑛, 𝑥) which meets the conditions over the parameter, which uses two 

functions in order to accomplish the thing. Such function can be, considering the even (division of 2 

different from zero, which will happen if 𝑥 ≥ 𝑧, we can characterize): 

𝑓(𝑛, 𝑥) = {

𝑥

2
+ 𝑛, 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
= 𝑞𝑡(2, 𝑥) + 𝑛 + 𝜇𝑧. 𝑟𝑚(2, 𝑧) 

By the smn-theorem, there is a computable function 𝑔: ℕ → ℕ 𝑠. 𝑡. 𝜙𝑔(𝑛)(𝑥) = 𝑓(𝑛, 𝑥) ∀𝑛, 𝑥 ∈ ℕ. 

Therefore, for each function: 

- 𝑊𝑘(𝑛) = {𝑥 | (𝑓(𝑛, 𝑥) ↓} = {𝑥 | 𝑥 𝑒𝑣𝑒𝑛 } = {𝑥 | 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛} 

- 𝐸𝑘(𝑛) = {𝑓(𝑛, 𝑥)| 𝑥 ∈ ℕ} = {
𝑥

2
+ 𝑛 | 𝑥 𝑒𝑣𝑒𝑛} = {𝑥 + 𝑛 ≥ 0} = {𝑦 | 𝑦 ≥ ℕ} 

as desired.   
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Given 𝑚, 𝑛 ≥ 1 there is a total computable function 𝑠𝑚,𝑛: ℕ
𝑚+1 → ℕ such that ∀𝑥⃗ ∈ ℕ𝑚, ∀𝑦⃗ ∈ ℕ𝑛, ∀𝑒 ∈ ℕ 

𝜙𝑒
(𝑚+𝑛)(𝑥⃗, 𝑦⃗) = 𝜙

𝑠𝑚,𝑛(𝑒,𝑥)
(𝑛)

(𝑦)⃗⃗⃗⃗⃗ 

 

 

 

 

 

 

Exercise (2023-02-20) 

 

 

Solution 

The smn-theorem states that, given 𝑚, 𝑛 ≥ 1 there is a computable total function 𝑠𝑚,𝑛: ℕ
𝑚+1 → ℕ 

𝑠. 𝑡. ∀𝑒 ∈ ℕ, 𝑥⃗ ∈ ℕ𝑚, 𝑦⃗ ∈ ℕ𝑛 

𝜙𝑒
𝑚+𝑛(𝑥⃗, 𝑦⃗) = 𝜙𝑠𝑚,𝑛(𝑒,𝑥)

(𝑛) (𝑦⃗) 

We define a computable function 𝑔 able to compute 2𝑥 effectively: 

𝑔(𝑥, 𝑦) = {
𝑞𝑡(𝑦, 2𝑥) + 2, 𝑥 ∈ ℙ, 𝑥 > 0, 𝑦 ≤ 2𝑥

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The function is computable, given: 

𝑔(𝑥, 𝑦) = 𝑞𝑡(2𝑥, 𝑦) + 2 + 𝜇𝑧. (𝑞𝑡(2𝑥, 𝑦)−.2𝑥) 

By the smn-theorem, there exists a function ℎ: ℕ → ℕ such that ∀𝑥, 𝑦 ∈ ℕ, 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) 

Hence, we can conclude: 

𝑊𝑠(𝑥) = {𝑦 | 𝑔(𝑥, 𝑦) ↓} = {𝑦 | 𝑦 ≤ 2𝑥} = {𝑥 ∈ ℙ |𝑦 ≤ 2𝑥 ∈ ℙ} = ℙ 

|𝐸𝑠(𝑥)| = {𝑔(𝑥, 𝑦) | 𝑥 ∈ 𝑊𝑠(𝑥)} = {𝑦 |𝑦 ≤ 2𝑥}| = {𝑞𝑡(2𝑥, 𝑦)−
.2𝑥 | 𝑦 ≤ 2𝑥} = {𝑦 | 𝑦 = 2𝑥} 

as desired.  
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Exercise 

State the smn-theorem and use it to show there exists a total computable function 𝑠: ℕ2 → ℕ s.t. ∀𝑥, 𝑦 ∈ ℕ 

it holds |𝑊𝑠(𝑥,𝑦)| = 𝑥 ∗ 𝑦 

Solution 

The smn-theorem states that, given 𝑚, 𝑛 ≥ 1 there is a computable total function 𝑠𝑚,𝑛: ℕ
𝑚+1 → ℕ 

𝑠. 𝑡. ∀𝑒 ∈ ℕ, 𝑥⃗ ∈ ℕ𝑚, 𝑦⃗ ∈ ℕ𝑛 

𝜙𝑒
𝑚+𝑛(𝑥⃗, 𝑦⃗) = 𝜙𝑠𝑚,𝑛(𝑒,𝑥)

(𝑛)
(𝑦⃗) 

We define a function 𝑔:ℕ → ℕ able to get as range 𝑥 ∗ 𝑦, so able to minimize it.  

𝑔(𝑥, 𝑦, 𝑧) = {
0, 𝑧 < 𝑥 ∗ 𝑦
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The function 𝑔 is computable and given the minimum 𝑤: 

𝑔(𝑥, 𝑦, 𝑧) = 𝜇𝑤. 𝑧 + 1−.(𝑥 ∗ 𝑦) 

and we can show by the smn-theorem, there is a total computable function 𝑠:ℕ → ℕ s.t. 𝑔(𝑥, 𝑦, 𝑧) =

𝜙𝑠(𝑥,𝑦)(𝑧). So 

- |𝑊𝑠(𝑥)(𝑦)| = {𝑦 | 𝑔(𝑥, 𝑦) ↓} = |𝑧 | 𝑧 < 𝑥 ∗ 𝑦| and so 𝑥 ∗ 𝑦 as desired.  

Exercise (2019-11-18-solved) 

State the smn-theorem and use it to show there exists a total computable function 𝑘: ℕ → ℕ 𝑠. 𝑡. ∀𝑛 ∈ ℕ, 

𝜙𝑘(𝑛) is total and 𝐸𝑘(𝑛) is the set of integer divisors of 𝑛. 

Solution 

The smn-theorem states that, given 𝑚, 𝑛 ≥ 1 there is a computable total function 𝑠𝑚,𝑛: ℕ
𝑚+1 → ℕ 

𝑠. 𝑡. ∀𝑒 ∈ ℕ, 𝑥⃗ ∈ ℕ, 𝑦⃗ ∈ ℕ𝑛 

𝜙𝑒
𝑚+𝑛(𝑥⃗, 𝑦⃗) = 𝜙𝑠𝑚,𝑛(𝑒,𝑥)

(𝑛)
(𝑦⃗) 

We define a function 𝑔:ℕ → ℕ in which we can define: 

𝑔(𝑛, 𝑥) = {
𝑥 ∗ 𝑛, 𝑥 𝑖𝑠 𝑎 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑜𝑓 𝑛

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

This is computable, given: 

𝑔(𝑛, 𝑥) = (𝑥 ∗ 𝑛) ∗ 𝑠𝑔(𝑟𝑚(𝑥, 𝑛)) + 𝑠𝑔(𝑟𝑚(𝑥, 𝑛)) 

For the smn-theorem, there exists a function 𝑘:ℕ → ℕ s.t. 𝜙𝑘(𝑛)(𝑥) = 𝑓(𝑛, 𝑥) ∀𝑛, 𝑥 ∈ ℕ. So, as desired: 

- 𝑊𝑘(𝑛) = ℕ (𝑡𝑜𝑡𝑎𝑙) 

- 𝐸𝑘(𝑛) = {𝑥 | 𝑟𝑚(𝑥, 𝑛) = 0} ∪ {1}, set of divisors and 1 which is always a divisor for 𝑛 
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The smn-theorem states that, given 𝑚, 𝑛 ≥ 1 there is a computable total function 𝑠𝑚,𝑛: ℕ
𝑚+1 → ℕ 

𝑠. 𝑡. ∀𝑒 ∈ ℕ, 𝑥⃗ ∈ ℕ𝑚, 𝑦⃗ ∈ ℕ𝑛 

𝜙𝑒
𝑚+𝑛(𝑥⃗, 𝑦⃗) = 𝜙𝑠𝑚,𝑛(𝑒,𝑥)

(𝑛)
(𝑦⃗) 

We’re basically using a function which we use as index for the domain and codomain. Define a function of 

two arguments like: 

𝑔(𝑥, 𝑦) = {
𝑧, 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑧 𝑠. 𝑡. 𝑦 = 2𝑥
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= 𝜇𝑧. |(𝑦 − 2𝑥)| 

For the smn-theorem, there exists a function 𝑘:ℕ → ℕ s.t. 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) ∀𝑥, 𝑦 ∈ ℕ. So, as desired: 

- 𝑊𝑘(𝑛) = {𝑥 | 𝑔(𝑥, 𝑦) ↓} = {2𝑥} 

- 𝐸𝑘(𝑛) = {𝑔(𝑥, 𝑦)| 𝑥 ∈ ℕ} = {𝑧 | 𝑧 𝑠. 𝑡. 𝑦 = 2𝑥} = {𝑧 | 𝑧 ∈ ℕ} 

Exercise (2015-04-20.partial) 

State the smn-theorem and use it to show there exists a total computable function 𝑠: ℕ → ℕ s.t. ∀𝑥 ∈ ℕ, 

𝑊𝑠(𝑥) = {(𝑘 + 2)
2 | 𝑘 ∈ ℕ} 

Solution 

The smn-theorem states that, given 𝑚, 𝑛 ≥ 1 there is a computable total function 𝑠𝑚,𝑛: ℕ
𝑚+1 → ℕ 

𝑠. 𝑡. ∀𝑒 ∈ ℕ, 𝑥⃗ ∈ ℕ𝑚, 𝑦⃗ ∈ ℕ𝑛 

𝜙𝑒
𝑚+𝑛(𝑥⃗, 𝑦⃗) = 𝜙𝑠𝑚,𝑛(𝑒,𝑥)

(𝑛) (𝑦⃗) 

To prove it, we define a function of two arguments such that: 

𝑔(𝑥, 𝑦) = {
𝑘, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑠𝑜𝑚𝑒 𝑘 𝑠. 𝑡. 𝑦 = (𝑥 + 𝑘)2

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

so we set a minimalization to look for that value, like 𝑔(𝑥, 𝑦) = 𝜇𝑘. |(𝑥 + 𝑘)2 − 𝑦|. Such function is total 

and computable, and for the smn-theorem, there exists a function 𝑘: ℕ → ℕ s.t. 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) ∀𝑥, 𝑦 ∈

ℕ. So, as desired: 

- 𝑊𝑠(𝑥) = {𝑥 | 𝑔(𝑥, 𝑦) ↓} = {∃𝑘 ∈ ℕ | 𝑦 = (𝑥 + 𝑘)
2} = {𝑥 | (𝑥 + 𝑘)2 ∈ ℕ} 

Exercise (2018-11-20-parziale) 

State the smn-theorem. Use it for proving there exists 𝑘:ℕ → ℕ total and computable s.t. ∀𝑛 ∈ ℕ we have 

𝑊𝑘(𝑛) = {𝑧
𝑛 | 𝑧 ∈ ℕ} and 𝐸𝑘(𝑛) is the set of odd numbers 

Solution 

The smn-theorem states that, given 𝑚, 𝑛 ≥ 1 there is a computable total function 𝑠𝑚,𝑛: ℕ
𝑚+1 → ℕ 

𝑠. 𝑡. ∀𝑒 ∈ ℕ, 𝑥⃗ ∈ ℕ𝑚, 𝑦⃗ ∈ ℕ𝑛 

𝜙𝑒
𝑚+𝑛(𝑥⃗, 𝑦⃗) = 𝜙𝑠𝑚,𝑛(𝑒,𝑥)

(𝑛) (𝑦⃗) 
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Define a two-arguments total-computable function 𝑓(𝑛, 𝑥) respecting the conditions: 

𝑓(𝑛, 𝑥) = {
2𝑧 + 1, 𝑖𝑓 𝑥 = 𝑧𝑛 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑧

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
= 2 ∗ (𝜇𝑧. |𝑥−.𝑧𝑛|) + 1 

By the smn-theorem, there exists a total and computable function 𝑘: ℕ → ℕ s.t. 𝜙𝑘(𝑛)(𝑥) = 𝑓(𝑛, 𝑥) ∀𝑛, 𝑥 ∈

ℕ. So, as desired: 

- 𝑊𝑘(𝑛) = {𝑥 | 𝑓(𝑛, 𝑥) ↓} = {𝑥 | ∃𝑧 ∈ ℕ. 𝑥 = 𝑧
𝑛} = {𝑧𝑛 | 𝑧 ∈ ℕ} 

- 𝐸𝑘(𝑛) = {𝑓(𝑛, 𝑥) | 𝑥 ∈ 𝑊𝑘(𝑛)} = {2√𝑧
𝑛𝑛
+ 1 | 𝑧 ∈ ℕ} = {2𝑧 + 1 | 𝑧 ∈ ℕ} 

Exercise (2017-11-20) 

State the smn-theorem. Use it for proving there exists 𝑘:ℕ → ℕ total and computable s.t. ∀𝑛 ∈ ℕ we have 

𝑊𝑘(𝑛) = {𝑥 ∈ ℕ | 𝑥 ≥ 𝑛} and 𝐸𝑘(𝑛) = {𝑦 ∈ ℕ | 𝑦 𝑒𝑣𝑒𝑛 } for all 𝑛 ∈ ℕ. 

Solution 

The smn-theorem states that, given 𝑚, 𝑛 ≥ 1 there is a computable total function 𝑠𝑚,𝑛: ℕ
𝑚+1 → ℕ 

𝑠. 𝑡. ∀𝑒 ∈ ℕ, 𝑥⃗ ∈ ℕ𝑚, 𝑦⃗ ∈ ℕ𝑛 

𝜙𝑒
𝑚+𝑛(𝑥⃗, 𝑦⃗) = 𝜙𝑠𝑚,𝑛(𝑒,𝑥)

(𝑛) (𝑦⃗) 

Define: 

 

 

By the smn-theorem, there exists a total and computable function 𝑘: ℕ → ℕ s.t. 𝜙𝑘(𝑛)(𝑥) = 𝑓(𝑛, 𝑥) ∀𝑛, 𝑥 ∈

ℕ. So, as desired: 

 

 

Exercise (2020-11-23) 

State the smn-theorem. Use it for proving there exists 𝑘:ℕ → ℕ total and computable s.t. ∀𝑛 ∈ ℕ we have 

|𝑊𝑥| = 2
𝑥 and |𝐸𝑥| = 𝑥 + 1. 

Solution 

The smn-theorem states that, given 𝑚, 𝑛 ≥ 1 there is a computable total function 𝑠𝑚,𝑛: ℕ
𝑚+1 → ℕ 

𝑠. 𝑡. ∀𝑒 ∈ ℕ, 𝑥⃗ ∈ ℕ𝑚, 𝑦⃗ ∈ ℕ𝑛 

𝜙𝑒
𝑚+𝑛(𝑥⃗, 𝑦⃗) = 𝜙𝑠𝑚,𝑛(𝑒,𝑥)

(𝑛) (𝑦⃗) 

Define: 

 

which is computable. 

Infact, 𝑔(𝑥, 𝑦) when defined, is the greatest 𝑧 s.t. 2𝑥 ≤ 𝑦 + 1 and the minimum s.t. 2𝑧+1 > 𝑦 + 1, so: 
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So, by the smn-theorem, there exists a function 𝑠: ℕ → ℕ s.t. ∀𝑥, 𝑦 ∈ ℕ we have 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) and so 

𝑠 is the desired function. Infact: 
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22.4 DECIDABILITY AND SEMIDECIDABILITY 
Note: this section requires knowing or remembering at least structure/projection theorem and the 

definition of semidecidable/decidable/knowing the implications of quantification. 

(⇒) Let 𝑃(𝑥⃗) ⊆ ℕ𝑘 be semi-decidable 

𝑠𝑐𝑃(𝑥⃗) = {
1, 𝑖𝑓 𝑃(𝑥⃗)

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  𝑖𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

i.e. there is 𝑒 ∈ ℕ 𝑠. 𝑡. 𝑠𝑐𝑃 = 𝜙𝑒
(𝑘)

 

Observe 𝑃(𝑥⃗) 𝑖𝑓𝑓 𝑠𝑐𝑃(𝑥⃗) = 1 

𝑖𝑓𝑓 𝑠𝑐𝑃(𝑥⃗) ↓ 

𝑖𝑓𝑓 𝑃𝑒(𝑥⃗) ↓ 

𝑖𝑓𝑓 ∃𝑡. 𝐻(𝑘)(𝑒, 𝑥⃗, 𝑡) 

If we let 𝑄(𝑡, 𝑥⃗) = 𝐻(𝑘)(𝑒, 𝑥⃗, 𝑡) decidable and 𝑃(𝑥⃗) ≡ ∃𝑡. 𝑄(𝑡, 𝑥⃗)  

(⇐) We assume 𝑃(𝑥⃗) ≡ ∃𝑡. 𝑄(𝑡, 𝑥⃗) with 𝑄(𝑡, 𝑥⃗) decidable 

𝑠𝑐𝑃(𝑥⃗) = {
1, 𝑖𝑓𝑃(𝑥⃗) ⇔ ∃𝑡. 𝑄(𝑡, 𝑥⃗) ⇔ ∃t. XQ(𝑡, 𝑥⃗) = 1

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

= 𝟏(𝜇𝑡. |𝑋𝑄(𝑡, 𝑥⃗) − 1|) 

 

 

Proof (Exercise present inside 2017-01-24 exam) 

Let 𝑃(𝑥, 𝑦⃗) ⊆ ℕ𝑘+1 semi-decidable. Hence, by structure theorem, there is 𝑄(𝑡, 𝑥, 𝑦⃗) ⊆ ℕ𝑘+2 decidable s.t. 

𝑃(𝑥, 𝑦⃗) ≡ ∃𝑡. 𝑄(𝑡, 𝑥, 𝑦⃗) 

Now 

𝑅(𝑦⃗) ≡ ∃𝑥. 𝑃(𝑥, 𝑦⃗) ≡ ∃𝑥. ∃𝑡. 𝑄(𝑡, 𝑥, 𝑦⃗) 

≡ ∃𝑤.𝑄((𝑤)1, (𝑤)2, 𝑦⃗) 
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Hence 𝑅 is the existential quantification of a decidable predicate ⇒ by structure theorem, it is semi-

decidable.  

Exercise (2015-07-16-solved) 

Show that a predicate 𝑃(𝑥, 𝑦)⃗⃗⃗⃗⃗ is semidecidable, then ∃𝑥. 𝑃(𝑥, 𝑦⃗) is semidecidable. Does the converse hold? 

Show it or write a counterexample. 

Solution 

The first one refers to the projection theorem, defined also here. Observe instead that the converse 

implication is false. Consider, for example, the predicate 𝑃(𝑥, 𝑦) = 𝑥 ∈ 𝑊𝑥, which is not semi-decidable.  

The predicate obtained through existential quantification 𝑄(𝑦) = ∃𝑥. 𝑃(𝑥, 𝑦) is consistently true or false 

(although not relevant to the proof, note that since 𝐾 is nonempty, the predicate 𝑄(𝑦) is consistently true), 

thus decidable.  

As a less "degenerate" example, one may consider 𝑃(𝑥, 𝑦) = (𝑦 > 𝑥) ∧ (𝑦 ∉ 𝑊𝑥) and the quantification 

𝑄(𝑦) = ∃𝑥. (𝑦 > 𝑥) ∧ (𝑦 ∉ 𝑊𝑥). In this case, note that with 𝑒0 ∈ 𝑁, an index for the always indefinite 

function, we have 𝑄(𝑦) is true for every 𝑦 > 𝑒0, thanks to which 𝑄(𝑦) is decidable. 

Exercise (2022-06-17) 

 

 

 

Solution 
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Exercise (30-06-2020) 

Given two functions 𝑓, 𝑔:ℕ → ℕ with 𝑓 total, define predicate 𝑄𝑓𝑔(𝑥) = "𝑓(𝑥) = 𝑔(𝑥)". Show that if 𝑓 and 

𝑔 are computable, then 𝑄𝑓𝑔  is semidecidable. Does the converse hold, so if 𝑄𝑓𝑔 is semidecidable, can we 

deduce 𝑓 and 𝑔 are computable? 

Solution 

Let 𝑓, 𝑔 be computable functions. Let 𝑒1, 𝑒2 ∈ ℕ 𝑠. 𝑡. 𝑓 = 𝜙𝑒1  𝑎𝑛𝑑 𝑔 = 𝜙𝑒2.  

Then 𝑠𝑐𝑓𝑔 = 𝟏(𝜇𝑤. |𝑓(𝑥) − 𝑔(𝑥)| is computable, hence 𝑄𝑓𝑔  is semidecidable. 

If 𝑄𝑓𝑔  is semidecidable and let 𝑒 be an index of semicharacteristic function of 𝑄, namely 𝜙𝑒 = 𝑠𝑐𝑄𝑓𝑔   

We have 𝑓(𝑥) = (𝜇𝑤.𝐻(𝑒, 𝑥, (𝑤)1, (𝑤)2) ∨ 𝐻(𝑒, 𝑦, (𝑤)1, (𝑤)3) which shows 𝑓 and 𝑔 should be 

computable by composition; given the halting problem is not decidable, it means we could easily use by 

composition the semi-characteristic function of 𝐾 (𝑠𝑐𝐾) and make it work – so the converse does not hold. 

Exercise (2023-02-01) 

  

 

 

Solution 
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22.5 NUMERABILITY AND DIAGONALIZATION 
Note: I understood overtime this category refers to “Is this set countable?” – Basically, a category we never 

once considered. Here for legacy reasons. See for yourself and you will prove me right.  

Note 𝑐𝑜𝑑 stays for codomain there. The intuitive answer would be no, we can’t possibly have a mapping 

one-to-one to each element, given the set over ℕ itself is uncountable. 

Let’s suppose the set is countable for the sake of contradiction and make an argument about it. 

- Suppose the set of all functions from ℕ → ℕ is countable. There sure would exist a bijection 𝑓 

between the set ℕ and all functions from ℕ → ℕ 

- We can construct a function 𝑔(𝑛) which maps over the image of 𝐹0, a subset only mapping over 

the number of 0. We define such function to be the output over the 𝑛𝑡ℎ computation of the image, 

which is over the set of natural numbers 

Even restricting the values to this section, we can’t possibly count them all and the set 𝐹0 itself is 

uncountable.  

Suppose by contradiction the set of total increasing functions is not countable. We first would have to 

define something total, and this can be an enumeration of such programs, such that: 

𝑓(𝑦) = 1 +∑𝑓𝑛(𝑥)

𝑥

𝑛=0

 

This here is an enumeration which is total by definition, given they are already inside the natural numbers. 

This also increases respecting the said order, given 𝑓(𝑦 + 1) = 𝑓(𝑥) + 𝑓𝑥+1(𝑥 + 1) + 1 ≥ 𝑓(𝑦) ≥ 𝑓(𝑥) ≥

0 (it increases naturally. It also differs 𝑓(𝑦) = 1 + ∑ 𝑓𝑛(𝑥)
𝑥
𝑛=0 ≥ 1 + 𝑓𝑥(𝑥 + 1) > 𝑓𝑥(𝑥). 

No enumeration can be defined countable over the natural numbers, given we can’t possibly count and 

enumerate how such recursion will work in the long run, and so it can’t possibly contain all total increasing 

functions. 

The key here would be defining a function which is bounded, hence showing the enumeration works for all 

codomain values, or something like that, intuitively. Since ℕ is countably infinite, the possible combination 

of choices for ℕ0 (in 0,1), can be 2ℕ
0
 which itself is uncountably infinite. We define as 𝑆 the set of 

increasing total functions. 

Let’s define instead a total increasing binary function, in which we can assert the ≤ property, which will be 

defined over all values (mapping each binary sequence to a unique natural number). We define a function 

in which if 𝑓(𝑥) = 1, it means that 𝑓(1) = 𝑓(2), hence obtaining 0 when this ordering property is defined, 

1 otherwise (when they are equal, it would be). So, we define: 

𝑓𝑖(𝑥) = {
0, 𝑓𝑖(𝑥𝑖) ≤ 𝑓𝑖+1(𝑥𝑖), 𝑤ℎ𝑒𝑛 𝑥 < 𝑖
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 



275   Computability simple (for real) 
 

Written by Gabriel R. 

This represents the enumeration of total binary increasing functions, which represents a countable subset. 

Given the injection maps a binary sequence effectively respecting the property, it remains countable.  

Exercise (2019-01-24) 

Show that set 𝐹 = {𝜃 | 𝜃: ℕ → ℕ ∧ 𝑑𝑜𝑚(𝜃) 𝑓𝑖𝑛𝑖𝑡𝑒} of unary functions with finite domain is countable. 

Solution 

Given any enumeration of the finite subfunctions inside of 𝐹, let’s define a function 𝑔(𝑥) = ∏ 𝜃𝑖
𝑛
𝑖=1  

Such a function is: 

- total by definition 

- computable, given it is the composition of computable functions 

Define 𝜃𝑖(𝑥) = {
𝜃𝑖(𝑥) + 1, 𝑥 ∈ 𝑊𝑥
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Since 𝜃𝑖(𝑥) has a finite domain, 𝑔 is finite and a unary function. 𝑔 itself is in the enumeration, considering 

𝑔(𝑥) = 𝜃(𝑥) + 1, hence 𝐹 is countable. 

An alternative solution (Italian one): 

 

 

 

 

 

 

 

 

Exercise (2019-02-08) 

Given a function 𝑓:ℕ → ℕ define 𝑍(𝑓) = {𝑔:ℕ → ℕ | ∀𝑥 ∈ ℕ. 𝑔(𝑥) = 𝑓(𝑥) ∨ 𝑔(𝑥) = 0}. Show that set 

𝑍(𝑖𝑑) is not countable. It is true that for all 𝑓, we have 𝑍(𝑓) is not countable? 

Solution 

Define 

𝑓(𝑥) = {
𝑥, 𝑖𝑓 𝜙𝑥(𝑥) ↓
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The function is: 

- total by definition 

- ∀𝑥 ∈ ℕ,𝜙𝑥(𝑥) ≠ 𝑓, 𝑠𝑖𝑛𝑐𝑒 𝜙𝑥(𝑥 + 1) ≠ 𝑓(𝑥 + 1) ≠ 𝑓(𝑥) ≠ 𝑔(𝑥) 

Hence, this is not countable. 
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22.6 FUNCTIONS AND COMPUTABILITY 
Note: this requires proving functions are not-computable most of the time. Use diagonalization or some 

functions which is written as computable but actually uses χ𝐾 which is not computable by definition. 

In essence, there should be a case in which we compute until the 𝑥𝑡ℎ computation and then will not be 

defined, something like the halting problem. Given the function is not computable, we have a function not 

defined for all inputs, hence not decidable for all input where 𝑓(𝑥) = 𝑥. 

Let’s define a function 𝑔:ℕ → ℕ s.t. 

𝑔(𝑥) = {
𝜑𝑥(𝑥) + 1, 𝑥 ∈ 𝑊𝑥  𝑎𝑛𝑑 𝑓(𝑥) 𝑡𝑜𝑡𝑎𝑙

𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

This will ensure when ∀𝑥 ∈ ℕ, 𝑔(𝑛 + 1) = 𝑓(𝑛) + 1 = 𝑛 + 1 ≠ 𝑓(𝑛) since this is not computable and it 

will hold as 𝑥 infinite many times, giving each time a different output over the single input. Hence, 

everything is satisfied. 

Official one: 

 

Use a basic diagonalization argument; consider an increasing function like 𝑓(𝑥) = ∑ 𝑔(𝑦)𝑦≤𝑥  and then put: 
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If we relax totality, the good idea is to use diagonalization, defining: 

𝑓(𝑥) = {
𝜑𝑥(𝑥) + 1, 𝑥 ≠ 𝑊𝑥

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Given 𝜑𝑥 ≠ 𝑓(𝑥) is not computable, by diagonalization, this will be different from all computable functions. 

In any case, one could adapt the following proof reversing the signs for this one.  

Let’s start defining a decreasing function, in which we take 𝑘 = min{𝑓(𝑥) | 𝑥 ∈ ℕ} and let 𝑥0 ∈

ℕ 𝑠. 𝑡. 𝑓(𝑥0) = 𝑘. Therefore, given 𝑓 is decreasing, 𝑓(𝑥) = 𝑘 , ∀𝑥 ≥ 𝑥0. Define then 

𝜃(𝑥) = {
𝑓(𝑥), 𝑖𝑓 𝑥 < 𝑥0
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

then write 𝑓 as 

𝑓(𝑥) = {
𝜃(𝑥), 𝑖𝑓 𝑥 < 𝑥0
𝑘, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Given 𝜃 is finite, it is computable and if we use the smn-theorem, we can write 𝑓(𝑥) as follows (combining 

both possibilities of the function for whichever case it is decreasing): 

𝑓(𝑥) = (𝜇𝑤. ((𝑥 < 𝑥0 ∧ 𝑆(𝑒, 𝑥, (𝑤)1, (𝑤)2) ∨ (𝑥 ≥ 𝑥0 ∧ (𝑤)1 = 𝑘)))
1
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The alternative proof uses induction on 𝑥0 = 𝑚𝑖𝑛{𝑥 | 𝑓(𝑥) = 𝑀}, then defining: 

- 𝑀 = 0, the decreasing function 𝑓(𝑥) = 0 is primitive recursive for all 𝑥 

- 𝑀 > 0, given 𝑥0 

o 𝑖𝑓 𝑥0 = 0, then 𝑓 is a constant function which is primitive recursive 

o 𝑖𝑓 𝑥0 > 0, decompose 𝑓 into: 

𝑓1(𝑥) = {
𝑀, 𝑥 < 𝑥0

𝑓(𝑥), 𝑥 ≥ 𝑥0
 

 The function 𝑓1 is total and inductive hypothesis and primitive recursion, we can define: 

𝑔(𝑥) = {
0, 𝑥 < 𝑥0

𝑀 − 𝑓(𝑥), 𝑥 ≥ 𝑥0
 

To avoid the function to assume the same value as before, we define 𝑓(𝑥) = 𝑓1(𝑥) + 𝑔(𝑥). Given this is 

defined by primitive recursion and it is total, it’s computable. 

We are essentially saying that for every single non-computable function the quantification 𝑓 + 𝑔 is not 

computable and it can’t be. However, we know that the sum of two non-computable functions is not 

necessarily computable. This is because the composition and combination of non-computable functions can 

still result in a non-computable function. 

If we have a case in which 𝑔(𝑥) = 𝑓(𝑥), the sum itself would be essentially 𝑓(𝑥) + 𝑔(𝑥) = 𝑓(𝑥) + 𝑓(𝑥) =

2 ∗ 𝑓(𝑥). However, this does not imply that 𝑓(𝑥) is computable; rather, it suggests that the sum in this 

specific case is proportional to 𝑓(𝑥). The key point remains that the sum of two non-computable functions 

is not guaranteed to be computable, and the example 𝑓(𝑥) + 𝑔(𝑥) being proportional to 𝑓(𝑥) doesn't 

change this general conclusion. 

We know the sum of non-computable functions is not expected to be computable if the two underlying 

functions are themselves not computable. We can have the mixed chance: one is computable, the other is 

not and again the sum would not be computable. There can exist a case in which we consider a codomain 

𝐾 = {0,1} in which we sum the two functions 𝜒𝐾 + 𝜒𝐾 = 1, where this is computable. 

All elements of image are also the domain. Because we like to understand things, the following is an 

example of function with these qualities: 

𝑓(𝑥) = 𝑥2 

𝑑𝑜𝑚(𝑓) = ℝ 

𝑖𝑚𝑔(𝑓) = ℝ (𝑎𝑙𝑙 𝑟𝑒𝑎𝑙 𝑛𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠) 
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Literally, we give a function “already undefined” since it does not stop on all values – the characteristic 

function of the halting set, which we know it’s not computable. Define 𝜒𝐾 as all values which are not inside 

𝑓(𝑥) and: 

𝑓(𝑥) = {
↑, 𝑥 ≤ 1

𝜒𝐾(𝑥), 𝑥 > 1
 

Here, we mean the same thing as before, but know we have a domain of values which are in the image but 

themselves are not computable; for example, if we define again a predicate 𝜒𝐾 which contains the set of 

values which are not present for 𝑓(𝑥) and we define a function like: 

𝑓(𝑥) = {
𝜒𝐾(⌊

𝑥

2
∗ 2⌋), 𝑖𝑓 𝑥 𝑜𝑑𝑑

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The domain 𝑑𝑜𝑚(𝑓) is the set of odd numbers, while the codomain 𝑐𝑜𝑑(𝑓) = {0,2,4… } is the combination 

of even numbers, so the intersection is empty. Given we defined 𝜒𝐾, the 
𝑥+1

2
∗ 2  would be computable, but 

given it’s not, it’s not even recursive. 

Here we can use diagonalization to prove it is not computable by construction, since it’s different from all 

values. We can give a function 𝑓 as follows: 

𝑓(𝑥) = {
𝑠𝑔(𝜙𝑥(𝑥)), 𝑥 ∈ 𝑊𝑥

0, 𝑥 ∉ 𝑊𝑥
 

The function is total by construction, 𝑐𝑜𝑑(𝑓) ⊆ {0,1}, not computable since 𝑓(𝑥) ≠ 𝜙𝑥(𝑥) given when  

𝜙𝑥(𝑥) ↓ then 𝑓(𝑥) = 𝑠𝑔(𝜙𝑥(𝑥)) = 𝜙𝑥(𝑥) and when 𝜙𝑥(𝑥) ↑ then 𝑓(𝑥) = 0 ≠ 𝜙𝑥(𝑥) 

 

 

 

 

In this case, we have the diagonalization function, and we observe we can simply define: 

𝑔(𝑥) = {
𝜙𝑥(

𝑥

2
), 𝑥 < 0

𝑥

2
, 𝑥 ≥ 0

 

This is not computable, given 𝑔(𝑥) ≠ 𝜙𝑥(
𝑥

2
) and if 𝑓 were computable, 𝑔 would have been so.  
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We can define a function as follows: 

𝑓(𝑥) = {
𝜙𝑥(𝑥), 𝑥 ∉ 𝑊𝑥

0, 𝑥 ∈ 𝑊𝑥
 

By diagonalization, we get instead a function which is recursively defined, and computable, but different 

from previous input, like ℎ:ℕ → ℕ: 

ℎ(𝑥) = 𝑓(𝑥) + 1 = {
𝜑𝑥(𝑥) + 1, 𝑥 ∉ 𝑊𝑥

1, 𝑥 ∈ 𝑊𝑥
 

In this case, 𝑓(𝑥) + 1 ≠ 𝜑𝑥 , ∀𝑥 ∈ ℕ. 

We define a function total, which can be 

𝑓(𝑥) = {
𝜑𝑥(𝑥), 𝑥 ∉ 𝑊𝑥

0, 𝑥 ∈ 𝑊𝑥
 

In this case, the functions remains total in both cases, while also being uncomputable given 𝑓(𝑥) ≠ 𝜑𝑥(𝑥) 

for the single argument 𝑥 ∈ ℕ. 

Define by diagonalization: 

𝑓(𝑥) = {
𝜑𝑥(𝑥), 𝑥 ∈ 𝑊𝑥

𝑘, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

- total by construction 

- non-computable, because 𝜑𝑥(𝑥) ≠ 𝑓(𝑥) 

o if 𝜑𝑥(𝑥) ↓ then 𝜙𝑥(𝑥) ≠ 𝑓(𝑥) 

o if 𝜑𝑥(𝑥) ↑ then 𝜙𝑥(𝑥) ≠ 𝑘 = 𝑓(𝑥) 

- it differs from a single argument 𝑘 ∉ 𝑊𝑥 , 𝑘 ∈ ℕ, as desired 
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Exercise 

Define a total non-computable 𝑓: ℕ → ℕ s.t. 𝑑𝑜𝑚(𝐹) ⊆ {0,1}. Can the function 𝑠𝑔 ∘ 𝑓 be computable? 

Solution 

We use diagonalization in order to prove this. We will get a non-computable function anyway, given if a 

function is computable, the other would be too. 

𝑓(𝑥) = {
𝑠𝑔(𝜑𝑥(𝑥)), 𝑥 ∈ 𝑊𝑥

𝑥, 𝑥 ≥ 0
 

By definition, we find 𝑓(𝑥) ≠ 𝜑𝑥(𝑥) ∀𝑥 ∈ ℕ. But again, given we used diagonalization, the function cannot 

be computable. 

We can define a function respecting the asked requirements as follows: 

𝑓(𝑥) = {
2𝜑𝑥 (

𝑥

2
) + 2, 𝑥 ∈ 𝑊𝑥

0, 𝑥 ∉ 𝑊𝑥

 

This allows us to get access to all even numbers, since this covers all cases for which the codomain (outputs 

of function) are even and thanks to diagonalization 𝜑𝑥 (
𝑥

2
) ≠ 𝑓(𝑥), effectively making it non-computable. 

This exists and to prove it we define a function as follows: 

𝑓(𝑥) = {
0, 𝑥 ∈ 𝑊𝑥

𝜑𝑥(𝑥) + 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Set 𝐷 must be finite in order to accompany this proof and we show it is: it’s total by construction, not 

computable since if 𝜑𝑥(𝑥) ↓, 𝑓(𝑥) = 0 ≠ 𝜑𝑥(𝑥), when 𝜑𝑥(𝑥) ↑, 𝑓(𝑥) ≠ 𝜑𝑥(𝑥) + 1.  

We’re essentially arguing if there are total computable functions which are both total and computable 

different from 𝜑𝑥. But this means this is different from all computable functions, actually, because 

𝑓(𝑥) ≠ 𝜑𝑥(𝑥), ∀𝑥 ∈ 𝐾. For 𝑔 we can take a constant function, which reveals computable ∀𝑛, say 𝑔(𝑥) = 𝑘, 

where 𝑘 = 1. This exists and makes us conclude 𝑔(𝑥) = 1 ≠ 𝜑𝑥(𝑥) = ↑ 

 

 

 

 

It was solved by Baldan in an old 2016 exam. 
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It can be written as 𝜒𝐾 = 𝑠𝑔(𝑓(𝑥) −
. 2𝑥) which would be computable if and only if 𝜒𝐾 is, but we know 𝐾 is 

not recursive, so 𝜒𝐾 is not computable.  

 

 

 

 

This is computable, intuitively, because it is bounded. We need to define the function with a lower bound, 

considering for example 𝑦0 = min{𝑦 | 𝜙𝑦 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑜𝑡𝑎𝑙}. Then, we consider: 

𝑓(𝑥) = {
𝑥, 𝑖𝑓 𝑥 < 𝑦0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= 𝑥 ∗ 𝑠𝑔(𝑦0 −  𝑥) 

which is computable since it is defined by cases.  

 

 

 

 

Solved by the old tutor, this basically involves using the characteristic function of the halting problem, so 

the idea behind 𝜒𝐾.  
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Suppose 𝑓(𝑥) is computable, we define by contradiction 𝜒𝐾 = 𝑠𝑔(|𝑓(𝑥) − 𝜙𝑥(𝑥 + 1) + 1|) which would 

be computable, but 𝜒𝐾 is not.  

 

 

 

 

The function is not computable. Given 𝜑𝑦(𝑦) ∀𝑦 ≤ 𝑥, define a function 𝑦0 = min{𝑦 | 𝜑𝑦(𝑦) ↓}. We then 

define a function  

𝑓(𝑥) = {
𝑥, 𝑥 < 𝑦0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= 𝑥 ∗ 𝑠𝑔(𝑦0 − (𝜑𝑥(𝑥) + 1)) 

Given the function depends on the behavior of 𝜑𝑥 , given 𝑓(𝑥) ≠ 𝜑𝑥(𝑥) + 1, we argue the function is not 

computable – as always by diagonalization. 

 

 

 

The function is not computable, given 𝜙𝑥(𝑥) ≠ 𝑓(𝑥) + 1 ≠ 𝑥 + 1 ∀𝑥 ∈ ℕ. We can consider a function 

𝑔(𝑥) = 𝑠𝑔(𝑓(𝑥) −. (𝑥 + 1)), we get a function in the halting set 𝑔(𝑥) = 𝑋𝐾(𝑥), given it is different from 

𝑥2 the 𝑥 + 1 part thanks to the partial recursion.  

 

 

 

Consider the function 𝑓, almost total and ⊆ 𝜒𝐾. Given this representation, it definitely has to be undefined, 

given the function 𝜒𝐾 would be computable itself in that case.  

Consider simply: 

𝜒𝐾(𝑥) = {
1, 𝑥 ∈ 𝐾
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Since 𝑓 is computable, it should also be total for every possible input, anyway this does not happen for a 

finite set of points and therefore it cannot exist. This can equivalently be shown like the “official” solution, 

using a restriction (the pipe | sign for 𝑥𝐾|𝐷): 
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We will prove there is a function with this requirements but computable, constructing a finite subfunction: 

𝜃(𝑥) = {
𝑓(𝑥), 𝑖𝑓 𝑓(𝑥) ≠ 𝑘

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Therefore, we write 𝑓(𝑥) as follows: 

𝑓(𝑥) = {
𝜃(𝑥), 𝑖𝑓 𝑓(𝑥) ≠ 𝑘
𝑘, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Since the subfunction is finite, it is computable and let 𝜃 = 𝜙𝑒 (so, the finite index of program). 

Thanks to this, we can describe the function as: 

𝑓(𝑥) = 𝜇𝑤. (𝑓(𝑥) ∈ 𝐾 ∧ 𝑆(𝑒, 𝑥, (𝑤)1, (𝑤)2) ∨ (𝑓(𝑥) ∉ 𝐾 ∧ (𝑤)1 = 𝑘))1 

This way, we are considering all cases for 𝑥 and also proving the function is computable, since it is defined 

by cases.  

Yes, we can define such a function, which would essentially compute 𝑥2 if 𝜙𝑥(𝑥) ↓, for example like: 

𝑓(𝑥) = {
𝑥2, 𝑖𝑓 𝜙𝑥(𝑥) ↓

𝑥2 + 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

This holds since 𝑓(𝑥) ≠ 𝜑𝑥(𝑥) + 1, so 𝑥2 + 1 ≠ 𝑥2 and it is not computable since 𝜒𝐾(𝑥) = 𝑠𝑔(𝑓(𝑥) − 𝑥
2) 

Not necessarily the product of non-computable functions leads to something computable or not 

computable, it depends on the case. Assume that this function exists; we are not arguing about the nature 

of the functions themselves but consider 𝑓 = 𝑔 and 𝑓 ∗ 𝑓 is computable, so we have (𝑓 ∗ 𝑓)(𝑥) = 𝑓(𝑥) ∗

𝑓(𝑥) = 𝑓(𝑥2). 

In this case, consider 𝑓(𝑥) = 𝜇𝑦. |𝑓(𝑥2) − 𝑦2| which is computable, leading to a contradiction, considering 

the function was non-computable before.  
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1st idea 

 

 

 

 

 

 

 

- 𝑓 total 

 

- 𝑓(𝑥) = 𝑥   ∀𝑥 even (infinite set) 

 

- 𝑓 not computable (total and ≠ from all total computable functions) (∀𝑥 𝑖𝑓 𝜑𝑥  is total, 𝑓(2𝑥 + 1) =

𝜑𝑥(2𝑥 + 1) + 1 ≠ 𝜑𝑥(2𝑥 + 1))  

 

 

Essentially, the problem considers a non-computable function which when subtracted always gives a 

valuable result, hence “stopping/halting” for each input. So, solution found, the indicator function of the 

halting problem, which is 𝜒𝐾(𝑥). This way, 𝑓(𝑥) −. 𝑥 will give a constant value as 0, otherwise, something 

that always keeps being inside 𝑥 ∈ ℕ, being therefore computable. 

 

 

 

If the sum is not computable, there is not a non-computable function which can make the sum computable. 

Let’s argue it more formally; consider the case where 𝑔𝑓 is the function that is always equal to 𝑓, i.e. 

𝑔𝑓(𝑥) = 𝑓(𝑥) ∀𝑥 ∈ ℕ. Since 𝑓 is non-computable, 𝑔𝑓 also is not.  

The sum would essentially result in 2𝑓 which is again not computable; if it was, then 𝑓 must be computable 

as well, which is not the case.  

To have a function which has the domain inside the halting set, such function should always halt for all 

inputs, or at least, be recursively defined and having a constant value in the codomain, which is the case of 

the constant function over the halting set. 

𝑓(𝑥) =

{
 

 
𝑥, 𝑖𝑓 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛

𝜙𝑥−1
2

(𝑥) + 1, 𝑖𝑓 𝑥 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝜙𝑥−1
2

(𝑥) ↓

0, 𝑖𝑓 𝑥 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝜙𝑥−1
2

(𝑥) ↑ 
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So, we define 𝑓(𝑥) = 𝜑𝑥(𝑥) and 𝑑𝑜𝑚(𝑓) = 𝐾; we will consider an index of the constant function 

𝑘 𝑠. 𝑡. 𝑓(𝑒) = 𝜑𝑒(𝑒) = 𝑘 and the codomain 𝑐𝑜𝑑(𝑓) = ℕ 

Alternatively, one can use the minimalization over the 𝑡 steps of the halting function, simply saying that 

“the function will halt on input 𝑥, with output 𝑥 in 𝑡 steps being sure to stop, hence the −1 and the 

program will be computable for sure, using 𝛾 which is the encoding.  

 

 

 

 

 

 

 

 

 

Yes, there is. Consider a function which allows us to obtain a prime number while also being different from 

all computed values, for instance, 𝑓(𝑥) ≠ 𝜑𝑥(𝑥). Consider the set of prime number is not computable, so 

we would need a diagonalization argument. We can either consider a function in which we give a max or a 

min of all values, considering “we would never reach that”, so: 

𝑓(𝑥) = {
𝑝, 𝑥 ∈ 𝑊𝑥
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

In which 𝑝 = max {𝑝′ ∈ Pr | 𝑝′ < 𝜙𝑥(𝑥). 

The functions: 

- is total, given it’s defined for all natural numbers in any case of definition 

- it’s not computable, since we have ∀𝑥 ∈ ℕ, 𝑓(𝑥) ≠ 𝜑𝑥(𝑥), we would get a prime number smaller 

than the recursion (which never happens, given the prime set is not computable), otherwise we get 

0 

- the image is included, because given a definite prime number, using the constant function, we 

might get back the original value, considering is total and for each valuable index 𝑛, the ordering 

property of natural numbers holds. 

o this is like saying 𝑓(𝑛) = max {p′ ∈ Pr| 𝑝′ > 𝜑𝑛(𝑛)} > max {𝑝
′ ∈ Pr | 𝑝′ > 𝜑𝑛(𝑛)}, thus 

having 𝑝′ ∈ 𝑖𝑚𝑔(𝐹) and so 𝑝 
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Exercise (2022-01-19) 

  

 

Solution 

Such a function can exist, for instance let’s define a function 𝑓: ℕ → ℕ 𝑠. 𝑡. 

𝑓(𝑥) = {
0, 𝑥 ∉ 𝑊𝑥  𝑜𝑟 𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 2

𝜙𝑥
2
(𝑥), 𝑥 ∈ 𝑊𝑥  𝑜𝑟 𝑥 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 2

 

Such function: 

- is total by construction (defined by cases) 

- 𝑓(𝑥) = 𝑓(𝑥 + 1) = 0 when 𝑥 and 𝑥 + 1 are defined, given they are not multiples of 2 

- it is not computable, considering ∀𝑥 ∈ 𝑁, 𝑓 ≠ 𝜙𝑥 , specifically 𝜙𝑥
2
(𝑥) ≠ 𝜙𝑥

2
(𝑥 + 1) when 𝜙𝑥

2

(𝑥) ↓. 

When 𝜙𝑥
2

(𝑥) ↑, then 𝑓(2𝑥) = 0 ≠ 𝜙𝑥
2
(2𝑥) 

An intricate yet interesting approach from prof. Baldan: 

  

 

 

  

 

 

 

 

Exercise (latest lessons 2021-2022) 

Is there a total computable function 𝑓: ℕ → ℕ 𝑠. 𝑡. 𝑔(𝑥) = ∏ 𝑓(𝑦)𝑦<𝑥  is computable? 

Solution 
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So, it can’t exist. Suppose 𝑔(𝑥) = ∏ 𝑓(𝑦)𝑦<𝑥  is computable then, 𝑓(𝑦) has to be computable, specifically 

using 𝑔 as a recursive definition, something like: 𝑓(𝑥) = 𝑔(𝑥 − 1) ∗ 𝑔(𝑥) which should be computable 

considering it is the composition of computable functions, which actually is not.  

Exercise (2010-03-19) 

Prove if the function 𝑓: ℕ → ℕ defined as: 

𝑓(𝑥) = {
𝑥, ∀𝑥 ≤ 𝑥, 𝜙𝑦 𝑡𝑜𝑡𝑎𝑙

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

is computable. Give adequate reasons for your answer. 

Solution 

The function is computable. Given 𝜙𝑦(𝑦) is total, define 𝑦0 = min{𝑦 | 𝜙𝑦(𝑦) ↓}. We then define a function  

𝑓(𝑥) = {
𝑥, 𝑥 < 𝑦0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= 𝑥 ∗ 𝑠𝑔(𝑦0 − 𝜙𝑦(𝑦)) 

which is computable.  

Exercise (2019-11-18-solved) 

Define a total non-computable function 𝑓: ℕ → ℕ s.t. 𝑑𝑜𝑚(𝑓) ⊆ {0,1}. 

Can the function 𝑠𝑔 ∘ 𝑓 be computable? Motivate your answer 

Solution 

Define 𝑓:ℕ → ℕ by diagonalization as follows: 

𝑓(𝑥) = {
𝑠𝑔(𝜙𝑥(𝑥)), 𝑥 ∈ 𝑊𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑓 is total but not computable, given by definition 𝑓(𝑥) ≠ 𝜙𝑥(𝑥) ∀𝑥 ∈ 𝑁. 

Observe 𝑠𝑔 ∘ (𝑠𝑔 ∘ 𝑓), so if it 𝑠𝑔 ∘ 𝑓 were computable, also 𝑓 would be computable by composition, but it 

is not.  

Exercise (2017-11-20) 

Is there a total non-computable function 𝑓: ℕ → ℕ s.t. 𝑐𝑜𝑑(𝑓) = {𝑦 | ∃𝑥 ∈ ℕ. 𝑓(𝑥) = 𝑦} is finite? Show an 

example or show that this function cannot exist. 

Solution 

Yes, it exists. Consider: 

𝑓(𝑥) = {
𝑠𝑔(𝜙𝑥(𝑥)), 𝑥 ∈ 𝑊𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The function 𝑓: 

- is total 

- is not computable since for all 𝑥 ∈ 𝑁 we have 𝑓(𝑥) ≠ 𝜙𝑥(𝑥); infact, if 𝜙𝑥(𝑥) ↓ then 𝑓(𝑥) =

𝑠𝑔(𝜙𝑥(𝑥)) ≠ 𝜙𝑥(𝑥) and if instead 𝜙𝑥(𝑥) ↑ then 𝑓(𝑥) = 0 ≠ 𝜙𝑥(𝑥) 

- clearly, 𝑐𝑜𝑑(𝑓) ⊆ {0,1} 
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Exercise (2018-11-20-parziale) 

Is there an index 𝑒 ∈ ℕ and a non-computable function 𝑓: ℕ → ℕ, such that denoted by 𝑑𝑜𝑚(𝑓) and 

𝑐𝑜𝑑(𝑓) domain and codomain of 𝑓 (such that 𝑑𝑜𝑚(𝑓) = {𝑥 | 𝑓(𝑥) ↓} and 𝑐𝑜𝑑(𝑓) = {𝑦 | ∃𝑥. 𝑓(𝑥) = 𝑦}), 

we have 𝑑𝑜𝑚(𝑓) = 𝑊𝑒 and 𝑐𝑜𝑑(𝑓) = 𝐸𝑒? Show an example or bring a counterexample. Can a function 𝑓 

such that 𝑑𝑜𝑚(𝑓) = 𝑊𝑒 and 𝑐𝑜𝑑(𝑓) = 𝐸𝑒  be found for all 𝑒 ∈ ℕ? 

Solution 

For the first part, consider an index 𝑒 ∈ ℕ for the identity function, so 𝑊𝑒 = 𝐸𝑒 = ℕ and define: 

𝑓(𝑥) = {
𝜙𝑥(𝑥) + 1, 𝑥 ∈ 𝑊𝑥

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The function 𝑓 is total, so 𝑑𝑜𝑚(𝑓) = ℕ = 𝑊𝑒. Moreover, 𝑑𝑜𝑚(𝑓) = ℕ = 𝐸𝑒. In fact, for each 𝑛 ∈ ℕ, if 𝑛 =

0 then, given an index 𝑥 of the always undefined function, we have 𝑓(𝑥) = 0. If 𝑛 > 0, then consider 

whatever index 𝑥 of the constant function 𝑛 − 1 and we have 𝑓(𝑥) = 𝑛 − 1 + 1 = 𝑛. 

For the second question, the answer is clearly no. For example, if we consider 𝑒 ∈ ℕ such that 𝜙𝑒 is the 

always undefined function, every 𝑓 such that 𝑑𝑜𝑚 (𝑓) = 𝑊𝑒 = ∅ coincides with 𝜙𝑒 and so it is computable.  

Exercise (2020-11-23) 

Define a total non-computable function 𝑓: ℕ → ℕ s.t. 𝑖𝑚𝑔(𝑓) = {2𝑛 | 𝑛 ∈ ℕ} (where 𝑖𝑚𝑔(𝑓) =

{𝑓(𝑥) | 𝑥 ∈ ℕ} 

Solution 

Proceed by diagonalization defining: 

𝑓(𝑥) = {
2𝜙𝑥(𝑥), 𝑖𝑓 𝑥 ∈ 𝑊𝑥

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The function 𝑓 is clearly total. Moreover: 

- 𝑓 not computable since ∀𝑥 ∈ ℕ, 𝑓 ≠ 𝜙𝑥, so 𝑓 is different from all computable function. Infact, if 

𝑥 ∈ 𝑊𝑥 then 𝑓(𝑥) = 2𝜙𝑥(𝑥) > 𝜙𝑥(𝑥) and so 𝑥 ∉ 𝑊𝑥  we have 𝑓(𝑥) = 1 ≠ 𝜙𝑥(𝑥) given 𝜙𝑥(𝑥) ↑. 

 

- It holds 𝑖𝑚𝑔(𝑓) = {2𝑛 | 𝑛 ∈ ℕ}. By definition, 𝑖𝑚𝑔(𝑓) ⊆ {2𝑛 | 𝑛 ∈ ℕ} given 𝑥 ∈ 𝑊𝑥  and so 𝑓(𝑥) =

2𝜙𝑥(𝑥) and 𝑥 ∉ 𝑊𝑥  then 𝑓(𝑥) = 1 = 20. The converse implication also holds. Infact, given any 𝑛 ∈

𝑁, the constant function 𝑛 is clearly computable. Using 𝑥 as whatever index for that function, 

𝜙𝑥(𝑦) = 𝑛 for all 𝑦 given 𝑥 ∈ 𝑊𝑥 = ℕ it holds 𝑓(𝑥) = 2𝜙𝑥(𝑥) = 2𝑛. 
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22.7 REDUCTION, RECURSIVENESS AND RECURSIVE ENUMERABILITY 
Note: understand exactly what reduction does and read carefully what you have to prove and try to prove 

it the simplest way possible (knowing what recursive/semidecidable and other things are). They are “if and 

only if” – prove the first part and then move to the second one, keeping the conditions. 

If 𝐴 is recursive, then its function is computable and so we want to make a function in which 𝑓(𝑥) > 𝑥, so 

we can create for example 𝑓(𝑥) = 𝑥 + 𝜒𝐴(𝑥), where 𝜒𝐴 is the characteristic function. Given it holds if and 

only if the function is 𝑓(𝑥) > 𝑥, then we can have: 𝜒𝐴(𝑥) = 𝑠𝑔(𝑓(𝑥)−
. 𝑥) is computable and therefore 𝐴 is 

recursive. 

Let 𝐴 be recursive, then like before the characteristic function 𝑋𝐴 is computable. We can give some values 

for the functions, say 𝑓(𝑥) =
𝑥

2
 and 𝑔(𝑥) =

𝑥

3
, respecting the condition. The functions are computable if 

and only if 𝑓(𝑥) > 𝑔(𝑥),  and so like before we can use 𝜒𝐴(𝑥) = 𝑠𝑔(𝑓(𝑥) −
. 𝑔(𝑥)) and therefore 𝐴 is 

recursive and 𝜒𝐴 computable. 

 

As before, let 𝐴 recursive, then 𝜒𝐴 is computable. We try to give a value to the reducing function, which can 

be something which can give 0 as a result, which means it terminates. We argue the function can be 1 +

𝜒𝐴(𝑥). Conversely, if reduction holds, we have 𝜒𝐴(𝑥) = 𝑠𝑔(𝑓(𝑥)), giving the appropriate finite value and 

then 𝐴 is recursive and the function is computable. 

Given 𝐴 is r.e., there exists a 𝑠𝑐𝐴 computable and so 𝑦 = 𝑓(𝑥) for some 𝑥 ∈ 𝐴. To prove this, we have to 

define how 𝑠𝑐𝐴 should appear, hence composing 𝑓(𝐴) and 𝑓 together, obtaining this way all inputs. 

Hence, we give: 

𝑠𝑐𝐹(𝐴)(𝑦) = 𝟏(𝜇𝑤. |𝜒𝐴 − 1|) 

considering the possible function to give is 

𝜒𝑓(𝐴)(𝑦) = {
1, ∃𝑥 ∈ 𝐴 𝑠. 𝑡. 𝑓(𝑥) = 𝑦

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

hence, if this one semidecides 𝑓(𝐴) it returns the required 𝑦 if there exists some 𝑥 ∈ 𝐴 𝑠. 𝑡. 𝑓(𝑥) = 𝑦. This 

makes 𝑓(𝐴) recursively enumerable.  

The converse is not true, considering for example 𝑓(𝐴) = {0}, which is clearly an enumerable set, but 𝐴 is 

not r.e. 
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Since 𝐴 it’s recursive, there exists a total computable function 𝑋𝐴 and we consider: 

𝑠𝑐𝑓(𝐴)(𝑥) = 𝜒𝐴(𝜇𝑤. 𝑓(𝑥) − 𝑦) 

The function semi-decides the predicate whether 𝑦 ∈ 𝐴 but is not necessarily recursive, given the set of 

𝑓(𝐴) can be infinite and so 𝑓(𝐴) is not recursive. 

As a counterexample, consider the function 𝑓:ℕ → ℕ defined as 𝑓(𝑥) = 2𝑥 and the recursive set 𝐴 =

{𝑥 |𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛}. The set 𝑓(𝐴) is cleary r.e., but not recursive, given we know nothing about the nature of the 

underlying set.  

If 𝐴 is recursive, there exists some function able to compute it, which is 𝜒𝐴(𝑓(𝑥)). This is infact obtained by 

the semicharacteristic function this way: 

𝑠𝑐𝑓−1(𝐴)(𝑥) = 𝜒𝐴(𝑓(𝑥)) 

The set 𝑓−1(𝐴) is not recursive, given it is the halting set 𝐾 (so, it holds 𝑠𝑐𝐾
−1(ℕ) = 𝐾 

 

We can prove this in two ways: 

(⇒) If 𝐴 is r.e., there exists a total computable function able to compute its inputs and effectively provide 

outputs. Hence, the semicharacteristic function can be described by the smn-theorem as the 

parametrization of the underlying subinputs, specifically as 𝑔(𝑥, 𝑦) = 𝑠𝑐𝐴(𝑥, 𝑦). 

(⇐) If 𝐴 is reducible to 𝐾, it means there is only one 𝑥 ∈ 𝐴 for which 𝑓(𝑥) ∈ 𝐾. This means that the 

function 𝑠𝑐𝐴(𝑥) can be defined as 𝑠𝑐𝐾(𝑓(𝑥)), this way obtaining a single value as shown by the smn-

theorem, like 𝑠𝑐𝐴(𝑥, 𝑦) = 0/1 if 𝑓(𝑥) ∈ 𝐾 or 𝑓(𝑥) ∉ 𝐾 

 

 

If a set 𝐴 is r.e., we consider 𝑓(𝑥) = 𝑥 ∗ 𝑠𝑐𝐴(𝑥), which means we can either obtain that value or not. 

Conversely, if 𝐴 = 𝑖𝑚𝑔(𝑓) for the function 𝑓, we can define 𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑤. (𝑓(𝑧) − 𝑦), which can be 

done by partial recursion and composition like 𝑓(𝑥) = 𝜙𝑒 for a suitable 𝑒 ∈ 𝑁, doing 𝑠𝑐𝐴(𝑥) =

𝟏(𝜇𝑤. 𝑆(𝑒, (𝑤)1, 𝑥, (𝑤)2)).  
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Let 𝑓:ℕ → ℕ be a computable function. Considering the predicate is semidecidable, there exists a 

semicharacteristic function able to compute 𝑓(𝑥). Specifically, if we consider 𝑓 as the computation of the 

program on index 𝑒 such that 𝑓 = 𝜙𝑒 then we have 𝑠𝑐𝑃(𝑥, 𝑦) = 𝟏(𝜇𝑤. |𝑓(𝑥) − 𝑦|) as computable, given 

𝑃𝑓(𝑥, 𝑦) is semidecidable. 

Viceversa, if 𝑃 is semidecidable, there exists a program 𝑒 such that 𝜙𝑒 = 𝑠𝑐𝑃. Then, we can characterize the 

semicharacteristic function using the computation of index 𝑒 over 𝑓(𝑥) such that: 

𝑓(𝑥) = 𝜇𝑤. (𝐻(𝑒, 𝑥, (𝑤)1, (𝑤)2) ∧ 𝑆(𝑒, (𝑤)1, (𝑤)2) 

which is computable thanks to 𝑓. Alternatively, for this last part: 

 

Let’s start defining a function just like the exercise defined. We define a function 𝑔:ℕ → ℕ which is both 

recursive and infinite, like 𝑔(𝑥) = ∏ 𝜒𝐴(𝑦)𝑦 + 𝜙𝑥 

This function, given the productory lists all elements according to the underlying property, assigns values in 

a monotone way, increasing each time as 𝑥 increases. Given it is monotone, for each 𝑥 ∈ ℕ, 𝑔(𝑥) ≤ 𝑔(𝑥 +

1). This is also infinite, cause the result of recursion is inside the natural and so 𝑖𝑚𝑔(ℕ) = ℕ. We then 

define the function 𝑓 as follows, via minimalization, hence making the computation possible (for the 

property 𝑥 < 𝑦). 

𝑓(𝑥) = 𝜇𝑥. 𝑔(𝑥 + 1) = 𝑛 + 1 

The function is computable, given it uses minimalization, and it is total, given the image is always defined 

recursively over the naturals. By using this definition, it is also increasing, given 𝑥 < 𝑦, hence constructing 

𝑔(𝑛) < 𝑔(𝑚) = 𝑔(𝑓(𝑛) + 1) < 𝑔(𝑓(𝑚) + 1 and therefore 𝑓(𝑛) < 𝑓(𝑚) 

The characteristic function 𝑥𝐴 allows us to get 𝑥, which will get 1 if 𝑥𝐴(𝑥) = 1 otherwise will allow us to get 

𝑛 + 1. 

For the converse implication, we use the image of function itself as infinite, with a function total 

computable and increasing. Given the set 𝐴 is infinite and increasing, we can see 𝑓(𝑥) ≥ 𝑧 𝑠. 𝑡. 𝑧 ≤ 𝑦. This 

way, the characteristic function can be expressed as 𝑋𝐴(𝑥) = 𝑠𝑔(∏ 𝑔(𝑧)
𝑦
𝑧=0 + 𝑓(𝑥)|). This ensures 𝑓(𝑥) ≥

𝑧 is satisfied and it’s defined totally on all possible values, hence being computable. 

  



293   Computability simple (for real) 
 

Written by Gabriel R. 

We will prove this in two ways: 

- Assuming we have the 𝜋 function, which is the encoding in pairs, it holds there exists a computable 

function 𝑓(𝑥) = 𝜙𝑥 = Ψ𝑈(𝑥, 𝑥). Considering a suitable index 𝑒 ∈ ℕ, we use a function 𝑓 = 𝜙𝑒 as 

follows, considering both input and output will be inside the domain (using 𝜋 as encoding instead 

of 𝑤: 

𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑤. 𝑆(𝑒, (𝜋)1, 𝑥, (𝜋)2) ∧ 𝐻(𝑒, (𝜋)1, 𝜋, (𝜋)3)) 

Given this definition, we consider a function ℎ:ℕ → ℕ be such that ℎ(𝑥) = 𝜋(𝑔(𝑥)) and since 𝑔 is 

computable, ℎ(𝑥) also is. Hence, the semicharacteristic function semidecides the predicate and 

𝜒𝐴(𝑓) is computable and the set is r.e. 

- Assume now 𝐴𝑓 is r.e. hence there exists a total computable function 𝑔:ℕ → ℕ 𝑠. 𝑡. 𝐴𝑓 = 𝑖𝑚𝑔(𝑔) 

and it means there exists a corresponding 𝑔(𝑦) = 𝜋(𝑥, 𝑓(𝑥)). By minimalization, the encoding in 

pairs will give us back exactly one value, the needed one, so we can express: 

𝑓(𝑥) = 𝟏(𝜇𝑥. (𝑔(𝑦) − 𝜋 (𝑥(𝑓(𝑥)))) 

 Hence showing that if it is r.e., it is computable. 

 

If 𝐴 is recursive, there exists its characteristic function 

𝜒𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑜𝑠𝑒

 

If 𝐴 is recursive, by definition such function is computable, and it is total. It is immediate to see that it is a 

reduction function for 𝐴 ≤𝑚 {0} since 𝑥 ∈ 𝐴 iff 𝜒𝐴(𝑥) = 0 iff 𝜒𝐴(𝑥) ∈ {0}.  

 

 

We will prove this in two ways: 

If 𝐴 is a non-empty set, we will prove this is r.e., defining a function for example like: 

𝑓(𝑥) = {
𝑝, 𝑖𝑓 𝑥 ∈ 𝑊𝑥  𝑎𝑛𝑑 𝑝 = min {𝑝

′ ∈ Pr | 𝑝′ < 𝜙𝑥(𝑥)}
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The function defined this way: 

- is total, given it is defined for all natural numbers 

- it’s computable, given we characterize the following: 

𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑤. 𝑆(𝑥, (𝑤)1, 𝑝, (𝑤)2) 

also, given the condition 𝑓(𝑥) < 𝜙𝑥(𝑥) and will halt for its values having 𝜙𝑥(𝑥) ↓ when 𝑓(𝑥) has a 

prime number smaller than 𝜙𝑥(𝑥), having it defined for all cases 

- we have 𝑖𝑚𝑔(𝑓) = 𝐴, given from each prime number we can construct a constant function 𝑔(𝑥) =

𝑝 − 1 ∀𝑥 ∈ ℕ and the function is computable given for a suitable index 𝑛 we can construct 𝑔 = 𝜙𝑛 
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For the converse implication, if 𝐴 is r.e., there exists a semicharacteristic function s.t. 𝑑𝑜𝑚(𝑓) = 𝑝 and 

𝑖𝑚𝑔(𝑓) = 𝐴. We construct 𝑓(𝑥) = 𝑥 ∗ 𝑠𝑐𝐴(𝑥) and this will be well-defined when describing: 1 if elements 

are in 𝐴, ↑ if not (in that case, the function 𝑓(𝑥) = 0 for any fixed value to have it well-defined), given it will 

halt giving in output a definite prime number, making it computable and defined for all possible values. 

Consider in the first case 𝐴 is not recursive and it is saturated, since {𝐴 = 𝑥: 𝜙𝑥 ∈ 𝒜} where 𝒜 =

{𝑓 | 𝜑𝑥(𝑥) ↓ } . By Rice’s theorem, we have that 𝐴 ≠ ∅, 𝐴 ≠ ℕ since: 

- if 𝑒 ∈ ℕ, consider 𝜙𝑒 = 𝑖𝑑 and so 𝑒 ∈ 𝐴, since 𝑒 ∈ ℕ and 𝜙𝑒 = 𝟏 ∈ ℕ, but ≠ ℕ 

- if 𝑒′ ∈ ℕ consider 𝜙𝑒
′ = ∅ then 𝑒 ∉ 𝐴, so 𝑒 ∉ ∅ and 𝜙𝑒 = 𝟏 ≠ ∅ 

We already see the set is not recursive. For the converse set it’s literally the same proof. Therefore, given 

they are both not recursive, they would not be r.e. 

Looking at the problem definition, it cannot exist, because 2𝑦 − 1 to be inside 𝐸𝑥 must be recursively 

defined, hence recursively enumerable inside a set. The problem gives us the complement of the halting 

set, which we know it is not r.e. More precisely, this can be seen as 𝐾 = {2𝑦 − 1: 𝑦 ∈ 𝐸𝑥} = 𝑖𝑚𝑔(𝑓 ∘ 𝐸𝑥) 

which would imply the set is r.e., unlike 𝐾 and they cannot coincide. 

 

 

 

 

For the first part, we are trying to prove transitivity, so if we consider 𝐴, there must be a computable 

function 𝑓: ℕ → ℕ such that 𝑓(𝑥) ∈ 𝐵 ∀𝑥 ∈ ℕ and 𝑥 ∈ 𝐴. 

Similarly for 𝐵, there will be a total computable function 𝑔:ℕ → ℕ s.t. ∀𝑦 ∈ ℕ, 𝑦 ∈ 𝐵, 𝑔(𝑦) ∈ 𝐶. Using 

composition ensures that considering a composing function ℎ:ℕ → ℕ as ℎ(𝑥) = 𝑔(𝑓(𝑥)), it will happen 

that ℎ(𝑥) = 𝑔(𝑓(𝑥)) ∈ 𝐶, ensuring the previous properties (given 𝑔 ∘ 𝑓 holds as computable).  

For the second part, if 𝐴 is not inside the naturals, we simply consider a value which is not present inside 

the set. This way, the always undefined function will reduce to 𝐴 iff and only if it is defined on a value the 

original set is never defined upon, giving “empty” as a result (more formally, a fixpoint). We simply consider 

for example 𝑎0 𝑠. 𝑡. 𝑎0 ∉ 𝐴, 𝑓(𝑥) = 𝑎0. This holds for each 𝑥 ∈ ℕ, hence working properly. 

For the first part, we recall the definition given here for reduction. The intersection does not hold, since {0} 

is part of the naturals, but here can happen 𝑥 ∈ ℕ ∖ {0} and so the reduction cannot work.  
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In general, this holds, but we have to distinguish cases over the 0 value: 

- if 0 ∈ 𝐴 it will hold for all sets 𝐴 and the function will simply map 0 into 𝐴 using for example the 

constant function or the identity function on 0 

- if 0 ∉ 𝐴, given 𝐴 is finite and ≠ ℕ we would have 𝑥0 ∉ 𝐴, 𝑥0 ≠ 0 and so the reduction function can 

be: 

𝑓(𝑥) = {
𝑥0, 𝑖𝑓 𝑥 = 0
𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

Considering 𝐴 ≤𝑚 𝐾, we know 𝐴 is r.e., given 𝐾 is r.e. too. Specifically, a semicharacteristic function can be 

defined as: 

𝑠𝑐𝐴(𝑥) = {
1, 𝑥 ∈ 𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

To properly define it, given 𝐴 is r.e., we can use the smn-theorem defining a total computable function 

𝑠: ℕ → ℕ s.t. 𝑔(𝑥, 𝑦) = 𝑠𝑐𝐴(𝑥) = 𝜙𝑠(𝑥)(𝑦) and this way, given there exists only one index on which this is 

parametrized, then 𝑠 can be correctly considered as a reduction function for 𝐴 ≤𝑚 𝐾.  
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Theorem 

Let 𝐴 ⊆ ℕ be a set, 𝐴 ≠ ∅, 𝐴 ≠ ℕ. If 𝐴 is saturated, then 𝐴 is not recursive.  

Proof 

We start from the halting problem, making it reducible to 𝐴. So: 

𝐾 ≤𝑚 𝐴 (since 𝐾 is not recursive → 𝐴 is not recursive) 

To remember, this happens with reduction “behind the scenes”: 

 

 

 

 

 

Let 𝑒0 be an in index 𝑠. 𝑡. 𝜙𝑒0(𝑥) ↑ ∀𝑥 (program for the function always undefined) 

1) Assume 𝑒0 ∉ 𝐴 

Let 𝑒1 ∈ 𝐴 (it exists since 𝐴 ≠ ∅) 

define  

𝑔(𝑥, 𝑦) = {
𝜙𝑒1(𝑦), 𝑖𝑓 𝑥 ∈ 𝐾

𝜙𝑒0(𝑦), 𝑖𝑓 𝑥 ∈ 𝐾
 

= {
𝜙𝑒1(𝑦), 𝑖𝑓 𝑥 ∈ 𝐾        [𝜙𝑥(𝑥) ↓]

↑, 𝑖𝑓 𝑥 ∈ 𝐾        [𝜙𝑥(𝑥) ↑]
 

= 𝜙𝑒1(𝑦) ∗ 𝟏 (𝜙𝑥(𝑥)) 

 

= 𝜙𝑒1(𝑦) ∗ 𝟏(Ψ𝑈(𝑥, 𝑥)) 

computable. 

By the smn-theorem, there is 𝑠: ℕ → ℕ total and computable s.t. ∀𝑥, 𝑦: 

𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = {
𝜙𝑒1(𝑦), 𝑖𝑓 𝑥 ∈ 𝐾

𝜙𝑒0(𝑦), 𝑖𝑓 𝑥 ∈ 𝐾
 

𝑠 is the reduction function for 𝐾 ≤𝑚 𝐴 

* 𝑥 ∈ 𝐾 ⇒ 𝑠(𝑥) ∈ 𝐴 

𝑖𝑓 𝑥 ∈ 𝐾 𝑡ℎ𝑒𝑛 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝜙𝑒1(𝑦)  ∀𝑦  

𝑖. 𝑒. 𝜙𝑠(𝑥) = 𝜙𝑒1  since 𝑒1 ∈ 𝐴 and 𝐴 saturated → 𝑠(𝑥) ∈ 𝐴 

* 𝑥 ∉ 𝐾 ⇒ 𝑠(𝑥) ∉ 𝐴 
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𝑖𝑓 𝑥 ∉ 𝐾 𝑡ℎ𝑒𝑛 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝜙𝑒0(𝑦)  ∀𝑦  

𝑖. 𝑒. 𝜙𝑠(𝑥) = 𝜙𝑒0  since 𝑒0 ∉ 𝐴 and 𝐴 saturated → 𝑠(𝑥) ∉ 𝐴  

Hence, as expected by our construction, 𝑠 is the reduction function and since 𝐾 is not recursive, we deduce 

𝐴 not recursive either.  

2) if instead 𝑒0 ∈ 𝐴 

𝑒0 ∉ 𝐴  

𝐴 saturated (since 𝐴 is saturated) 

𝐴 ≠ ∅ (since 𝐴 ≠ ℕ) 

𝐴 ≠ ℕ (since 𝐴 ≠ ∅) 

→ by (1) applied to 𝐴 we deduce 𝐴 not recursive → 𝐴 not recursive  

Definition 

A subset 𝐴 ⊆ 𝑁 is saturated (or extensional) if ∀ 𝑚, 𝑛 ∈ ℕ 

𝑖𝑓 𝑚 ∈ 𝐴 𝑎𝑛𝑑 𝜙𝑚 = 𝜙𝑛 𝑡ℎ𝑒𝑛 𝑛 ∈ 𝐴 

(in words: given two programs, if the first program is in the set of programs satisfying the property and two 

programs are computing the same thing, then also the second program satisfies the property. This means 

that if one program with a certain property is in the set, all programs computing the same function must 

also be in the set.).  

⇕ 

𝐴 saturated if 𝐴 = {𝑛 | 𝜙𝑛 satisfies a property of functions} = {𝑛 | 𝜙𝑛 ∈ 𝐴}  

where 𝐴 ⊆ 𝐹 

 

* 𝐾 = {𝑛 | 𝜙𝑛(𝑛) ↓} (this is the halting problem, checking if it terminates over the program code) 

Formally, I should find 𝑚, 𝑛 ∈ 𝑁 

𝑚 ∈ 𝐾        𝜙𝑚(𝑚) ↓ 

𝑚 ∉ 𝐾          𝜙𝑛(𝑛) ↑ 

(they have different values, but they are computing the same function).  

 

If we were able to show there is a program 𝑚 ∈ 𝑁 𝑠. 𝑡. 

𝜙𝑚(𝑥) = {
1, 𝑖𝑓 𝑥 = 𝑚

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

  

property of functions set of all functions 

and 𝜙𝑚 = 𝜙𝑛 
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we can conclude:  

1) 𝑚 ∈ 𝐾         𝜙𝑚(𝑚) ↓ 

2) for a computable function there are infinitely many programs hence there is 𝑛 ≠ 𝑚 𝑠. 𝑡. 𝜙𝑚 = 𝜙𝑛 

3) 𝑛 ∉ 𝐾 

𝜙𝑛(𝑛) = 𝜙𝑚(𝑛) ↑ 

 

 

 

𝐾 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑! 

If 𝐴 is not r.e. then consider the identity function 𝑖𝑑 for which it is defined for all natural numbers and 

consider as a finite subfunction 𝜃 = 𝟏 (constant 1), which might not be defined for all situations. 

For example, more formally consider: 

𝑠𝑐𝐾(𝑥) = {
1, 𝑥 ∈ 𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

which is not r.e. and a finite subfunction like the previously defined is finite but ∉ 𝒜 

Exercise 

Let 𝐴 ⊆ ℕ be a set and let 𝑓:ℕ → ℕ be a computable function. Is it true if 𝐴 is r.e. then 𝑓−1(𝐴) =

{𝑥 ∈ 𝑁 | 𝑓(𝑥) ∈ 𝐴} is r.e.? And if 𝐴 is recursive, then 𝐴−1 is recursive? 

Solution 

Given 𝐴 is a computable function, then we know 𝑓(𝑥) ∈ 𝐴 𝑠. 𝑡. 𝑓(𝑥) ↓ and there is a semicharacteristic 

function able to compute it, for example able to compute 𝑠𝑐𝐴(𝑓(𝑥)) = 1 where 𝑠𝑐𝐴 is the 

semicharacteristic function and it exists, giving 𝐴 as r.e. Then, 𝑠𝑐𝑓−1(𝐴) = 𝑠𝑐𝐴(𝑓(𝑥)) computable since it is 

the composition of computable functions, so 𝑓−1(𝐴) is r.e. 

For the second part, we’re arguing that if the first set is recursive, a set maintaining the same property on 

the image is also recursive. This does not happen however; consider the semicharacteristic function of the 

halting set defined as 𝑠𝑐𝐾 = {𝑥 ∈ 𝐾 | 𝑓(𝑥) ↓}, so 𝑠𝑐𝑘
−1 = {𝑥 |𝑠𝑐𝐾(𝑥) ↓} = 𝐾 not recursive, considering 𝑁 is 

recursive.  

Exercise (16-09-2020) 

Consider 𝐴, 𝐵 ⊆ ℕ. Define the reduction notion for 𝐴 ≤𝑚 𝐵. Consider set 𝑆4 = {4 ∗ 𝑛 | 𝑛 ∈ 𝑁}, so the set 

of multiples of 4. Show that 𝐴 is recursive iff 𝐴 ≤𝑚 𝑆4. 

Solution 

Recalling the definition for the reduction: 

Given 𝐴, 𝐵 ⊆ ℕ, we say the problem 𝑥 ∈ 𝐴 reduces to "𝑥 ∈ 𝐵"  (or simply that 𝐴 reduces to 𝐵) if there is a 

total computable function 𝑓: ℕ → ℕ 𝑠. 𝑡. ∀𝑥 ∈ ℕ 

𝜙𝑛 = 𝜙𝑚 𝑛 ≠ 𝑚 
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𝑥 ∈ 𝐴  𝑖𝑓𝑓 𝑓(𝑥) ∈ 𝐵 

Set 𝐴 is recursive, consider we can consider 𝑔(𝑥, 𝑦) = 𝑦 if 𝑥 ∈ 𝑆4 and 𝑔(𝑥, 𝑦) = 𝑠𝑐𝑆4(𝑥) ∗ 𝑦. By the smn-

theorem, there is a total computable function 𝑠:ℕ → ℕ 𝑠. 𝑡. 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) and this can be shown to 

be the reduction function of such problem: 

- if 𝑥 ∈ 𝑆4 then 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) = 𝑦 , ∀𝑦 ∈ ℕ then 𝐸𝑠(𝑥) = ℕ and 4 ∗ ℕ ∈ 𝐸𝑠(𝑥). So, 𝑠(𝑥) ∈ 𝑆4 

 

- if 𝑥 ∉ 𝑆4 then 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) ↑, ∀𝑦 ∈ ℕ. In this case 𝐸𝑠(𝑥) = ∅ and 4 ∗ 𝑛 ∉ 𝐸𝑠(𝑥), so 𝑠(𝑥) ∉ 𝑆4 

Exercise (15-05-2020) 

Let 𝐴, 𝐵 ⊆ ℕ s.t. 𝐴 is finite and 𝐵 ≠ ∅,ℕ. Show 𝐴 ≤𝑚 𝐵 

Solution 

Given 𝐴, 𝐵 ⊆ ℕ, we say the problem 𝑥 ∈ 𝐴 reduces to "𝑥 ∈ 𝐵"  (or simply that 𝐴 reduces to 𝐵) if there is a 

total computable function 𝑓: ℕ → ℕ 𝑠. 𝑡. ∀𝑥 ∈ ℕ 

𝑥 ∈ 𝐴  𝑖𝑓𝑓 𝑓(𝑥) ∈ 𝐵 

Define: 

𝑔(𝑥, 𝑦) = {
𝑏1, 𝑥 ∈ 𝐴
𝑥, 𝑥 ∉ 𝐴

 

with 𝑏1 ∈ 𝐵 and 𝑏2 ∉ 𝐵 (which exist for sure, given 𝐵 ≠ 0, 𝐵 ≠ 𝑁). Given 𝐴 is finite, it means 𝐴 is recursive, 

so 𝑋𝐴 computable.  

We can then define 𝑔(𝑥, 𝑦) = 𝑏0 ∗ 𝜒𝐴(𝑥) + 𝑏1 ∗ 𝑠𝑔(𝜒𝐴(𝑥)) and this is computable. By the smn-theorem, 

there is a total computable function 𝑠: ℕ → ℕ 𝑠. 𝑡. 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) and this can be shown to be the 

reduction function of such problem: 

- 𝑥 ∈ 𝐴 ⇒ 𝜙𝑠(𝑥)(𝑦) = 𝑏1 ∀𝑦 → 𝑠(𝑥) ∈ 𝐵 

- 𝑥 ∉ 𝐴 ⇒ 𝜙𝑠(𝑥)(𝑦) = 𝑏0 ∀𝑦 → 𝑠(𝑥) ∉ 𝐵 

Exercise (2022-01-19-solved) 

  

 

 

a. Given two sets 𝐴, 𝐵 ⊆ ℕ, we say 𝐴 ≤𝑚 𝐵 if there exists a total computable function 𝑓: ℕ → ℕ 𝑠. 𝑡. ∀𝑥 ∈

ℕ, 𝑥 ∈ 𝐴 𝑖𝑓𝑓 𝑓(𝑥) ∈ 𝐵 

b. If 𝐴 is not recursive, then 𝐵 is not recursive. Infact, if we consider 𝑓:ℕ → ℕ as the reduction function, we 

can define 𝜒𝐴(𝑥) as the characteristic function of 𝐴, which in this case is equal to 𝜒𝐵(𝑥). This is computable 

but consider a non-computable 𝑓(𝑥) s.t. 𝜒𝐴 = 𝜒𝐵 ∘ 𝑓. Given 𝑓 is not computable since 𝐵 is not recursive, 

the whole thing is not recursive, otherwise also 𝐴 would be recursive. Hence, 𝐵 is not recursive. 

c. To show this, if 𝐴 is recursive, there exists a characteristic function 𝜒𝐴 𝑠. 𝑡. 

𝜒𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Since 𝐴 is recursive, the function is total and computable and the reduction function for 𝐴 ≤𝑚 {1} holds 

since 𝑥 ∈ 𝐴 𝑖𝑓𝑓 𝑥𝐴(𝑥) = 1 𝑖𝑓𝑓 𝑥𝐴(𝑥) ∈ {1} 

Exercise (2019-01-24) 

Given two sets 𝐴, 𝐵 ⊆ ℕ, define the reduction 𝐴 ≤𝑚 𝐵 and show 𝐴 ≤𝑚 𝐵 and 𝐴 is not recursive, then 𝐵 is 

not recursive. Can a set 𝐴 ⊆ ℕ be such that 𝐴 ≤𝑚 𝐴? Show an example or show the non-existence of such 

set. 

Solution 

Recalling the definition for the reduction given here: 

Given 𝐴, 𝐵 ⊆ ℕ, we say the problem 𝑥 ∈ 𝐴 reduces to "𝑥 ∈ 𝐵"  (or simply that 𝐴 reduces to 𝐵) if there is a 

total computable function 𝑓: ℕ → ℕ 𝑠. 𝑡. ∀𝑥 ∈ ℕ 

𝑥 ∈ 𝐴  𝑖𝑓𝑓 𝑓(𝑥) ∈ 𝐵 

If 𝐴 is not recursive, 𝐵 is not either. Suppose for the sake of contradiction 𝐴 is recursive; then, there would 

be a total computable function 𝑔:ℕ → ℕ 𝑠. 𝑡. ∀𝑥 𝑔𝐴(𝑥) = 1 𝑖𝑓 𝑥 ∈ 𝐴, 𝑔𝐴(𝑥) = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 −Assuming 𝐵 

is recursive, the same holds, specifically 𝑔𝐵(𝑦) = 𝑔𝐴(𝑥). 

In this case, if 𝑓(𝑥) ∈ 𝐵, then 𝑔𝐵(𝑓(𝑥)) = 1 and so 𝑔𝐴(𝑥) = 1 otherwise 𝑔𝐴(𝑓(𝑥)) = 0 and so 𝑔𝐴(𝑥) = 0. 

However, since 𝐴 is not recursive, 𝐵 can not be recursive either.  

There is not set such that 𝐴 ≤𝑚 𝐴 because that would imply a set and its complement share basically the 

same elements.  

Infact: 

- if 𝑥 ∈ 𝐴, then 𝑓(𝑥) ∈ 𝐴, but 𝐴 contains exactly the elements not in 𝐴, so 𝑓(𝑥) ∉ 𝐴 and the 

reduction does not hold 

- if 𝑥 ∉ 𝐴, then 𝑓(𝑥) ∈ 𝐴, but 𝐴 contains exactly the elements not in 𝐴, so 𝑓(𝑥) ∉ 𝐴 and the 

reduction does not hold again 

Exercise (2016-07-01) 

Let 𝐴 be a recursive set and let 𝑓1, 𝑓2: ℕ → ℕ be computable functions. Show that 𝑓:ℕ → ℕ defined as: 

𝑓(𝑥) = {
𝑓1(𝑥), 𝑥 ∈ 𝐴
𝑓2(𝑥), 𝑥 ∉  𝐴

 

Does the result still hold if we weaken the assumptions and assume 𝐴 r.e.? Explain how the proof fits, if so, 

or provide a counterexample, if not. 

Solution 

Giving 𝐴 is a recursive set, we have that 𝑓(𝑥) is defined and computable.  

Considering 𝑓1 = 𝜙𝑒1  and 𝑓2 = 𝜙𝑒2  and we have: 

𝑓(𝑥) = 𝜇𝑤. ((𝑆(𝑒1, 𝑥, 𝑤1, 𝑤2) ∧ (𝑠𝑔(𝑋𝐴(𝑤)))) ∨ (𝑆(𝑒1, 𝑥, 𝑤1, 𝑤2) ∨ (𝑠𝑔(𝑋𝐴(𝑤)))))
1

 

which is computable. If 𝐴 is r.e., then 𝜒𝐴 is not computable, for example considering 𝑓1 = 1 and 𝑓2 = 0 we 

have: 
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𝑓(𝑥) = {
1, 𝑥 ∈ 𝐴
0, 𝑥 ∉ 𝐴

 

which is not computable. 

Exercise (2016-07-01) 

Show that a set 𝐴 is r.e. iff there exists a function 𝑓: ℕ → ℕ computable such that 𝐴 = 𝑖𝑚𝑔(𝑓) =

{𝑓(𝑥): 𝑥 ∈ ℕ}. 

Solution 

If a set is r.e., the semicharacteristic function 𝑠𝑐𝐴(𝑥) is defined. We will define a simple function by 

composition, which is computable itself. For example, define 𝑔(𝑥) = 𝑠𝑐𝐴(𝑥) ∗ 𝑥. 

Conversely, if there is a computable function with the specified properties, the set is r.e. Looking at the 

properties, we have the program is defined on itself, which means it uses its own index as computation 

(fixed point). In simpler terms, just consider 𝑒 as the index of the program and 𝑓 = 𝜙𝑒 as the computation 

over said program and define 𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑤. (𝑆(𝑒, (𝑤)1, 𝑥, (𝑤)2))) 

Exercise (2021-09-07.solved) 

Let 𝐴, 𝐵 ⊆ ℕ. Define the reduction 𝐴 ≤𝑚 𝐵. Show that 𝐴 ⊆ 𝑁 is r.e. iff 𝐴 ≤𝑚 𝐾. 

Solution 

Let 𝐴, 𝐵 ⊆ ℕ. We write 𝐴 ≤𝑚 𝐾 if ∃𝑓:ℕ → ℕ total and computable s.t. ∀𝑥 ∈ ℕ, 𝑥 ∈ 𝐴 𝑖𝑓𝑓 𝑓(𝑥) ∈ 𝐵. 

Set 𝐾 is not recursive but is r.e. So, if 𝐴 ≤𝑚 𝐾, 𝐴 is r.e and we can write its semicharacteristic function as 

𝑠𝑐𝐴 = 𝑠𝑐𝐾 ∘ 𝑓 which is computable by composition. 

On the converse implication, if 𝐴 is r.e. there exists a total computable semicharacteristic function 𝑠𝑐𝐴 and 

consider the function of two arguments 𝑔(𝑥, 𝑦) defined as 𝑠𝑐𝐴(𝑥) which is computable. By the smn-

theorem, there exists a total computable function 𝑠:ℕ → ℕ 𝑠. 𝑡. ∀𝑥, 𝑦 ∈ ℕ,𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝑠𝑐𝐴(𝑥). 

It’s easy to see 𝑠 is a reduction function of 𝐴 

- if 𝑥 ∈ 𝐴, then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝑠𝑐𝐴(𝑥) = 1 ∀𝑦 ∈ ℕ, so 𝑠(𝑥) ∈ 𝑊𝑠(𝑥) = 𝑁 and 𝑠(𝑥) ∈ 𝐾 

- if 𝑥 ∉ 𝐴, then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝑠𝑐𝐴(𝑥) =↑  ∀𝑦 ∈ ℕ, so 𝑠(𝑥) ∈ 𝑊𝑠(𝑥) = ∅ and 𝑠(𝑥) ∉ 𝐾 

Exercise (16-05-2020) 

Let 𝐴, 𝐵 ⊆ ℕ and consider 𝐴 is finite and 𝐵 ≠ ∅,ℕ. Show 𝐴 ≤𝑚 𝐵. 

Solution 

Recall the reduction definition; there exists a total computable function 𝑓: ℕ → ℕ s.t. ∀𝑥 ∈ ℕ 

𝑥 ∈ 𝐴 ⇔ 𝑓(𝑥) ∈ 𝐵 

If we know 𝐴 is finite, there is a total computable function which describes it 

𝜒𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Given 𝐵 is finite, there exists a function which is able to express the conditions of it: 

𝑔(𝑥, 𝑦) = {
1, 𝑥 ∈𝑊𝑥

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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By the smn-theorem, there exists a total computable function 𝑠: ℕ → ℕ 𝑠. 𝑡. ∀𝑥 ∈ ℕ, 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦). 

This is a correct reduction function: 

- if 𝑥 ∈ 𝐵, 𝜙𝑠(𝑥)(𝑦) = 1, so 𝐸𝑠(𝑥) = 1 ≠ ℕ ≠ ∅ and so 𝑠 ∈ 𝐴 

- if 𝑥 ∉ 𝐵𝜙𝑠(𝑥)(𝑦) =↑, so 𝐸𝑠(𝑥) = 𝑁,𝑊𝑠(𝑥) ≠ ∅ and so 𝑠 ∉ 𝐴 

Exercise (15-07-2020) 

Let 𝐴, 𝐵 ⊆ ℕ. Define reduction for 𝐴 ≤𝑚 𝐵. Is it true that if 𝐴 is recursive and 𝐵 is finite, not empty then 

𝐴 ≤𝑚 𝐵? Show it or give a counterexample. And without finiteness hypothesis for 𝐵? In case in general it 

doesn’t hold with 𝐵 infinite and give a condition which allows to restore the property 

Solution 

Recall the reduction definition; there exists a total computable function 𝑓: ℕ → ℕ s.t. ∀𝑥 ∈ ℕ 

𝑥 ∈ 𝐴 ⇔ 𝑓(𝑥) ∈ 𝐵 

If 𝐴 is recursive, we can have 𝜒𝐴 computable. If we consider it as such, we have: 

𝜒𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

If you consider a recursive set, you can have say 𝐴 be the set of all even numbers and 𝐵 containing only the 

number 2. In this case: 

𝜒𝐴(𝑥) = {
1, 𝑖𝑓

𝑥

2
∈ 𝐴

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

and  

𝜒𝐵(𝑥) = {
1, 𝑖𝑓 𝑥 = 2

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Since 𝐴 contains infinitely many elements and 𝐵 contains only number 2, we can’t map back a function 

satisfying all properties of 𝐴. 

If 𝐵 is infinite, consider say the set of prime numbers 𝑃𝑟, which is infinite. 

𝜒𝐵(𝑥) = {
1, 𝑖𝑓 𝑥 ∈ 𝑃𝑟

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

and you have 𝐴 recursive: 

𝜒𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

We can’t possibly map all elements inside of the first set, given there are infinitely many non-prime 

numbers in the second set. 

If 𝐵 is r.e. then 𝐴 is expressed finitely and recursive, so we can restore the property. 
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22.8 CHARACTERIZATION OF SETS 
Note: Know exactly how to prove recursiveness, particularly Rice-Shapiro exact definition, reduction from 𝐾 

and 𝐾 and Rice’s theorem (both definition and proof which is used practically here). First see if set is 

saturated then try to prove if it is r.e. and from this one one move to recursive check. 

The set is saturated (because it contains a non-trivial property), so {𝐴 = 𝑥|ϕ𝑥 ∈ 𝒜} 𝑠. 𝑡.𝒜 =

{𝑓 ∈ 𝒞| |𝑑𝑜𝑚(𝑓)| ≥ 2}. We can write here a semicharacteristic function for this set, given it would be 

possible for sure to find a value greater than 2 inside the domain, so we write: 

𝑠𝑐𝐴(𝑥) = 1(𝜇𝑤(𝐻(𝑥, 𝑥 + 2, 𝑦) = 1(𝜇𝑤(𝐻(𝑥, 𝑥 + 2, (𝑤)2) 

By Rice’s theorem, this set is not recursive: considering 𝑒0 ∈ ℕ, 𝑒1 ∈ ∅, we see 𝑒0 ∈ 𝐴, 𝑒1 ∉ 𝐴. Given the set 

is saturated, it is also not recursive by the theorem. 

Given these observations, the complement of this set is also not r.e. and not recursive (otherwise both 

would be) 

We prove that 𝐾 ≤𝑚 𝐴 and define: 

𝑔(𝑥, 𝑦) = {
1, 𝑥 ∈ 𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

By the smn-theorem, there exists a total computable function 𝑠: ℕ → ℕ 𝑠. 𝑡. 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦).  

We then define the semicharacteristic function of 𝐴 like: 

𝜒𝐴(𝑥)) = 𝟏(𝜇𝑤.𝐻(𝑥, 𝑥, (𝑤)2) ∧ 𝑆(𝑥, (𝑤)1, 𝑥, (𝑤)2) 

We then conclude 𝐴 is r.e. while 𝐴 is not.  

As solved by an old tutor mentioned in beginning of this chapter: 
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We will try to prove the recursiveness of such set showing the reduction from the halting set 𝐾, specifically 

showing 𝐾 ≤𝑚 𝐵.  

If we can write a total computable function, by the smn-theorem, there will also be a semicharacteristic 

function showing 𝐵 is computable and 𝐵 is not. If we look at the properties of 𝐵, we see its domain and its 

image have common values, hence if we write a function having a value in 𝐾, it will easily hold for the main 

problem condition. 

We can then write a function of two parameters, considering we want to accommodate the smn-theorem 

structure: 

𝑔(𝑥, 𝑦) = {
1, 𝑥 ∈ 𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

By the smn-theorem, there is a total computable function 𝑠: ℕ → ℕ 𝑠. 𝑡. 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) and we see 𝑠 is 

the desired reduction function. We can then write a semicharacteristic function for 𝐵 as follows, using 𝐻 

(function halting in 𝑡 steps) and the 𝑆 function, which represents the “compute in 𝑡 steps”, giving in this 

case 𝑥, after a number of steps, in this case after (𝑤)2 composed component steps: 

𝑠𝑐𝐵(𝑥) = 𝟏(𝜇𝑤. (𝐻(𝑥, 𝑥, (𝑤)2) ∨ 𝑆(𝑥, (𝑤)1, 𝑥, (𝑤)2)) 

We conclude this way 𝐵 is r.e., while 𝐵 is not, given 𝐾 is not. 

We will try to show it is r.e., showing 𝐾 ≤𝑚 𝐴 as we did until now and we consider: 

𝑔(𝑥, 𝑦) = {
1, 𝑥 ∈ 𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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which is computable and by the smn-theorem, there exists a total computable function 𝑠: ℕ →

ℕ 𝑠. 𝑡. 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) and we see 𝑠 is the desired reduction function. This infact shows that we will get 

𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 1 and the domain is over the naturals 𝑊𝑠(𝑥) = ℕ. 

This shows the function is computable, but we are not inside the set of even numbers, considering we halt 

always on an odd number, so we get 𝑊𝑠(𝑥) ⊈ 𝑃 and so 𝑠(𝑥) ∉ 𝐴, so 𝑠(𝑥) ∈ 𝐴.  

When 𝑥 ∉ 𝐾 we have that 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = ↑, ∀𝑦 and so 𝑊𝑠(𝑥) = ∅,𝑊𝑠(𝑥) ⊆ 𝑃 and so (𝑥) ∈ 𝐴, so 

𝑠(𝑥) ∉ 𝐴. This holds, given 𝐴 is r.e., given we can write the following semicharacteristic function: 

𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑤. (𝐻(𝑥, 𝑥, (𝑤)2, ) ∨ 𝑆(𝑥, 2(𝑤)1 + 1, (𝑤)2) 

or even: 

𝑠𝑐𝐴(𝑥) = 𝜇𝑤. 𝐻(𝑥, 2(𝑤)1 + 1, (𝑤)2) 

(we can use directly this one given we are already in the stopping case, and we can see only this one). 

Therefore, 𝐴 is not r.e. 

The set 𝐴 is r.e. given we can write: 

𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑤. (𝑆(𝑥, 𝑦, 𝑧, 𝑡)  ∧ (𝑧 > 1)  ∧ (𝑥 = 𝑦
𝑧))) = 𝟏(𝜇𝑤. 𝑆(𝑥, (𝑤)1, (𝑤)2, (𝑤)3) ∧ 𝑠𝑔((𝑤)2 − 1) ∧ 𝑠𝑔|𝑥 − (𝑤)2

(𝑤)3| 

The set is also not recursive, considering: 

𝑔(𝑥, 𝑦) = {
1, 𝑥 ∈ 𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Thanks to smn-theorem, there exists a total computable function 𝑠:ℕ → ℕ which we show to be the 

correct reduction function: 

- if 𝑥 ∈ 𝐾, then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 1 for each 𝑦 ∈ ℕ. So, 𝜙𝑠(𝑥)(𝑠(𝑥)) = 𝑠(𝑥)
𝑧 for some 𝑧 ∈ ℕ and 

𝜙𝑠(𝑥)(𝑠(𝑥)) ↓ thus 𝑠(𝑥) ∈ 𝐴 

 

- if 𝑥 ∉ 𝐾, then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) ↑ for each 𝑦 ∈ ℕ. Therefore, 𝑊𝑠(𝑥) = ∅ and so 𝑠(𝑥) ∉ 𝐴 

So, the converse of this set is also not r.e. and not recursive. 

As solved by an old tutor mentioned in beginning of this chapter: 
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Let’s understand if the set is saturated, since 𝐴 = {𝑥 | 𝜙𝑥 ∈ 𝒜}, where 𝒜 is the set of computable 

functions, while A is the set, that 𝐴 = {𝑓 | 𝑑𝑜𝑚(𝑓) ⊆ 𝑖𝑚𝑔(𝑓)} and it clearly is.  

Let’s use Rice-Shapiro to conjecture that  

- 𝐴 is not r.e., since 𝑖𝑑 ∉ 𝐴, 𝑑𝑜𝑚(𝑖𝑑) ⊆ 𝑖𝑚𝑔(𝑖𝑑) and there exists a finite subfunction 𝜃, 𝜃 ⊆ 𝑓 ∨ 𝜃 ∈

𝒜. Consider for instance ∅ ∈ 𝒜, 𝑓(𝑥) = 𝑥 ∀𝑥, 𝑓 ∉ 𝐵, ∅ ⊆ 𝑓 

 

- 𝐴 is not r.e., since 𝑖𝑑 ∉ 𝒜 but it admits ∅ as a finite subfunction and 𝜃 ∈ 𝒜 

From Baldan 2021/2022 ending lessons: 

 

 

 

 

 

 

 

 

 



307   Computability simple (for real) 
 

Written by Gabriel R. 

 

 

 

 

 

 

The set 𝐴 is saturated, given 𝐴 = {𝑥 | 𝜙𝑥 ∈ 𝒜} where 𝒜 = {𝑓 | 𝑑𝑜𝑚(𝑓) > 𝑐𝑜𝑑(𝑓)|.  

By Rice-Shapiro theorem, we deduce: 
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- 𝐴 is not r.e. 

∃𝑓 ∉ 𝐴: 𝑓(𝑥) = 𝑥 −. 1 ∉ 𝐴, ∃𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠. 𝑡. 𝜃 ∈ 𝒜 

𝜃(𝑥) = {
𝑥 −. 1, 𝑥 ≤ 1

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

- 𝐴 is not r.e. (𝐴 = {𝑥 ∈ ℕ | |𝑊𝑥| ≤ |𝐸𝑥|) 

∃𝑓 ∉ 𝐴: 𝟏 ∉ 𝐴, ∃𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠. 𝑡. 𝜃 ∈ 𝒜 

𝜃(𝑥) = {
1, 𝑥 = 1
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

This appears as a computable function (given it is the composition of computable functions, using the 

product). We can characterize its semicharacteristic function as  

𝑠𝑐𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
↑, 𝑥 ∉ 𝐴

= 𝟏(𝜇𝑤. 𝑆(𝑥, (𝑤)1 ∗ 𝑥, (𝑤)2 ∗ 𝑦, (𝑤)2) 

which is computable, so 𝐴 is r.e. 

 

We check if it’s also recursive and to do so we test it with a reduction from the halting set: 

𝐾 ≤𝑚 𝐴 (𝑥 ∈ 𝐾 𝑖𝑓𝑓 𝑠(𝑥) ∈ 𝐴 𝑖𝑓𝑓 ∃𝑦 ∈ 𝑊𝑠(𝑥), ∃𝑘 ∈ ℕ 𝑠. 𝑡. 𝑦 = 𝑘 ∗ 𝑠(𝑥)) 

We consider a function of two arguments: 

𝑔(𝑥, 𝑦) = {
1, 𝑥 ∈ 𝐾
↑, 𝑥 ∉ 𝐾

= Ψ𝑈(𝑠𝑐𝐾(𝑥, 𝑥)) 

which is computable (given both halting set and the function with usage of smn-theorem work on the same 

index, that’s why the universal function is used). 

Thanks to smn-theorem, there exists a total computable function 𝑠:ℕ → ℕ which we show to be the 

correct reduction function: 

- if 𝑥 ∈ 𝐾, then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 1 for each 𝑦 ∈ ℕ. So, 𝜙𝑠(𝑥)(1) = 1 = 𝑠(𝑥) ∗ 1 thus 𝑠(𝑥) ∈ 𝐴 

 

- if 𝑥 ∉ 𝐾, then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) ↑ for each 𝑦 ∈ ℕ. Therefore, there is no such 𝑦 such that 

𝜙𝑠(𝑥)(𝑦) = 𝑥 ∗ 𝑦. Thus, 𝑠(𝑥) ∉ 𝐴 

Since 𝐴 is r.e. but not recursive, then 𝐴 is not recursive and also not r.e. 

The set is saturated, given A = {𝑥 | 𝜙𝑥 ∈ 𝒜} where 𝒜 = {𝑓 | |𝑑𝑜𝑚(𝑓) ∩ 𝑐𝑜𝑑(𝑓)| = 1}. 

By Rice-Shapiro theorem, we deduce: 

- 𝐴 is not r.e. 

∃𝑓 ∉ 𝒜: 𝑓(𝑥) = 𝑖𝑑 ∉ 𝐴, ∃𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠. 𝑡. 𝜃 ∈ 𝒜 
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𝜃(𝑥) = {
0, 𝑖𝑓 𝑥 = 0

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

This way, the domain and codomain of normal set will be 0 (while the same – so, domain/codomain – will 

be 1 for the complement). Therefore, 𝜃 ∈ 𝐴.  

- 𝐴 is not r.e. 

∃𝑓 ∉ 𝒜: 𝑓(𝑥) = ∅ ∉ 𝐴, ∃𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠. 𝑡. 𝜃 ∈ 𝒜 

Such function can be the always undefined function, for which it holds ∅ ∈ 𝒜, considering 𝑐𝑜𝑑(𝜃) =

𝑑𝑜𝑚(𝜃) = ∅. Therefore, 𝜃 ∈ 𝒜. 

Since 𝐴 is not r.e. then is not recursive, and also the same can be said for the complement. 
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Let’s start reasoning from A, which considers an increasing 𝜙𝑥, in a way such that ∀𝑦 < 𝑧, 𝑓(𝑦) < 𝑓(𝑧). 

This means that for every two values we put inside our total function composed by the two ones, we get 

the same output, in such a way that ∀𝑦, ∀𝑧, 𝜙𝑦 = 𝜙𝑧. Just a bit of formalization here, it means the set is 

saturated.  

We might use Rice’s theorem to prove this, only needing to define the function not inside the empty set 

and not over the naturals. So, let’s use the set of computable functions 𝐴, in which we know 𝜙𝑥 is sharply 

increasing, in which we know 𝐴 = {𝑥 ∈ ℕ | 𝜙𝑥 ∈ 𝑎}. 

By Rice-Shapiro, ∃𝑓, 𝑓 ∉ 𝐴, ∃𝜃 ⊆ 𝑓, 𝜃 finite, 𝜃 ∉ 𝐴, we want to understand if the set if r.e. or not. A 

function which is always in 𝐴 is the identity function, which is total. 

Having 𝑖𝑑 ∈ 𝐴, ∀𝜃 ⊆ 𝑖𝑑, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∉ 𝐴.  

We can also use the empty set function, which is ∅ ∈ 𝐴, given it is defined and again, this is inside the 

identity, so ∅ ⊆ 𝑖𝑑 ∉ 𝐴. 

So, we showed A is not r.e., using the computable set 𝐴 and properties alike. 

If 𝐴 = ∅ on some points, it means this is recursive. The complement, at this point, probably won’t be. We 

can try to write a semicharacteristic function showing the complement is r.e. 

We want the function 𝑥 to stop with input 𝑧 with 𝑡 steps, so 𝑆(𝑥, 𝑧, 𝑥, 𝑡). The function will stop eventually, 

so 𝑦 ∈ 𝑊𝑥, given 𝑥 is total, so 𝜙𝑥(𝑦) ↓, so 𝐻(𝑥, 𝑦, 𝑡). Again, 𝑤 represents a tuple. This will end in t steps, 

giving in output a value such that the initial property is defined. 

We check the 𝑦 (so, the third element in tuple, given 𝑤 = (𝑧, 𝑡, 𝑦), halting effectively in 𝑡 steps over the 

search of 𝑦, given 𝑦, 𝑧 elements, so its sum will be ordered the same way 

𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑤. 𝑆(𝑥, (𝑤)1, 𝑥, (𝑤)2) ∨ ((𝑥 = 𝑓((𝑤)3 + (𝑤)4)) ∧ 𝐻(𝑥, (𝑤)3, (𝑤)2)) 

Hence, we will write: 

𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑧. 𝑆(𝑥, (𝑤)1, (𝑤)2 + (𝑤)3, 𝑡) ∨ 𝑆(𝑥, (𝑤)1 + (𝑤)2 + 1, (𝑤)3, (𝑤)4) 

This is a combination of tuples, considering the sum will always be in the same order, so combining it this 

way will allow us to halt obtaining in the 𝑆 function a value (𝑤)4 effectively. 

Therefore, given on the complement Rice’s theorem properties hold, 𝐴 is not recursive. 
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We start from understanding if the set is saturated or not and use Rice-Shapiro to guess the set is not r.e. 

We also need to see, for Rice’s theorem, it is not empty or not the naturals. 𝐴 = {𝑓 ∈ 𝐶 | 𝑓 𝑎𝑙𝑚𝑜𝑠𝑡 𝑡𝑜𝑡𝑎𝑙} 

using Rice-Shapiro and guess it is not r.e.  

We show there is, using the identity function, which is total and r.e. 

As solved by an old tutor mentioned in beginning of this chapter: 

 

 

 

 

 

 

 

 

 

The set is saturated, considering A = {𝑥 ∈ ℕ: 𝜙𝑥 ∈ 𝒜} where 𝒜 = {𝑓 | 𝑑𝑜𝑚(𝑓) ∩ 𝑐𝑜𝑑(𝑓) = ∅).  

We now use Rice-Shapiro to argue both sets are not r.e. 

- 𝐴 not r.e. 

In this case a subfunction clearly in this set is 𝜃 = ∅ ∈ 𝒜, while 𝑖𝑑 ∉ 𝒜 (because 𝑑𝑜𝑚(𝑓) ∩ 𝑐𝑜𝑑(𝑓) = ℕ ≠

∅) 

- 𝐴 not r.e. 

Consider the complement of this set is 𝐴 = {𝑥 ∈ ℕ:𝑊𝑥 ∩ 𝐸𝑥 ≠ ∅}. 

In this case, simply reuse the functions of before: 𝑖𝑑 ∈ 𝒜, 𝜃 = ∅ ∉ 𝒜. 

Given the two sets are not r.e. they are also not recursive.  
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The set is saturated, considering A = {𝑥 ∈ 𝜙𝑥 ∈ 𝒜}, where 𝒜 = {𝑓 | 𝑐𝑜𝑑(𝑓) = 𝑑𝑜𝑚(𝑓) + 1.  

By Rice-Shapiro theorem, we deduce: 

- 𝐴 is not r.e. 

∃𝑓 ∉ 𝒜: 𝑓(𝑥) = 𝑖𝑑 ∉ 𝐴, ∃𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠. 𝑡. 𝜃 ∈ 𝒜 

Infact, define: 

𝜃(𝑥) = {
𝑥 + 1, 𝑖𝑓 𝑥 ≥ 0

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Using the identity, we have 𝑖𝑑 ∉ 𝐴 given 𝑐𝑜𝑑(𝑖𝑑) = ℕ ≠ 𝑑𝑜𝑚(𝑓) + 1 = ℕ ∖ {1}.  The always undefined 

function respects the conditions of this case, so it’s correct also using that (given it exists inside the domain 

and codomain) 

- 𝐴 is not r.e. 

∃𝑓 ∉ 𝐴: 𝑓(𝑥) = 1 ∉ 𝐴, ∃𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠. 𝑡. 𝜃 ∈ 𝐴 

In this case, considering there are the complementary conditions, we have to use them to create a function 

using 𝑥 and putting it inside its domain. 

𝑓(𝑥) = {
1, 𝑥 ≤ 1
𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and 

𝜃(𝑥) = {
1, 𝑥 = 1
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

with 𝑐𝑜𝑑(𝑓) = 𝑑𝑜𝑚(𝑓) + 1 = ℕ+ 1 and 𝜃 ⊆ 𝑓, 𝜃 ∈ 𝒜 with 𝑐𝑜𝑑(𝜃) ≠ 𝑑𝑜𝑚(𝜃) + 1. 

The set is saturated, because it’s trivial to check if the codomain it’s made of even numbers. We might 

argue it is not r.e. using the reduction from the complement of halting set (longer than Rice-Shapiro to do 

the same thing). Define: 

𝑔(𝑥, 𝑦) = {
2𝑦, 𝑖𝑓 ¬𝐻(𝑥, 𝑥, 𝑦)
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The function 𝑓 can be defined as computable, considering we defined it is even when it does not halt, 

otherwise it is odd (important later). 

So, 𝑓 can be written as 𝑓(𝑥, 𝑦) = 2𝑦 ∗ 𝑠𝑔(𝜒𝐻(𝑥, 𝑥, 𝑦)) + 𝜒𝐻(𝑥, 𝑥, 𝑦). By the smn-theorem, 

𝜙𝑠(𝑥)(𝑦) ∀𝑥, 𝑦 ∈ ℕ, which can be used as a reduction function. 

- if 𝑥 ∈ 𝐾 

In this case, the computation halts (so, 𝐻(𝑥, 𝑥, 𝑦) = 0) and we get 𝜙𝑠(𝑥) = 𝑔(𝑥, 𝑦) = 2𝑦 for all 𝑦 and so the 

domain is made by even numbers and 𝑠(𝑥) ∈ 𝐴  
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- if 𝑥 ∉ 𝐾, the function halts giving 1 as number, so 𝜒𝐻(𝑥, 𝑥, 𝑦) = 1 and 𝜙𝑠(𝑥)(𝑦) = 1, having 1 

inside the domain but not as an  even number. Hence, 𝑠(𝑥) ∉ 𝐴. 

In this problem, it’s convenient to try to use a reduction from the halting set, so try to 𝐾 ≤ 𝑚𝐴. The 

reduction function can be shown to be: 

𝑔(𝑥, 𝑦) = {
0, 𝑥 ∈ 𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and is computable since it is defined by cases. By the smn-theorem, there exists a total computable 

function 𝑠: ℕ → ℕ 𝑠. 𝑡. ∀𝑥, 𝑦 ∈ ℕ, this can be shown to be the correct reduction function from 𝐾 ≤𝑚 𝐴. 

- if 𝑥 ∈ 𝐾, 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) = 0. Therefore, 𝑠(𝑥) ∈ 𝑊𝑠(𝑥) = ℕ and 𝑠(𝑥) ∈ 𝐴 

- if 𝑥 ∉ 𝐾, 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) = ↑. Therefore, 𝑠(𝑥) ∉ 𝑊𝑠(𝑥) = ∅ and 𝑠(𝑥) ∉ 𝐴 

This set is not recursive, but it is r.e., since we can write its semicharacteristic function: 

𝑠𝑐𝐴(𝑥) = 𝑠𝑔(𝑥 + 1 − 𝜙𝑥(𝑥)) 

Since 𝐴 not r.e. nor recursive, also 𝐴 is not r.e.  

Again, we try to use a reduction from the halting set, so try to 𝐾 ≤ 𝑚 𝐴. The reduction function can be 

shown to be: 

𝑔(𝑥, 𝑦) = {
𝑦2, 𝑥 ∈ 𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

This is computable, since 𝑔(𝑥, 𝑦) = 𝑦2 ∗ 𝑠𝑐𝐾(𝑥). By the smn-theorem, there exists a total computable 

function 𝑠: ℕ → ℕ 𝑠. 𝑡. ∀𝑥, 𝑦 ∈ ℕ, 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦). This can be shown to be the correct reduction 

function, since: 

- if 𝑥 ∈ 𝐾,𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝑦
2 ∀𝑦 ∈ ℕ. Therefore, 𝑠(𝑥) ∈ 𝑊𝑠(𝑥) = ℕ and 𝑠(𝑥) ∈ 𝐴 

- if 𝑥 ∉ 𝐾 then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) ↑ ∀𝑦 ∈ ℕ. Therefore, 𝑠(𝑥) ∉ 𝑊𝑠(𝑥) = ∅ and 𝑠(𝑥) ∉ 𝐴 

Since we can write the following semicharacteristic function, 𝐴 is r.e. (we use the universal function since 

basically we are using as index 𝑥 to find when the same function is stopping on 𝑥 (𝜙𝑥) to retrieve 𝑥2) 

𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑤. |𝑥
2 − 𝜙𝑥(𝑥)) |= 𝟏(𝜇𝑤. |𝑥

2 −Ψ𝑈(𝑥, 𝑥))) | 

which is computable. Since 𝐴 is not recursive but r.e., 𝐴 is not r.e. and not recursive. 
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Given the function does not terminate, one can argue a reduction from the complement of the halting set, 

so 𝐾.  

(𝐾 ≤𝑚 𝐴). The reduction function can be shown to be: 

𝑓(𝑥, 𝑦) = {
0, 𝑖𝑓 𝐻(𝑥, 𝑥, 𝑦), 𝑠𝑜 𝑖𝑓 𝑥 ∈ 𝐾

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

By the smn-theorem, there exists a total computable function 𝑠: ℕ → ℕ s.t. ∀𝑥, 𝑦 ∈ ℕ,𝜙𝑠(𝑥)(𝑦) = 𝑓(𝑥, 𝑦). 

This is a correct reduction function, considering: 

- if 𝑥 ∈ 𝐾 then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 0 ∀𝑦 ∈ ℕ, with 𝑠(𝑥) ∈ 𝐴 

- if 𝑥 ∈ 𝐾 then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = ↑  ∀𝑦 ∈ ℕ, with 𝑠(𝑥) ∉ 𝐴 

Considering 𝐾 is not recursive nor r.e., 𝐴 is not recursive or r.e. either 

(𝐾 ≤𝑚 𝐴). The reduction function can be shown to be: 

𝑓(𝑥, 𝑦) = {
0, 𝑖𝑓 ¬𝐻(𝑥, 𝑥, 𝑦)

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

By the smn-theorem, there exists a total computable function 𝑠: ℕ → ℕ s.t. ∀𝑥, 𝑦 ∈ ℕ,𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦). 

This is a correct reduction function, considering: 

- if 𝑥 ∈ 𝐾 then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 0 ∀𝑦 ∈ ℕ, with 𝑠(𝑥) ∈ 𝐴 

- if 𝑥 ∈ 𝐾 then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = ↑  ∀𝑦 ∈ ℕ, with 𝑠(𝑥) ∉ 𝐴 

Considering 𝐾 is not recursive nor r.e., 𝐴 is not recursive or r.e. either 

The set 𝐴 is saturated, since A = {𝑥 ∶ 𝜙𝑥 ∈ 𝒜}, since 𝒜 = {𝑓 ∈ 𝐶: 𝑑𝑜𝑚(𝑓) = 𝑐𝑜𝑑(𝑓)}. We can use Rice-

Shapiro’s theorem to prove the following: 

- A not r.e. 

∃𝑓. 𝐶, 𝑓 ∈ 𝒜 ∧ ∀𝜃 ⊆ 𝑓 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∈ 𝒜 

With the specified requirements, we find: 

𝑓(𝑥) = {
1, 𝑥 ∈ 𝐴
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

This way, 𝜃 ⊆ 𝑓, 𝜃 ∈ A, 𝑑𝑜𝑚(𝑓) = {1} ≠ 𝑐𝑜𝑑(𝑓) = {𝑁 ∖ 1}. 

- A not r.e. 

∃𝑓. 𝐶, 𝑓 ∈ A ∧ ∀𝜃 ⊆ 𝑓 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∈ A 

If we have the previous function definition, we have 𝜃 ∉ 𝒜. Moreover, consider the always undefined 

function 𝜃 ∈ 𝒜. Since 𝜃 ⊆ 𝑓, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∈ A since 𝑑𝑜𝑚(∅) = 𝑐𝑜𝑑(∅) = ∅  
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This is an interesting exercise, similar to 8.51 

Set 𝐵 can be defined as 𝐵 = {𝑥 ∈ 𝐾 ∧ 𝐻(𝑥, 𝑥, 𝑦 − 1). 𝐵 is r.e. given we can express it like (using the pair 

encoding instead of (𝑤) – because we use the latter only because we miss 𝜋, this is proven by theory): 

𝑠𝑐𝐵(𝑥) = 𝑠𝑐𝐾(𝜋1(𝑧)) ∗ 𝑠𝑐𝐻(𝜋1(𝑧), 𝜋1(𝑧), 𝜋2(𝑧) − 1) 

Set 𝐵 is recursive, considering 𝐵 can be defined as: 

𝜒𝐵 = {
𝑦, 𝑃𝑥(𝑥) ↓

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
= 𝑠𝑔(|𝑓(𝑥) − 𝑦)| 

which is computable. So, 𝐵 is considered recursive. 

Set 𝐵 is r.e., considering 𝐵 is r.e. and also recursive, hence they are both recursive. 

 

(𝐾 ≤𝑚 𝐴). The reduction function can be shown to be: 

𝑓(𝑥, 𝑦) = {
𝑦, 𝑖𝑓 ¬𝐻(𝑥, 𝑥, 𝑦)

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

By the smn-theorem, there exists a total computable function 𝑠: ℕ → ℕ s.t. ∀𝑥, 𝑦 ∈ ℕ,𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦). 

This is a correct reduction function, considering: 

- if 𝑥 ∈ 𝐾 then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝑦 ∀𝑦 ∈ ℕ, with 𝜙𝑠(𝑥)(𝑠(𝑥)) = 𝑦 ∈ ℕ, so 𝑠(𝑥) ∈ 𝐴 

- if 𝑥 ∈ 𝐾 then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = ↑  ∀𝑦 ∈ ℕ, with 𝑊𝑠(𝑥) = ∅, so 𝜙𝑠(𝑥)(𝑠(𝑥)) ↑, so 𝑠(𝑥) ∉ 𝐴 

Considering 𝐾 is not recursive nor r.e., 𝐴 is not recursive or r.e. either. 
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It’s the same exercise as 8.6 and very similar to 8.49. Basically, no finite subfunction can be here, 

concluding easily by Rice-Shapiro.  

As solved by an old tutor mentioned in beginning of this chapter: 
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Written by Gabriel R. 
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Written by Gabriel R. 
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Written by Gabriel R. 
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(Also present in the exam 2016-07-01) 

 

 

We show that 𝐾 ≤𝑚 𝐴 and 𝐴 is not recursive, defining a function like: 

𝑔(𝑥, 𝑦) = {
𝑦 + 1, 𝑖𝑓 𝑥 ∈ 𝐾

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The function 𝑔(𝑥, 𝑦) is computable since 𝑔(𝑥, 𝑦) = (𝑦 + 1) ∗ 𝑠𝑐𝐾(𝑥). Bu the smn-theorem, there exists a 

total computable function 𝑠: ℕ → ℕ s.t. ∀𝑥, 𝑦 ∈ ℕ, then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦). 

This can be shown the correct reduction function, since: 

- if 𝑥 ∈ 𝐾, we have 𝜙𝑠(𝑥) = 𝑔(𝑥, 𝑦) = 𝑦 + 1 ∀𝑦 ∈ ℕ and so 𝑠(𝑥) ∈ 𝑊𝑠(𝑥) = ℕ and 𝜙𝑠(𝑥)(𝑠(𝑥)) =

𝑠(𝑥) + 1 > 𝑠(𝑥) and 𝑠(𝑥) ∈ 𝐴. 

- if 𝑥 ∉ 𝐾 then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) ↑ ∀𝑦 ∈ ℕ and therefore 𝑠(𝑥) ∉ 𝑊𝑠(𝑥) = ∅ then 𝑠(𝑥) ∉ 𝐴. 

The set 𝐴 can be expressed by a semicharacteristic function like the following: 

𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑤. (𝑥 + 1) −
. 𝜙𝑥(𝑥)) = 𝟏(𝜇𝑤. (𝑥 + 1) −

. Ψ𝑈(𝑥, 𝑥)) 

hence it is r.e. Since this holds, 𝐴 is not r.e. or recursive either.  

 

 

 

Set 𝐴 is not recursive, given there is a reduction from the halting set, so 𝐾 ≤𝑚 𝐴. Consider: 

𝑔(𝑥, 𝑦) = {
1, 𝑥 ∈ 𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

which is computable. Therefore, by the smn theorem there exists a total computable function 𝑠:ℕ →

ℕ 𝑠. 𝑡. 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦). This is shown to be a correct reduction function: 

- if 𝑥 ∈ 𝐾,𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 1 ∀𝑦 ∈ ℕ. Hence, 𝑊𝑠(𝑥) = ℕ and 𝑓(𝑊𝑠(𝑥)) = 𝑓(ℕ) = 𝑖𝑚𝑔(𝑓). So, 

there exists 𝑧 ∈ 𝑓(𝑊𝑠(𝑥)) 𝑠. 𝑡. 𝑥 < 𝑧 so 𝑦 ∈ 𝑊𝑠(𝑥) 𝑠. 𝑡. 𝑠(𝑥) < 𝑓(𝑦). So, 𝑠(𝑥) ∈ 𝐴 

 

- if 𝑥 ∈ 𝐾,𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) =↑ ∀𝑦 ∈ ℕ. Hence, 𝑊𝑠(𝑥) = ∅ and so there is no 𝑦 𝑠. 𝑡. 𝑠(𝑥) < 𝑓(𝑦). 

So, 𝑠(𝑥) ∉ 𝐴 
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Set 𝐵 is not recursive, considering: 

𝑔(𝑥, 𝑦) = {
1, 𝑥 ∈ 𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

which is computable, given 𝑔(𝑥, 𝑦) = 𝑓(𝑥) ∗ 𝑠𝑐𝐾(𝑥). Therefore, by the smn-theorem, there exists a total 

computable function 𝑠:ℕ → ℕ 𝑠. 𝑡. 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦). 

This is a correct reduction function: 

- if 𝑥 ∈ 𝐾, 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 1 ∀𝑦 and so 𝑊𝑠(𝑥) = ℕ and 𝑠(𝑥)𝑠(𝑥) = ℕ, so 𝑥 ∈ 𝐵 

- if 𝑥 ∉ 𝐾,𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) =↑ ∀𝑦 and so 𝑊𝑠(𝑥) = ∅ and so 𝑥 ∉ 𝐵 

Set 𝐵 is also r.e., given: 

𝑠𝑐𝐴(𝑥) = 𝜇𝑤. (𝐻(𝑥, (𝑤)1, (𝑤)2) 

Therefore, 𝐵 is not r.e. (also not recursive, otherwise both sets would be recursive). 
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As solved by an old tutor mentioned in beginning of this chapter: 

 

 

 

 

 

 

 

 

 

 

 

(Basically, it’s adapting exercise 8.32 here) 

We try a reduction from the halting problem, so we argue 𝐾 ≤𝑚 𝑉: 

𝑔(𝑥, 𝑦) = {
1, 𝑥 ∈ 𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The function 𝑔(𝑥, 𝑦) is computable, given 𝑔(𝑥, 𝑦) = 𝑠𝑐𝐾(𝑦) and by the smn-theorem, there exists a total 

computable function 𝑠:ℕ → ℕ 𝑠. 𝑡. ∀𝑥, 𝑦 ∈ ℕ, 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦). 

This is a correct reduction function, because: 

- if 𝑥 ∈ 𝐾,𝜙𝑠(𝑥)(𝑦) = 𝑦 ∀𝑦 ∈ ℕ, so we can take 𝑠(𝑥) ∈ 𝑊𝑠(𝑥) and 1 ∈ 𝐸𝑠(𝑥) = ℕ and so 𝑠(𝑥) ∈ 𝑉 

 

- if 𝑥 ∉ 𝐾,𝜙𝑠(𝑥)(𝑦) ↑  ∀𝑦 ∈ ℕ, so we can take 𝑠(𝑥) ∉ 𝑊𝑠(𝑥) = ∅ and so 𝑠(𝑥) ∉ 𝑉 

𝐴 is r.e. since we can write: 

𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑤.𝐻(𝑥, 𝑦, 𝑘, 𝑥) ∧ (𝑦 ∗ 𝑘 = 𝑥)) 

𝑠𝑐𝐴(𝑥) = 𝟏(𝜇𝑤. 𝜒𝐻(𝑥, (𝑤)1, (𝑤)2, (𝑤)3) ∧ ((𝑤)2 ∗ (𝑤)3 = 𝑥)) 

Given 𝐴 is r.e. then it is not recursive (one could use Rice’s theorem here) and also 𝐴 is not recursive 

(otherwise both would be recursive) or r.e. 
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We argue 𝑉 is saturated because 𝐵 = {𝑥 | 𝜙𝑥 ∈ ℬ} where ℬ = {𝑓 ∈ 𝒞 | 𝑑𝑜𝑚(𝑓) > 1} 

- 𝐴 is not r.e. 

𝑓(𝑥) = {
1, 𝑥 ≤ 1
𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝜃(𝑥) = {
1, 𝑥 < 1
𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

We see 𝑓 ∈ 𝐴 but 𝜃 ∉ 𝐴 and so 𝐴 is not r.e. 

- 𝐴 is not r.e. 

The previously defined 𝜃 ∈ 𝐴 but consider ∅ ∉ 𝐴, given |𝑊𝑥| = ∅ ≠ ℕ (𝑤ℎ𝑒𝑟𝑒 𝑛 > 1) 

Given both sets are not r.e. they are also not recursive. 

 

 

Following the definition: 

𝑥 ∈ 𝑃 reduces to 𝑥 ∈ 𝑃𝑟 if there exists a total computable function 𝑓: ℕ → ℕ 𝑠. 𝑡. ∀𝑥 ∈ ℕ, 𝑥 ∈ 𝑃 ⇔ 𝑓(𝑥) ∈ Pr  

Define a function of two arguments as follows: 

𝑔(𝑥, 𝑦) = {

𝑦

2
+ 𝑥, 𝑥 ∈ 𝑃

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
= 𝑞𝑡(2, 𝑦) + 𝑥 + 𝜇𝑧. 𝑟𝑚(2, 𝑦) 

which is computable. 

By the smn-theorem, there exists a total computable function 𝑠: ℕ → ℕ 𝑠. 𝑡. ∀𝑥, 𝑦 ∈ ℕ, 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦). 

This is a correct reduction function, because: 

- if 𝑥 ∈ 𝑃, 𝜙𝑠(𝑥)(𝑦) =
𝑦

2
+ 𝑥 ∀𝑦 ∈ ℕ, so we can take 𝑠(𝑥) ∈ 𝑊𝑠(𝑥) 𝑠. 𝑡. 𝑝 ∈ 𝑃𝑟 and so 

𝑝

2
+ 𝑥 ∈ 𝐸𝑠(𝑥) 

s.t. 
𝑝

2
+ 𝑥 ∈ ℕ and 1 ∈ 𝐸𝑠(𝑥) = ℕ and so 𝑠(𝑥) ∈ 𝑃𝑟 

 

- if 𝑥 ∉ 𝑃, 𝜙𝑠(𝑥)(𝑦) ↑  ∀𝑦 ∈ ℕ, so we can take 𝑠(𝑥) ∉ 𝑊𝑠(𝑥) = ∅ and so 𝑠(𝑥) ∉ 𝑃𝑟 

Following the definition: 

𝑥 ∈ 𝑃𝑟 reduces to 𝑥 ∈ 𝑃 if there exists a total computable function 𝑓: ℕ → ℕ 𝑠. 𝑡. ∀𝑥 ∈ ℕ, 𝑥 ∈ 𝑃𝑟 ⇔ 𝑓(𝑥) ∈ 𝑃 

𝑔(𝑥, 𝑦) = {
𝑝, 𝑥 ∈ 𝑃𝑟

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
= 𝜇𝑧. |𝑠𝑔(𝑔(𝑥, 𝑦)−.𝑝)| 

which is computable. 

By the smn-theorem, there exists a total computable function 𝑠: ℕ → ℕ 𝑠. 𝑡. ∀𝑥, 𝑦 ∈ ℕ, 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦). 
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This is a correct reduction function, because: 

- if 𝑥 ∈ 𝑃𝑟, 𝜙𝑠(𝑥)(𝑦) = 𝑝 ∀𝑦 ∈ ℕ, so we can take 𝑠(𝑥) ∈ 𝑊𝑠(𝑥) 𝑠. 𝑡. 𝑝 ∈ 𝑃 and so 𝑝 ∈ 𝐸𝑠(𝑥) = ℕ s.t. 

so 𝑠(𝑥) ∈ 𝑃 

 

- if 𝑥 ∉ 𝑃𝑟, 𝜙𝑠(𝑥)(𝑦) ↑  ∀𝑦 ∈ ℕ, so we can take 𝑠(𝑥) ∉ 𝑊𝑠(𝑥) = ∅ and so 𝑠(𝑥) ∉ 𝑃 

  

 

 

 

 

 

 

 

ù 

𝐵 is saturated given 𝐵 = {𝑥 | 𝜙𝑥(𝑥) ∈ ℬ} so ℬ = {𝑓 ∈ 𝒞 | 𝑖𝑚𝑔(𝑓) ∩ 𝑐𝑜𝑑(𝑓) ≠ ∅}. Using Rice-Shapiro, we 

argue that: 

- 𝐵 is not r.e. 

Consider for example 𝑖𝑑 ∈ ℬ given ℬ = {𝑓 | 𝑖𝑚𝑔(𝑓) ∩ 𝑐𝑜𝑑(𝑓)} = ℕ ≠ ∅ and both image and codomain 

are finite and consider no finite subfunction can be inside 𝐵 

- 𝐵 is not r.e. 

Consider ∅ (always undefined function) which conversely is definitely in this set given ℬ = {𝑓 | 𝑖𝑚𝑔(𝑓) ∩

𝑐𝑜𝑑(𝑓)} = ∅, which is exactly what we want (so 𝜃 ∈ ℬ) 

Given both sets are not r.e. they are both not recursive.   

As solved by Baldan by Moodle 2020-2021. 

If 𝐴 is saturated, 𝐴 = {𝑥 | 𝜙𝑥 ∈ 𝒜} where 𝒜 = {𝑔 | 𝑖𝑚𝑔(𝑓) ∩ 𝑖𝑚𝑔(𝑔) = ∅} 

- 𝐴 not r.e. 

𝑓 ∉ 𝒜      𝑖𝑚𝑔(𝑔) ∩ 𝑖𝑚𝑔(𝑓) | = 𝑖𝑚𝑔(𝑓) ≠ ∅ because 𝑓 is total 

∅ ⊆ 𝑓       𝑖𝑚𝑔(𝑓) ∩ 𝑖𝑚𝑔(∅) ⇒ ∅ ∈ 𝒜 

So, 𝐴 is not recursive ⇒ 𝐴 not recursive 
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- 𝐴 not r.e. 

Let 𝑒 𝑠. 𝑡. 𝜙𝑒 = 𝑓  

𝑠𝑐𝐴(𝑥) = 𝑙𝑜𝑜𝑘 𝑓𝑜𝑟 𝑦 𝑐𝑜𝑚𝑚𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 "x" and "e"  

⇒ 𝑙𝑜𝑜𝑘 𝑓𝑜𝑟 𝑦, 𝑧1 𝑖𝑛𝑝𝑢𝑡 𝑓𝑜𝑟 𝑥, 𝑧2 𝑖𝑛𝑝𝑢𝑡 𝑓𝑜𝑟 𝑒 𝑠. 𝑡. 𝑥 𝑜𝑛 𝑧1 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 𝑦 𝑎𝑛𝑑 𝑒 𝑜𝑛 𝑧2 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 𝑦 

= 𝜇𝑤. 𝑆(𝑥, (𝑤)2, (𝑤)1, (𝑤)4) ∧ 𝑆(𝑒, (𝑤)3, (𝑤)1, (𝑤)4) 

where (𝑤)1 = 𝑦, (𝑤)2 = 𝑧1, (𝑤)3 = 𝑧2, (𝑤)4 = 𝑡  

As solved by an old tutor: 
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This is present inside 2012-06-20. 

Define: 

𝑔(𝑥, 𝑦) = {
𝑦, 𝑖𝑓 ¬𝐻(𝑥, 𝑥, 𝑦)

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

By the smn-theorem, there exists a total computable function 𝑠: ℕ → ℕ 𝑠. 𝑡. 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) and this is 

shown to be the correct reduction function: 

- if 𝑥 ∈ 𝐾, 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) = 𝑦 and 𝐻(𝑥, 𝑥, 𝑦) does not terminate. So, we have 𝑠(𝑥) ∈

𝑊𝑠(𝑥), 𝜙𝑠(𝑥)(𝑠(𝑥)) = 𝑠(𝑥). Therefore, 𝑠(𝑥) ∈ 𝐴 

 

- if 𝑥 ∉ 𝐾, 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) ↑ ∀𝑦 ∈ 𝑁. Therefore, 𝑠(𝑥) ∉ 𝑊𝑠(𝑥) = ∅. So, 𝑠(𝑥) ∉ 𝐴. 

As solved by an old tutor mentioned in beginning of this chapter: 
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Given the following ones are not different and are already solved (I solved them myself as exercise, but 

nothing new to note, I’ll paste them here for the sake of completeness) 
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333   Computability simple (for real) 
 

Written by Gabriel R. 
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This is also present inside exam 2016-07-01.  

Comments aside, set 𝐵 is saturated, considering B = {𝑥 ∶ 𝑦𝑥 ∈ ℬ}, where ℬ = {𝑓 ∈ 𝒞: ∀𝑦 ∈ 𝑑𝑜𝑚(𝑓). ∃𝑧 ∈

𝑑𝑜𝑚(𝑓). (𝑦 < 𝑧) ∧ (𝑓(𝑦) > 𝑓(𝑧))}}. Using Rice-Shapiro we show that: 

- B is not r.e.  

Consider 𝑖𝑑 ∉ B considering all values must be ordered and different from each other, but there exists a 

finite subfunction 𝜃 for which it holds 𝜃 ⊆ 𝑖𝑑, 𝜃 ∉ ℬ. This subfunction is the always undefined one, so ∅. 

So, this set is not r.e. 

- B is not r.e. 

In this case, there is a finite subfunction which is not inside the complement, which again is the always 

undefined function, so 𝐵 = 𝒞 ∖ {∅}. Consider the modified definition of this set, which is: 

𝐵 = {𝑓 | ∃ 𝑦 ∈ 𝑑𝑜𝑚(𝑓). ∀𝑧 > 𝑦. (𝑧 ∉ 𝑑𝑜𝑚(𝑓)) ∨ (𝑓(𝑦) ≤ 𝑓(𝑧))} 

In this case, it is possible to write a semicharacteristic function, considering we are interested in making the 

set halt and it holds that 𝜒B = 𝑠𝑐B ∗ 𝑥, where 𝑠𝑐𝐵 = 𝟏(𝜇𝑤.𝐻(𝑥, (𝑤)1, (𝑤)2)).  

Given it is r.e, to understand if this is also recursive, we have to use Rice’s theorem. 

We showed before already the set ≠ ∅. There also holds B ≠ 𝑁 and we know B is saturated and it’s easy to 

see (literally copying what was present before) that B is saturated. So, this is not recursive.  
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Exercises (2022-01-19) 
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Exercise (2022-06-17) 
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Written by Gabriel R. 

Exercises (2023-02-01) 
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Exercises (2023-02-20) 
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Exercise (2021-06-30-solved) 

Study from the point of view of recursiveness the set A = {𝑥 ∈ ℕ | 𝑃 ∩𝑊𝑥 = ∅}, where 𝑃 is the set of even 

numbers and determine if A and A are recursive/r.e. 

Solution 

Observe A is saturated, considering A = {𝑥 ∈ ℕ | 𝜙𝑥 ∈ 𝒜} where 𝒜 = {𝑓 |𝑃 ∩ 𝑑𝑜𝑚(𝑓) = ∅}. 

Using Rice-Shapiro, A is not r.e. Specifically, considering the set of computable functions, we will prove 

∃𝑓 ∈ 𝐶. 𝑓 ∉ A ∧ ∃𝜃 ⊆ 𝑓 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∈ A ⇒ A not r.e. 

Consider 𝑖𝑑 ∉ 𝒜, given 𝑃 ∩ 𝑑𝑜𝑚(𝑓) = 𝑃 ≠ ∅ while the always undefined function ∅ ∈ 𝒜, given 𝑃 ∩

𝑑𝑜𝑚(𝑓) = ∅ ∩ 𝑃 = ∅. Using Rice’s theorem, considering A ≠ ∅ and A ≠ 𝑁, also A saturated, we conclude 

this set is not recursive. 

Let’s try to show the same for A using Rice-Shapiro in the same way. Define: 

𝑓(𝑥) = {
2, 𝑥 ≡ 0 𝑚𝑜𝑑 2
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and  

𝜃(𝑥) = {
2, 𝑥 ≥ 2
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Clearly, 𝑓 ∈ A but there isn’t a function 𝜃 which is not inside A. So, Rice-Shapiro fails. 

This maybe represents A is r.e., so let’s try to write the semicharacteristic function: 

𝑠𝑐A = 𝜇𝑤.𝐻(𝑥, 2 ∗ (𝑤)1, (𝑤)2) 



342   Computability simple (for real) 
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So, A is r.e. and not recursive, 𝐴 is neither r.e. nor recursive. 

Exercise (2021-06-30-solved) 

Study from the point of view of recursiveness the set 𝐵 = {𝑥 ∈ ℕ | ∃𝑦, 𝑧 ∈ 𝑊𝑥  . 𝑥 = 𝑦 ∗ 𝑧} and determine if 

𝐵 and B are recursive/r.e. 

Solution 

Set B is not recursive and we show it via 𝐾 ≤𝑚 B. To do so, consider the following function: 

𝑔(𝑥, 𝑦) = {
1, 𝑥 ∈ 𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Such function is computable, considering 𝑔(𝑥, 𝑦) = 𝑠𝑐𝐾. By the smn-theorem, there exists a total 

computable function 𝑠:ℕ → ℕ 𝑠. 𝑡. 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) ∀𝑛 ∈ ℕ.  

𝑠 can be considered the correct reduction function, infact: 

- 𝑖𝑓 𝑥 ∈ 𝐾, 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) ∗ 1 = 𝜙𝑠(𝑥)(𝑦) ∀𝑦 ∈ ℕ. Infact, 𝑊𝑠(𝑥) = 𝑁 having 𝑠(𝑥) = 1 ∗ 𝑠(𝑥) 

and so 𝑠(𝑥) ∈ 𝐵 

 

- 𝑖𝑓 𝑥 ∉ 𝐾, 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) = ↑ ∀𝑦 ∈ ℕ. Infact, 𝑊𝑠(𝑥) = ∅ and so there cannot exist indices 

𝑦, 𝑧 𝑠. 𝑡. 𝑠(𝑥) = 𝑦 ∗ 𝑧 ∈ 𝑊𝑠(𝑥). So, 𝑠(𝑥) ∉ 𝐵 

Is 𝐵 r.e.? Yes, it is, considering a semicharacteristic function can be defined: 

𝑠𝑐𝐵(𝑥) = 𝟏(𝜇𝑤. (𝐻(𝑥, (𝑤)1, (𝑤)3) ∧ 𝐻(𝑥, (𝑤)2, (𝑤)3) ∧ 𝑥 = (𝑤)2 ∗ (𝑤)3) 

which is computable. So, 𝐵 is r.e. and not recursive, so 𝐵 is not r.e. (otherwise, they would be both 

recursive) so 𝐵 is not recursive.  

Exercise (2021-02-25-solved.pdf) 

Study the recursiveness of set 𝐴 = {𝑥 ∈ 𝑁 | 𝑊𝑥 = 𝐸𝑥}, i.e. establish if 𝐴 and 𝐴 are recursive/r.e. 

Solution 

We observe first 𝐴 is saturated, considering it can be defined with the set of computable functions 𝐴 =

{𝑥 ∈ 𝑁 | 𝑑𝑜𝑚(𝑓) ∖ 𝑐𝑜𝑑(𝑓)} for the set A = {𝑥 ∈ ℕ | 𝜙𝑥 ∈ 𝒜} 

Using Rice-Shapiro’s theorem, the following are not r.e and not recursive. 

- 𝐴 not r.e.  

To show this we define: 

𝑓(𝑥) = {
↑, 𝑥 = 0
𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Note 𝑓 ∈ 𝒜 given 𝑑𝑜𝑚(𝐹) = {𝑁} ∖ {0} and 𝑐𝑜𝑑(𝑓) = {0}. Problem is, there is no finite subfunction able 

to compute this in the complement set, given 𝑑𝑜𝑚(𝜃) and 𝑐𝑜𝑑(𝜃) are finite and can’t be complement one 

of the other, given that set would be infinite, but here is finite. For Rice-Shapiro, we conclude 𝐴 is not r.e 
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- 𝐴 not r.e. 

In this case, we have that A = {𝑥 ∈ ℕ | 𝜙𝑥 ∉ 𝒜}. We use the empty function ∅ ∈ 𝒜, 𝜃 = ∅ given 

𝑑𝑜𝑚 (𝑓) ≠ 𝑐𝑜𝑑(𝑓) = ∅ and they compute a different value, hence there exists a finite subfunction but 

different from all the set values. So, for Rice-Shapiro, we conclude this is not r.e. 

Exercise (2021-02-25-solved.pdf) 

Study the recursiveness of set 𝐴 = {𝑥 ∈ 𝑁 | 𝑊𝑥 ∖ 𝐸𝑥  𝑓𝑖𝑛𝑖𝑡𝑒}, i.e. establish if 𝐴 and 𝐴 are 

recursive/recursively enumerable 

Solution 

Observe 𝐴 is a saturated set given A = {x ∈ 𝑁 | 𝜙𝑥 ∈ 𝒜} where 𝒜 = {𝑓 | 𝑑𝑜𝑚(𝑓) ∖ 𝑐𝑜𝑑(𝑓)} is finite, 

hence 𝐴 = {𝑓 | 𝑑𝑜𝑚(𝑓) =  𝑐𝑜𝑑(𝑓)}. Using Rice-Shapiro’s theorem, both sets are not r.e. 

- A not r.e.  

We use the constant function 𝟏 ∈ 𝐴, given 𝑑𝑜𝑚(𝟏) ∖ 𝑐𝑜𝑑(𝟏) = ℕ ∖ {1} is not finite and with the empty 

function ∅ ⊆ 𝟏, ∅ ∈ 𝐴, given 𝑑𝑜𝑚(𝑓) ∖ 𝑐𝑜𝑑(𝑓) = ∅ finite and by Rice-Shapiro, 𝐴 is not r.e. 

- A not r.e. 

Again, the constant function 𝟏 ∈ 𝐴 but no finite subfunction ∈ 𝐴, considering 𝑑𝑜𝑚(𝜃) and 𝑐𝑜𝑑(𝜃) are 

finite and also 𝑑𝑜𝑚(𝑓) ∖ 𝑐𝑜𝑑(𝑓) is finite. Hence, by Rice-Shapiro, 𝐴 is not r.e.  

Exercise (2021-02-25-solved.pdf) 

Study the recursiveness of set 𝐵 = {𝑥 ∈ ℕ | ∃𝑦. (𝑥 ≤ 𝑦 ≤ 2𝑥 ∧ 𝑦 ∈ 𝑊𝑥)}, i.e. establish 𝐵 and 𝐵 are 

recursive/r.e. 

Solution 

Let’s use a reduction for the halting set showing 𝐵 is not recursive, arguing that 𝐾 ≤𝑚 𝐵 and to prove this, 

we know its semicharacteristic function is made by two arguments and is like: 

𝑠𝑐𝐾(𝑥) = 𝑔(𝑥, 𝑦) = {
1, 𝑥 ∈ 𝑊𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

This function is computable and by the smn-theorem, there exists a total computable function 𝑠: ℕ →

ℕ 𝑠. 𝑡. 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) ∀𝑥, 𝑦 ∈ ℕ and this is the reduction function. To argue this last one: 

- if 𝑥 ∈ 𝐾, then 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) = 1 ∀𝑥 ∈ ℕ and for sure 𝑦 ∈ 𝑊𝑥  𝑠. 𝑡. 𝑠(𝑥) ≤ 𝑦 ≤ 2𝑠(𝑥) for a 

function 𝑦 = 𝑠(𝑥), so 𝑠(𝑥) ∈ 𝐵 

 

- if 𝑥 ∉ 𝐾, then 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥) ↑ ∀𝑦 ∈ ℕ so 𝑊𝑠(𝑥) = ∅ and there is no such function 𝑦 =

2𝑥 𝑠. 𝑡. 𝑠(𝑥) ≤ 𝑦 ≤ 2𝑠(𝑥) and so 𝑥 ∉ 𝐵. 

Given these assumptions, the set 𝐵 has a semicharacteristic function, which can be expressed by the 

halting oracle 𝐻 and the function 𝑆 terminating in 𝑡 steps. In this case, the rule is to respect the definition 

of function inside 𝑥 ≤ 𝑦 ≤ 2𝑥, s.t.: 

𝑠𝑐𝐵(𝑥) = 𝟏(𝜇𝑤. (𝐻(𝑥, (𝑤)1, (𝑤)2) ∧ (𝑥 ≤ (𝑤)1 ≤ 2𝑥)) 

is computable. By the same assumption, there is no function able to express the complement and 𝐵 is not 

recursive.  
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Exercise (2021-02-09-solved.pdf) 

Study the recursiveness of set 𝐵 = {𝑥 ∈ 𝑁 | 3𝑥 ∈ 𝐸𝑥}, i.e. establish if 𝐵 and 𝐵 are recursive/r.e. 

Solution 

The set 𝐵 is not recursive since we can show by a reduction for the halting problem 𝐾 ≤𝑚 𝐵. In this case, 

we consider 𝑔(𝑥, 𝑦) = 𝑦 if 𝑥 ∈ 𝐾 and 𝑔(𝑥, 𝑦) = 𝑠𝑐𝐾(𝑥) ∗ 𝑦. By the smn-theorem, there is a total 

computable function 𝑠:ℕ → ℕ 𝑠. 𝑡. 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) and this can be shown to be the reduction function 

of such problem: 

- if 𝑥 ∈ 𝐾 then 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) = 𝑦 , ∀𝑦 ∈ ℕ then 𝐸𝑠(𝑥) = ℕ and 3 ∗ 𝑠(𝑥) ∈ 𝐸𝑠(𝑥). So, 𝑠(𝑥) ∈ 𝐵 

 

- if 𝑥 ∉ 𝐾 then 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦) ↑, ∀𝑦 ∈ ℕ. In this case 𝐸𝑠(𝑥) = ∅ and 3 ∗ 𝑠(𝑥) ∉ 𝐸𝑠(𝑥), so 𝑠(𝑥) ∉

𝐵 

The set 𝐵 is not recursive but it’s r.e., considering we can write its semicharacteristic function this way: 

𝑠𝑐𝐵(𝑥) = 𝟏(𝜇𝑤. (𝑆(𝑥, (𝑤)1, 3𝑥, (𝑤)2) 

Given 𝐵 is r.e. but not recursive, the complement by definition of its conditions is not r.e. either and also 

not recursive.  

Exercise (2022-01-19-solved) 

 

 

Solution 

Observe the set is saturated, given 𝐴 = {𝑥 ∈ ℕ | 𝜙𝑥 ∈ 𝒜} since 𝐴 = {𝑓 | 𝑓 𝑞𝑢𝑎𝑠𝑖 − 𝑡𝑜𝑡𝑎𝑙}. By Rice-

Shapiro’s theorem, 𝐴 and 𝐴 are not r.e. and thus not recursive, so let’s show: 

- 𝐴 is r.e. 

Consider the case of the identity function 𝑖𝑑 ∈ 𝒜 ∀𝜃 ⊆ 𝑖𝑑, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∉ 𝒜 given 𝑑𝑜𝑚(𝜃) is finite, the 

codomain is undefined on a set of points, being quasi-total (this one is defined on all possible values) and 

𝑑𝑜𝑚(𝜃) is infinite. 

- 𝐴 is not r.e. 

Consider the case of ∅ function, given 𝜃 = ∅ ⊆ 𝑖𝑑 and ∀𝜃 ⊆ 𝑖𝑑, 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∉ 𝒜. Since 𝑑𝑜𝑚(𝜃) = ∅ and 

thus 𝑑𝑜𝑚(𝜃) = ℕ is infinite (this one is never defined). 

Exercise (2023-07-04.pdf) 

 

 

 

We argue that a set 𝐵 is not recursive considering 𝐾 ≤𝑚 𝐵. The reduction function can be defined as: 

𝑔(𝑥, 𝑦) = {
4𝑥 + 1, 𝑥 ∈ 𝐾

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The function 𝑔(𝑥, 𝑦) can be shown to be the correct reduction function using the smn-theorem via 𝑥: 𝑁 →

𝑁 s.t. ∀𝑥, 𝑦 ∈ 𝑁: 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦). Infact, if 𝑥 ∈ 𝐾,  then 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 4𝑥 + ∀𝑦 ∈ 𝑁 and if 𝑥 ∉

𝐾, then 𝑔(𝑥, 𝑦) =↑, having no such 𝑦 such that 𝜙𝑠(𝑥)(𝑦) = 4𝑥 + 1.  

Furthermore, 𝐵 is r.e., considering we can write the semicharacteristic function: 

𝑠𝑐𝐵(𝑥) = 𝟏(𝜇𝑤.𝐻(𝑥, (𝑤)1, (𝑤)3) ∧ 𝑆(𝑥, (𝑤)1, (𝑤)2, (𝑤)3)1 

which is computable. Therefore 𝐴 is not r.e., considering 𝐴 is r.e. and non-recursive.  

Exercise (2023-07-04) 

  

 

 

 

a)  

  

 

 

 

b)  

 

 

 

 

c) Assume 𝐴 and 𝐵 are recursive, hence we can write two characteristic functions as follows: 

𝜒𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

and: 

𝜒𝐵(𝑥) = {
1, 𝑥 ∈ 𝐵
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Also, for 𝐴 ∖ 𝐵 = {𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵} is recursive because we can define: 

𝜒𝐴∖𝐵(𝑥) = {
1, 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

If this extends to r.e. sets, it means that both for 𝐴 and 𝐵 we are able to create semicharacteristic 

functions. Infact, we can write: 

𝑠𝑐𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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and: 

𝑠𝑐𝐵(𝑥) = {
1, 𝑥 ∈ 𝐵
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Still, 𝐴 ∖ 𝐵 is not r.e. since we can consider for example 𝐴 and 𝐵 = 𝐴 and in this case 𝐴 ∖ 𝐵 is equivalent to 

𝐴 ∩ 𝐴. If 𝐴 is r.e., also 𝐴 is r.e. but the intersection gives the empty set, which is recursive, but not r.e. 

Exercise (2019-01-24) 

Study recursiveness of set 𝐵 = {𝑥 | 𝜙𝑥(𝑥) ↓ ∧  𝜙𝑥(𝑥) 𝑜𝑑𝑑}, determining if 𝐵 and 𝐵 are r.e. or not. 

Solution 

Observe 𝐵 is saturated, considering B = {𝑥: 𝜙𝑥(𝑥) ∈ 𝐵} where 𝐵 = {𝑓 ∈ 𝐶 | 𝑓(𝑥) ↓ ∧ 𝑓(𝑥) 𝑜𝑑𝑑}. 

B is r.e. given we can write 

𝑠𝑐𝐵(𝑥) = 𝟏(𝜇𝑤. (𝐻 (
𝑥

2
, (𝑤)1, (𝑤)2) ∧ 𝑆 (

𝑥

2
+ 1, (𝑤)2, (𝑤)1, (𝑤)3))) 

which is computable. 

By Rice’s Theorem, B is not recursive, considering 𝑒0 and 𝑒1 indexes for 𝑖𝑑 and ∅ so 𝑒0 ∈ B and 𝑒1 ∉ B not 

recursive.  

𝐵 = {𝑓 ∈ 𝐶 | 𝑓(𝑥) ↓ ∨ 𝑓(𝑥) 𝑜𝑑𝑑}. By Rice-Shapiro, this is not r.e.; consider 𝑀 = max{𝑓(𝑥) |  𝑥 ∈ ℕ} and 

considering 𝜃 is any finite function, then 𝜃 ≠ ∅, 𝑦 = 𝑀(𝑑𝑜𝑚(𝜃)), 𝜃 ∈ 𝐵. Observe also, given the definition 

of set, 𝑖𝑑 ∉ 𝐵 (because, in words, the property is not satisfied for every natural number) and consider 𝜃 ⊆

𝑖𝑑, 𝜃 ≠ ∅ with 𝜃 ∈ 𝐵. 

Exercise 

Study recursiveness of set 𝐴 = {𝑥 ∈ ℕ; ∃𝑦 ∈ 𝑊𝑥 . ∃𝑧 ∈ 𝐸𝑥 . 𝑥 + 𝑦 = 𝑧}, so establish if 𝐴 and 𝐴 are 

recursive/r.e. 

Solution 

This is very similar to 8.32. 

We show 𝐾 ≤𝑚 𝐴 and so 𝐴 is not recursive. Define: 

𝑔(𝑥, 𝑦) = {
𝑧, 𝑖𝑓 𝑦 ∈ 𝑊𝑥  𝑠𝑜 𝐻(𝑥, 𝑥, 𝑦)

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(we say the function terminates, given it outputs a value when whenever value + what we get from image, 

so 𝑓(𝑥), is 𝑧, so this allows the function to terminate). 

The function is computable, since 𝑔(𝑥, 𝑦) = 𝑧 ∗ 𝜒𝐻(𝑥, 𝑥, 𝑦). 

By the smn-theorem, there exists a total computable function 𝑠: ℕ → ℕ 𝑠. 𝑡. ∀𝑥, 𝑦 ∈ ℕ,𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦). 

The function 𝑠 is shown to be a correct reduction function: 

- if 𝑥 ∈ 𝐾, ∀𝑦 ∈ ℕ,𝐻(𝑥, 𝑥, 𝑦) holds as true and therefore 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝑧 ∀𝑦 ∈ ℕ. So 𝑠(𝑥) ∈

𝐴 

- if 𝑥 ∉ 𝐾,¬𝐻(𝑥, 𝑥, 𝑦) and so 𝜙𝑠(𝑥)(𝑦) = ↑, so 𝑊𝑠(𝑥) = ∅. So 𝑠(𝑥) ∉ 𝐴 
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Set 𝐴 is r.e. given we can write: 

𝑠𝑐𝐴(𝑥) = 𝜇𝑤. (𝐻(𝑥, (𝑤)1, (𝑤)2, (𝑤)3 ∧ (𝑤)1 + (𝑤)2 = 𝑥) 

Given 𝐴 is r.e. but not recursive, 𝐴 is not r.e. (otherwise, they would be both recursive) and also not 

recursive.  

Exercise (16-09-2020) 

Study recursiveness of set 𝐵 = {𝑥 ∈ ℕ:𝑊𝑥 ∪ 𝐸𝑥 = ℕ}, so establish if 𝐵 and 𝐵 are recursive/r.e. 

Solution 

This is similar to 8.74 exercise. 

Observe 𝐴 is saturated because A = {𝑥 | 𝜙𝑥 ∈ 𝒜} and 𝒜 = {𝑓 | 𝑑𝑜𝑚(𝑓) ∪ 𝑐𝑜𝑑(𝑓) = ℕ}. 

By Rice-Shapiro, we show that: 

- 𝐴 is not r.e. 

This happens because 𝑖𝑑 ∈ 𝒜 but no finite subfunction 𝜃 ⊆ 𝑖𝑑 can be in 𝐴, since 𝑑𝑜𝑚(𝑓), 𝑐𝑜𝑑(𝑓) are finite 

and so 𝑐𝑜𝑑(𝑓) ∩ 𝑖𝑚𝑔(𝑓) ≠ ℕ. 

- 𝐴 is not r.e. 

This happens because 𝑖𝑑 ∈ 𝒜, but consider the always undefined function ∅ as a finite subfunction 𝜃, so 

we have 𝜃 ∈ 𝒜. 

By Rice’s theorem, both sets are effectively not recursive, neither r.e. as we showed.  

Exercise (2018-11-20-parziale.pdf) 

Is there an index 𝑒 ∈ 𝑁 and a total non-computable function 𝑓:ℕ → ℕ s.t. 𝑑𝑜𝑚(𝑓) and 𝑐𝑜𝑑(𝑓) (where 

𝑑𝑜𝑚(𝑓) = {𝑥 | 𝑓(𝑥) ↓} and 𝑐𝑜𝑑(𝑓) = {𝑦 | ∃𝑥. 𝑓(𝑥) = 𝑦}) there is 𝑑𝑜𝑚(𝑓) = 𝑊𝑒 and 𝑐𝑜𝑑(𝑓) = 𝐸𝑒 ∀𝑒 ∈

ℕ? 

Solution 

Consider as index 𝑒 the one of the identity function, so 𝑒 = 𝜙𝑒(𝑖𝑑) and so 𝑊𝑒 = 𝐸𝑒 = ℕ. Define the 

function 𝑓: ℕ → ℕ as follows: 

𝑓(𝑥) = {
𝜙𝑥(𝑥) + 1, 𝑥 ∈ 𝑊𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The function 𝑓 is total, so 𝑑𝑜𝑚(𝑓) = ℕ = 𝑊𝑒. Also, 𝑑𝑜𝑚(𝑓) = ℕ = 𝐸𝑒. Infact, ∀𝑛 ∈ 𝑁 if 𝑛 = 0 then 

considering an index 𝑥 of the always undefined function, you have 𝑓(𝑥) = 0.  

If 𝑛 > 0 consider whatever index 𝑥 of the constant function 𝑛 − 1 and you have 𝑓(𝑥) = (𝑛 − 1) + 1 = 𝑛. 

For the second part, the answer is clearly no. Consider 𝑒 ∈ ℕ s.t. 𝜙𝑒 is the always undefined function, every 

𝑓 s.t. 𝑑𝑜𝑚(𝑓) = 𝑊𝑒 = ∅ coincides with 𝜙𝑒 and so it is computable.      
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Exercise (2017-01-24) 

Study from the point of view of recursiveness the set 𝐵 = {𝑥 | ∃𝑘 ∈ ℕ. 𝑘𝑥 ∈ 𝑊𝑥} so establish if 𝐵 and 𝐵 are 

recursive/r.e. 

Solution 

𝐵 is r.e., given it can be defined as 𝑠𝑐𝐵(𝑥) = 𝟏(𝜇𝑤. 𝑆(𝑥, (𝑤)1 ∗ 𝑥, (𝑤)2, (𝑤)3)).  

We consider 𝐾 ≤𝑚 𝐵 to show the set is not recursive: 

𝑔(𝑥, 𝑦) = {
1, 𝑥 ∈ 𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= 𝑠𝑐𝐾(𝑥) 

𝑔 is computable and by the smn-theorem there exists a total computable function 𝑠: ℕ → ℕ s.t. ∀𝑥, 𝑦 we 

have 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦). This is shown to be the correct reduction function: 

- if 𝑥 ∈ 𝐾,𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 1 ∀𝑦 ∈ ℕ,𝑊𝑠(𝑥) = ℕ and so ∃𝑘 ∈ ℕ . 𝑘 ∗ 𝑓(𝑥), 𝑓(𝑥) ∈ 𝑊𝑓(𝑥), so 

𝑠(𝑥) ∈ 𝐵 

- if 𝑥 ∉ 𝐾,𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = ↑ ∀𝑦 ∈ ℕ,𝑊𝑠(𝑥) = ∅ and so ∃𝑘 ∈ ℕ . ∄𝑘 ∗ 𝑓(𝑥), 𝑓(𝑥) ∈ 𝑊𝑓(𝑥), so 

𝑠(𝑥) ∉ 𝐵 

Exercise (16-09-2020) 

Study from the point of view of recursiveness the set 𝐴 = {𝑥 ∈ ℕ: ∃𝑦 ∈ 𝑊𝑥 , ∃𝑧 ∈ 𝐸𝑥 . 𝑥 = 𝑦 + 𝑧} so 

establish if 𝐴 and 𝐴 are recursive/r.e. 

Solution 

The set 𝐴 is clearly saturated, since we can write 𝐴 = {𝑥| 𝜙𝑥 ∈ 𝒜} where 𝒜 = {𝑥 ∈ ℕ: ∃𝑦 ∈ 𝑑𝑜𝑚(𝑓), ∃𝑧 ∈

𝑐𝑜𝑑(𝑓). 𝑥 = 𝑦 + 𝑧}  

The set is not recursive, since 𝐾 ≤𝑚 𝐴 to show the set is not recursive: 

𝑔(𝑥, 𝑦) = {
𝑦, 𝑥 ∈ 𝐾
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= 𝑦 ∗ 𝑠𝑐𝐾(𝑥) 

𝑔 is computable and by the smn-theorem there exists a total computable function 𝑠: ℕ → ℕ s.t. ∀𝑥, 𝑦 we 

have 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦). This is shown to be the correct reduction function: 

- if 𝑥 ∈ 𝐾,𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝑦 ∀𝑦 ∈ ℕ,𝑊𝑠(𝑥) = ℕ and so 𝜙𝑠(𝑥)(𝑠(𝑥)) = 𝜙𝑠(𝑥) + 𝑧 ∈ ℕ, so 

𝑠(𝑥) ∈ 𝐴 

- if 𝑥 ∉ 𝐾,𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = ↑ ∀𝑦 ∈ ℕ,𝑊𝑠(𝑥) = ∅ and so 𝜙𝑠(𝑥)(𝑠(𝑥)) =↑ with 𝐸𝑠(𝑥) = 𝑊𝑠(𝑥) = ∅ 

and so 𝑠(𝑥) ∉ 𝐴 

The set is r.e. since we can write: 

𝑠𝑐𝐴(𝑥) = 𝟏 (𝜇𝑤. (𝐻(𝑥, 𝑥, 𝑦) ∧ 𝑆(𝑥, 𝑦 + 𝑧, 𝑥, 𝑡))) = 𝟏(𝜇𝑤. (𝐻(𝑥, 𝑥, (𝑤)1) ∧ 𝑆(𝑥, (𝑤)2 + (𝑤)3, 𝑥, (𝑤)4))) 

Therefore, given 𝐴 is r.e. but not recursive, also 𝐴 is not r.e. and not recursive (otherwise both would be 

recursive).  
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Exercise  

Let ℙ = {2𝑘 | 𝑘 ∈ ℕ} be the set of even numbers. Study recursiveness of set 𝐴 = {𝑥 ∈ ℕ: |𝑊𝑥 ∩ ℙ| ≥ 2}, so 

establish if 𝐴 and 𝐴 are recursive/r.e. 

Solution 

The set 𝐴 is clearly saturated, since we can write 𝐴 = {𝑥| 𝜙𝑥 ∈ 𝒜} where 𝒜 = {𝑥 ∈ ℕ: | 𝑑𝑜𝑚(𝑓) ∩ ℙ ≥ 2}.  

We conjecture this set cannot be r.e. since this requirement would involve looking for every possible value 

on the domain in case of infinite sets to consider.  

Let’s use Rice-Shapiro to prove this set is not r.e. A function easily respecting the requirements would be 

the identity, since |𝑊𝑥 ∩ ℙ| = ℕ ≥ 2 since the intersection with the even numbers set holds, so 𝑖𝑑 ∈ 𝒜. 

Also, there exists a 𝜃 𝑓𝑖𝑛𝑖𝑡𝑒, 𝜃 ∉ 𝒜 since 𝜃 = ∅ given |𝑊𝑥 ∩ ℙ| = ∅ ∗ 𝑃 = ∅ which is no ≥ 2. So 𝐴 not r.e. 

Consider the complement 𝐴 = {𝑥 ∈ ℕ: |𝑊𝑥 ∪ ℙ| ≤ 2} 

A function clearly respecting this property would be the constant function 0 which domain with even 

numbers can be at least in the base case ≤ 2. Conversely, the subfunction 𝜃 = ∅ ∉ 𝒜. 

Hence, 𝐴 and 𝐴 are not r.e. and not recursive.  
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22.9 SECOND RECURSION THEOREM 
Note: This is fairly straightforward, given the theorem is pretty simple and basically says that you use a 

function of two arguments which by the smn-theorem fixes 𝑥. This 𝑥 is then replaced by the index used 

inside the theorem to prove the statement. Other times, the set is not saturated and so by the theorem, 

using the problem conditions, there will be two indices not computing the same thing. 

 

The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).  

There goes the proof: 

Let 𝑓:ℕ → ℕ be total computable. 

Observe 𝑥 ↦  𝜙𝑥(𝑥) computable 

 

𝑥 ↦  𝑓(𝜙𝑥(𝑥)) computable 

define 

𝑔(𝑥, 𝑦) = 𝜙𝑓(𝜙𝑥(𝑥))(𝑦)                           𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝜙↑ =↑ 

= Ψ𝑈(𝑓(𝜙𝑥(𝑥)), 𝑦)                                        

= Ψ𝑈(𝑓(Ψ𝑈(𝑥, 𝑥), 𝑦)               𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

By the smn-theorem, there is 𝑠: ℕ → ℕ total and computable s.t. ∀𝑥, 𝑦 

𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) = 𝜙𝑓(𝜙𝑥(𝑥))(𝑦)       (∗) 

Since 𝑠 is computable, there is 𝑚 ∈ ℕ 𝑠. 𝑡. 𝑆 = 𝜙𝑚.  

Substituting in (∗) 

𝜙𝜙𝑚(𝑥)(𝑦) = 𝜙𝑓(𝜙𝑥(𝑥))(𝑦)    ∀ 𝑥, 𝑦 

In particular, for 𝑥 = 𝑚 

𝜙𝜙𝑚(𝑚)(𝑦) = 𝜙𝑓(𝜙𝑚(𝑚))(𝑦)     ∀𝑦 

Hence 

𝜙𝜙𝑚(𝑚) = 𝜙𝑓(𝜙𝑚(𝑚)) 

If we let 𝑒0 = 𝜙𝑚(𝑚) ↓ and replace in the previous equation, we conclude 

𝜙𝑒0 = 𝜙𝑓(𝑒0) 

(note that 𝜙𝑚 = 𝑠 total, hence 𝜙𝑚(𝑚) ↓) 
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The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).  

Consider this comes from the notes and (18.1) refers to the definition just given here. 

 

 

 

 

 

 

 

 

 

The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).  

As solved by an old tutor: 
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(Same exercise as 9.18) 

The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).  

Define a function of two arguments as follows: 

𝑔(𝑛, 𝑦) = {
𝑦, 𝑖𝑓 𝑦 =  𝑥 ∗ 𝑛

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

By the smn-theorem, there exists 𝑛 ∈ ℕ 𝑠. 𝑡. 𝑔(𝑥, 𝑦) = 𝜙ℎ(𝑥)(𝑦) and by the second recursion theorem, 

there exists an index ∈ ℕ 𝑠. 𝑡. 𝜙𝑛 = 𝜙ℎ(𝑒) and 𝜙𝑒(𝑦) = 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑒, 𝑦) = 𝑒, ∀𝑦 ∈ ℕ. 

As solved by an old tutor: 
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The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).  

Define a function of two arguments as follows: 

𝑔(𝑥, 𝑦) = {
𝑥 + 𝑦, 𝑥 ∈ 𝑊𝑥

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

By the smn-theorem, there exists 𝑛 ∈ ℕ 𝑠. 𝑡. 𝑔(𝑥, 𝑦) = 𝜙ℎ(𝑥)(𝑦) and by the second recursion theorem, 

there exists an index 𝑒 ∈ ℕ 𝑠. 𝑡. 𝜙𝑒 = 𝜙ℎ(𝑒) and 𝜙𝑒(𝑦) = 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑒, 𝑦) = 𝑒 + 𝑦 , ∀𝑦 ∈ ℕ. 

The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).  

Define a function of two arguments as follows: 

𝑔(𝑥, 𝑦) = {
𝑥 − 𝑦, 𝑥 ∈ 𝑊𝑥

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

By the smn-theorem, there exists 𝑛 ∈ ℕ 𝑠. 𝑡. 𝑔(𝑥, 𝑦) = 𝜙ℎ(𝑥)(𝑦) and by the second recursion theorem, 

there exists an index 𝑒 ∈ ℕ 𝑠. 𝑡. 𝜙𝑒 = 𝜙ℎ(𝑒) and 𝜙𝑒(𝑦) = 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑒, 𝑦) = 𝑒 − 𝑦 ∀𝑦 ∈ ℕ. 

As solved by an old tutor: 

 

 

 

 

 

 

 

The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒). Consider: 

𝑔(𝑥, 𝑦) = {
𝜙𝑥(𝑥), 𝑖𝑓 𝑥 ∈ 𝑊𝑛 

0, 𝑥 ≥ 0
 

This is computable since 𝑔(𝑥, 𝑦) = Ψ𝑈(𝑥, 𝑥). By the smn-theorem, there exists a total computable function 

𝑠: ℕ → ℕ 𝑠. 𝑡. ∀𝑥, 𝑦 ∈ ℕ 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦). 

By the Second Recursion Theorem, there exists an index 𝑒 ∈ ℕ 𝑠. 𝑡. 𝜙𝑠(𝑒) = 𝜙𝑒 and so 𝜙𝑒(𝑦) = 𝜙𝑠(𝑒)(𝑦) =

𝜙𝑒(𝑒), ∀𝑒 ∈ ℕ. In both cases of 𝑛 ≠ 0, when 𝑛 = 0, 𝑒 = 0 ∈ ℕ, when 𝑛 ≠ 0,𝐸𝑛 ∈ ℕ and so |𝐸𝑛| = 𝑛
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The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).  

By the theorem, such function does not have a fixed point, given the function is total and if the fixpoint 

existed, we would have 𝜙𝑥 = 𝜙𝑦 and so 𝜙Δ(𝑥) = 𝜙𝑥, hence extending the index property over all set, which 

is the practical definition of what the theorem says. 

Here, instead, we have the exact opposite of a definition for the problem, hence Δ(𝑥) is not computable.  

The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).   

The function is total but not computable by definition (uses diagonalization), hence 𝜙𝑥 ≠ 𝜙ℎ(𝑥) ∀𝑥, since 

𝜙𝑥 is total, but 𝜙ℎ(𝑥) is not. And so, by the second recursion theorem, there exists an index 𝑒 ∈ ℕ 𝑠. 𝑡. 𝜙𝑒 ≠

𝜙𝑠(𝑒) and so ℎ cannot be computable.  
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The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).    

Let’s define a computable function of two arguments, like: 

𝑔(𝑥, 𝑦) = {
2𝑥, 𝑦 = 2𝑥
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

which is a computable function and by the smn-theorem, the exists a total computable function 𝑠: ℕ → ℕ 

s.t. ∀𝑥, 𝑦 ∈ ℕ, 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦). 

By the Second Recursion Theorem, there exists an index 𝑒 s.t. 𝜙𝑠(𝑒) = 𝜙𝑒 and so 𝜙𝑒(𝑦) = 2𝑒. 

Therefore, we have 𝐸𝑠(𝑥) = 𝑦, 𝐸𝑒 = {𝑒}, 𝑒 ∈ 𝐶. 

To show that is not saturated, take and index 𝑒′ ≠ 𝑒 and it holds that ∀𝑒′ ≠ 𝑒, 𝑒 ∉ 𝐸𝑒′ = 𝐸𝑒  and so 𝑒 ∉ 𝐶. 

Since for two different indices in the same set, they calculate different values (this is the textual-practical 

explanation), the set 𝐶 is not saturated. Infact consider 2𝑒 ∈ 𝑊𝑒 ∩ 𝐸𝑒 ≠ 𝑊𝑒
′ ∩ 𝐸𝑒

′ .  

The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).  

Let’s define a computable function of two arguments, like: 

𝑔(𝑥, 𝑦) = 𝑥 

which is a computable function and by the smn-theorem, the exists a total computable function 𝑠: ℕ → ℕ 

s.t. ∀𝑥, 𝑦 ∈ ℕ, 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦). 

By the Second Recursion Theorem, there exists an index 𝑒 s.t. 𝜙𝑠(𝑒) = 𝜙𝑒 and so 𝜙𝑒(𝑦) = 𝑒. 

Therefore, we have 𝐸𝑠(𝑥) = 𝑦, 𝐸𝑒 = {𝑒}, 𝑒 ∈ 𝐶. 

To show that is not saturated, take and index 𝑒′ ≠ 𝑒 and it holds that ∀𝑒′ ≠ 𝑒, 𝑒 ∉ 𝐸𝑒′ = 𝐸𝑒  and so 𝑒 ∉ 𝐶. 

Since for two different indices in the same set, they calculate different values (this is the textual-practical 

explanation), the set 𝐶 is not saturated. 

 

 

 

 

The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).  

The function is total, since 𝜙𝑥 total when 𝑒0 ∈ ∅ and 𝑒1 ∈ {1}. By definition, the function is not 

computable, since if it were, for the Second Recursion Theorem, there would be 𝑒 ∈ 𝑁 𝑠. 𝑡. 𝜙𝑒 = 𝜙𝑔(𝑒). Bu 

definition of 𝑔, we have that 𝜙𝑒 is total when 𝜙𝑔(𝑒) is not since it holds ∀𝑥, 𝜙𝑔(𝑥) ≠ 𝜙𝑥. 
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The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).  

 

 

 

The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).  

Consider the reduction definition; if you let 𝑓 be the reduction function, we consider 𝑓: ℕ → ℕ 𝑠. 𝑡. 𝑥 ∈

𝐶 𝑖𝑓𝑓 𝑓(𝑥) ∈ 𝐶 (so, 𝑓(𝑥) ∉ 𝐶). 

Since 𝑓 is computable, by the second recursion theorem, there exists an index 𝑒 ∈ ℕ 𝑠. 𝑡. 𝜙𝑒 = 𝜙𝑠(𝑒) so it 

holds 𝜙𝑒 = 𝜙𝑓(𝑒).  

Since 𝐶 is saturated, we have that 𝑒′ 𝑠. 𝑡.  𝜙𝑒 = 𝜙𝑒
′   gives two different functions and programs on their 

computations, so 𝑒 ∉ 𝐶 and the reduction function cannot exist. 
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The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙𝑒(𝑛).  

We must then show the existence of such a function, which can be successfully used with the second 

recursion theorem.  

On example could be given by using the successor function 𝑠𝑢𝑐𝑐:ℕ → ℕ 𝑠. 𝑡. 𝑠𝑢𝑐𝑐(𝑛) = 𝑛 + 1 ∀𝑛 ∈ ℕ. This 

can be extended to any computable function, considering by the smn-theorem, there exists a total 

computable function 𝑠:ℕ → ℕ 𝑠. 𝑡. 𝜙𝑠(𝑥) = 𝑔(𝑥, 𝑦) with 

𝑔(𝑥, 𝑦) = 𝑓(𝑥) = {
𝑥 + 1, 𝑖𝑓 𝜙𝑥(𝑥) ↓

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
= 𝑥 + 1 + 𝑠𝑔(𝜇𝑤.𝐻(𝑥, 𝑦, 𝑡)    𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 

We can conclude by using Second Recursion Theorem, saying there exists an index 𝑒 such that 𝜙𝑠(𝑒) = 𝜙𝑒 

and then: 

𝜙𝑒(𝑥) = {
𝑒 + 1, 𝑖𝑓 𝜙𝑒(𝑥) ↓

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Considering ∃𝑛 ∈ ℕ 𝑠. 𝑡. 𝜙𝑛 = 𝜙𝑠𝑢𝑐𝑐(𝑛) = 𝜙𝑛+1, this hold for any 𝑒′ ≠ 𝑒 𝑠. 𝑡. 𝜙𝑒(𝑛) = 𝜙𝑒+1 

For the second part, this essentially says all computable do not coincide for every possible index; so, the 

first case says computable functions can coincide on an index (which happens, because the theorem refers 

to a fixed point), this second one shows there is at least one where this does not hold. 

Conversely from before, we can consider the predecessor function 𝑝𝑟𝑒𝑑:ℕ → ℕ such that: 

𝑝𝑟𝑒𝑑(𝑛) = {
0, 𝑛 = 0

𝑛 − 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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This function is total and computable, by the second recursion theorem, there exists a program 𝑒 such that 

𝜙𝑒 = 𝜙𝑓(𝑒). Specifically, consider ∃𝑚 ∈ ℕ 𝑠. 𝑡. 𝜙𝑚 = 𝜙𝑝𝑟𝑒𝑑(𝑚) = 𝜙𝑚−1 ≠ 𝜙𝑚+1, proving what was present 

above. 
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The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).   

𝑔(𝑥, 𝑦) = {
𝑝𝑥 , 𝑖𝑓 𝜙𝑥(𝑥) ↓

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

For the smn-theorem, there exists a total computable function 𝑠: ℕ → ℕ 𝑠. 𝑡. ∀𝑥, 𝑦 ∈ ℕ, 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) 

By the second recursion theorem, there exists an index 𝑒 𝑠. 𝑡. 𝜙𝑠(𝑒) = 𝜙𝑒 and so: 

𝜙𝑒(𝑦) = 𝑔(𝑒, 𝑦) = {
𝑝𝑒 , 𝑖𝑓 𝜙𝑒(𝑒) ↓

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

Therefore, 𝜙𝑒(𝑦) = 𝜙𝑠(𝑒)(𝑦) = 𝑝𝑒 and so 𝑝 − 𝑒 is the 𝑒𝑡ℎ prime number ∈ 𝑊𝑒 and also 𝑊𝑒 = ℕ, so 𝑒 ∈ 𝐶.  

The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).  

𝑔(𝑥, 𝑦) = {
0, ∃𝑧 𝑠. 𝑡. 𝑧 = 𝑥 ∗ 𝑦

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
= 𝜇𝑤. |𝑧 ∗ 𝑥 − 𝑦| 

For the smn-theorem, there exists a total computable function 𝑠: ℕ → ℕ 𝑠. 𝑡. ∀𝑥, 𝑦 ∈ ℕ, 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) 

By the second recursion theorem, there exists an index 𝑒 𝑠. 𝑡. 𝜙𝑠(𝑒) = 𝜙𝑒 

𝜙𝑒(𝑦) = 𝑔(𝑒, 𝑦) = {
𝑦, 𝑖𝑓 𝑒 ∗ 𝑦 ∈ 𝑊𝑒
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Therefore, 𝜙𝑒(𝑦) = 𝜙𝑠(𝑒)(𝑦) = 𝑒 and 𝑊𝑒 = ℕ as intended. 
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This one is also present inside 2017-01-24 exam. 

The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).  

𝑔(𝑥, 𝑦) = {
𝑥, 𝑖𝑓 𝜙𝑥(𝑥) ↓

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

For the smn-theorem, there exists a total computable function 𝑠: ℕ → ℕ 𝑠. 𝑡. ∀𝑥, 𝑦 ∈ ℕ, 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦) 

By the second recursion theorem, there exists an index 𝑒 𝑠. 𝑡. 𝜙𝑠(𝑒) = 𝜙𝑒 

𝜙𝑒(𝑦) = {
𝑒, 𝑖𝑓 𝜙𝑒(𝑒) ↓

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

Therefore, 𝜙𝑒(𝑦) = 𝜙𝑠(𝑒)(𝑦) = 𝑒 and so 𝜙𝑒(0) = 𝑒 and also 𝑊𝑒 = ℕ, so 𝑒 ∈ 𝐶. Consider any 𝑒′ ≠

𝑒 𝑠. 𝑡. 𝜙𝑒
′ = 𝜙𝑒 and so 𝑊𝑒

′ = 𝑊𝑒  with 𝜙𝑒(0) = 𝜙𝑒
′(0). Since it is not saturated, we have that this cannot 

hold, so 𝜙𝑒
′ ≠ 𝜙𝑒 and so 𝑒 ∉ 𝐶. 

Exercise (15-07-2020) 

State the Second Recursion Theorem and use it to show that for all 𝑘 ≥ 0 there are two indices 𝑥, 𝑦 ∈

ℕ 𝑠. 𝑡. 𝑥 − 𝑦 = 𝑘 𝑎𝑛𝑑 𝜙𝑥 = 𝜙𝑦 

Solution 

The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙𝑒(𝑛). Define: 

𝑔(𝑥, 𝑦) = {
𝑥 − 𝑦, 𝑖𝑓 𝜙𝑥(𝑦) ↓

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
= (𝑥 − 𝑦) − 𝟏(𝜇𝑤. |𝑘−. 𝜙𝑥(𝑦)| = (𝑥 − 𝑦) − 𝟏(𝜇𝑤. |𝑘−

. Ψ𝑈(𝑥, 𝑦)| 
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which is computable. By the smn-theorem, there exists a total computable function 𝑠:ℕ → ℕ 𝑠. 𝑡. 𝑔(𝑥, 𝑦) =

𝜙𝑠(𝑥)(𝑦). By the second recursion theorem, there exists an index 𝑒 ∈ ℕ 𝑠. 𝑡. 𝜙𝑠(𝑒)(𝑦) = 𝜙𝑒(𝑦). So, we 

define: 

𝑔(𝑒, 𝑦) = {
𝑒 − 𝑦, 𝑖𝑓 𝜙𝑒(𝑦) ↓

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Therefore, for any index 𝑒 ∈ 𝐸𝑒, we have that 𝜙𝑒 = 𝜙𝑒′ since 𝜙𝑥 = 𝜙𝑦, given 𝜙𝑠(𝑥) = 𝜙𝑠(𝑦), ∀𝑘 ≥ 0. 

Exercise (30-06-2020) 

State the Second Recursion Theorem and use it to show that the set 𝐵 = {𝑥 ∈ 𝑁: |𝑊𝑥| = 𝑥 + 1} is not 

saturated. 

Solution 

The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).  

Define: 

𝑔(𝑥, 𝑦) = {
𝑦 + 1, 𝑥 ∈ 𝑊𝑘

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

By the smn-theorem, there exists a total computable function 𝑠: ℕ → ℕ 𝑠. 𝑡. 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦). By the 

second recursion theorem, there exists 𝑒 ∈ ℕ 𝑠. 𝑡. 𝜙𝑒 = 𝜙𝑠(𝑒). Therefore: 

𝜙𝑒(𝑦) = 𝜙𝑠(𝑒)(𝑦) = 𝑔(𝑒, 𝑦) = {
𝑒 + 1, 𝑥 ∈ 𝑊𝑒

↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑒 ∈ 𝐶𝑓, considering 𝑊𝑒 = {𝑒}, 𝑒 ∈ 𝐶 and by the Second Recursion Theorem, 𝜙𝑥(𝑦) = 𝜙𝑠(𝑥)(𝑦) = ℎ(𝑒, 𝑦) =

𝑒 + 1 ∀𝑦 ∈ 𝑁. 

Exercise (2019-01-24) 

State the Second Recursion Theorem and use it to show there exists 𝑥 ∈ ℕ such that |𝑊𝑥| = 𝑥 

Solution 

The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).  

Define: 

𝑔(𝑥, 𝑦) = {
𝑦, 𝑥 ∈ 𝑊𝑘
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

By the smn-theorem, there exists a total computable function 𝑠: ℕ → ℕ 𝑠. 𝑡. 𝑔(𝑥, 𝑦) = 𝜙𝑠(𝑥)(𝑦). By the 

second recursion theorem, there exists 𝑒 ∈ ℕ 𝑠. 𝑡. 𝜙𝑒 = 𝜙𝑠(𝑒). Therefore: 

𝜙𝑒(𝑦) = 𝜙𝑠(𝑒)(𝑦) = 𝑔(𝑒, 𝑦) = {
𝑒, 𝑥 ∈ 𝑊𝑒
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑒 ∈ 𝐶𝑓, considering 𝑊𝑒 = {𝑒}, 𝑒 ∈ 𝐶 and by the Second Recursion Theorem, 𝜙𝑥(𝑦) = 𝜙𝑠(𝑥)(𝑦) = ℎ(𝑒, 𝑦) =

𝑒 ∀𝑦 ∈ ℕ. 
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Exercise (2019-02-08) 

State the Second Recursion Theorem and use it to show the set 𝐴 = {𝑥 | 𝑊𝑥 ⊆ {𝑥}} is not saturated. 

Solution 

The second recursion theorem states that for each total computable function ℎ:ℕ → ℕ there exists 𝑒 ∈ ℕ 

such that 𝜙𝑒 = 𝜙ℎ(𝑒).  

To answer this one, define: 

𝑔(𝑥, 𝑦) = {
𝑥, 𝑥 ∈ 𝑊𝑥
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

which is computable and by the smn-theorem, there exists a total computable function 𝑠: ℕ →

ℕ 𝑠. 𝑡. ∀𝑥, 𝑦 ∈ ℕ we have 𝜙𝑠(𝑥)(𝑦) = 𝑔(𝑥, 𝑦).  

By the second recursion theorem, there exists an index 𝑒 s.t. 𝜙𝑠(𝑒) = 𝜙𝑒 and so 

𝜙𝑒 = 𝜙𝑠(𝑒) = 𝜙𝑒(𝑦) = 𝑔(𝑒, 𝑦) = {
𝑒, 𝑒 ∈ 𝑊𝑒
↑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Therefore, we have 𝑊𝑒 ⊆ 𝑒 ∈ ℕ. Consider any 𝑒′ ≠ 𝑒 s.t. 𝜙𝑒
′ = 𝜙𝑒 and so one would have 𝑒 ∉ 𝑊𝑒

′ = 𝑊𝑒 

and therefore 𝑒 ∉ 𝐴, given 𝜙𝑒(𝑒) ↓ ≠ 𝜙𝑒′(𝑒
′) ↓. Hence, 𝐴 is not saturated. 
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